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developed a method for the analysis of

large sets of data-driven models, using

different distance metrics to quantify

model similarity. Consensus analysis is

then used to reach a single metabolic

distance. The method was applied to

model the individual variability in the

responses to endurance training in a

cohort of older adults.
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THE BIGGER PICTURE High-throughput techniques enable the analysis of complex biological systems at
multiple levels, including genome, transcriptome, proteome, and metabolome. Integration of multi-omics
data is often focused on dimensionality reduction and feature selection for classification tasks. Genome-
scalemetabolicmodels are extensivemaps of the network of biochemical reactions taking place in a partic-
ular cell, tissue or organism. Each reaction is associated with the respective enzyme and gene, enabling the
mapping of transcriptomics and proteomics data and providing a structure for the system-level interpreta-
tion of multi-omics datasets. The result of this process is a personalized model that gives a snapshot of the
metabolic status of an individual. Analyzing these complex models, for example, to detect differences be-
tween individuals, is cumbersome. We applied consensus clustering to a set of data-driven models to
monitor the progression of a lifestyle intervention in a cohort of older adults.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Gene expression and protein abundance data of cells or tissues belonging to healthy and diseased individ-
uals can be integrated and mapped onto genome-scale metabolic networks to produce patient-derived
models. As the number of available and newly developed genome-scale metabolic models increases, new
methods are needed to objectively analyze large sets of models and to identify the determinants of metabolic
heterogeneity. We developed a distance-based workflow that combines consensus machine learning and
metabolic modeling techniques and used it to apply pattern recognition algorithms to collections of
genome-scale metabolic models, both microbial and human. Model composition, network topology and
flux distribution provide complementary aspects of metabolic heterogeneity in patient-specific genome-
scale models of skeletal muscle. Using consensus clustering analysis we identified the metabolic processes
involved in the individual responses to endurance training in older adults.
INTRODUCTION

Individual differences in genetic backgrounds and lifelong expo-

sure to different environmental stressors are responsible for the

variability in the outcomes of medical interventions within a

population. Methods to identify clinically relevant subgroups of in-

dividuals who respond similarly to the same treatment and esti-

mate their future outcome for a given treatment would be relevant

both in research and for clinical practice, for example, to study the
This is an open access article und
heterogeneous pace of aging observed in different individuals,1,2

or to develop targeted interventions against the development

of frailty with age.3 Current methods for patient stratification

and prediction of health outcomes are broadly divided in data

driven andphysiologydriven. Data-drivenmethods seek statistical

correlations between the outcome and one or more covariates,

while physiology-based (dynamic) models use previous biological

knowledge, structured in differential equations, to explain

experimental data. Nevertheless, both approaches have certain
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disadvantages: statistical correlationsare insufficient toexplain the

mechanismof a disease,while physiology-baseddynamicmodels

have a limited scope and scale since they are difficult to

parametrize.

Genome-scale metabolic models (GSMMs) take a third,

alternative approach: they mathematically reproduce the

network of metabolic reactions happening inside an organism

or tissue and can be used to simulate the response to specific

environmental conditions, such as the availability of nutrients.

The activity of each reaction in the model can be linked to

experimental data, such as levels of gene expression and

protein abundance, making such models a combination of

data-driven and physiology-driven methods and interesting

platforms for the system-level integration of multi-omics data-

sets.4–6 Advancements in automated model generation algo-

rithms4,7,8 have made possible the construction of large collec-

tions of GSMMs derived from experimental data, such as

cancer patient-derived models,9 and microbial models of the

human gut microbiota.10,11 Despite this increase in the number

of new models generated and published, few studies so far

have tackled the issue of heterogeneity across GSMMs.12,13

The current approach to describe the heterogeneity in a model

set is to apply a similarity metric:10 used the Jaccard distance

to describe the heterogeneity in a collection of GSMMs of gut

microbiota, and the same metric has been used to describe

the differences between the output of alternative model recon-

struction algorithms.14,15 Other metrics, such as Hamming dis-

tance16 and Pearson’s correlation coefficient12 have been used

as alternatives to describe heterogeneity within model sets. In

this study, we argue that distance metrics are also key to the

application of supervised and unsupervised pattern recognition

methods to genome-scale model sets.

Machine learning (ML) algorithms are able to identify patterns

in very large datasets, relying on distance metrics to quantify

similarity between different data points.17–19 GSMMs parame-

trized with experimental data can be considered as a novel

data class that comprises both information about the structure

of the metabolic network and multiple types of omics data,

upon which ML algorithms could be applied.20,21 The detection

of patterns contained in large model collections would help

determine the mechanisms behind the heterogeneity in individ-

ual responses to metabolic and pharmacological interventions.

We identified several different similarity metrics for model

composition, network topology, and flux distribution and

compared their properties by applying them to two large

GSMMs sets: the AGORA set,10 composed of 818 models of

human gut microbiota, and a subset of the PD-GSMM set,9

composed of 100 human tissue-specific cancer metabolic

models. We developed a distance-based workflow that, by

combining ML and metabolic modeling, was able to identify

biologically relevant patterns present in a novel set of 24

GSMMs of skeletal muscle metabolism in older adults. These

models were developed from longitudinal gene expression

data that were gathered from the muscle tissue of 12 healthy

older adults, before and after completing a 12-week resistance

training program. Two models were created for each individual:

one representing the baseline condition or ‘‘untrained’’ (UT) sta-

tus, the other representing the ‘‘after training’’ (AT) status. The

three metrics provide complementary aspects of metabolic
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heterogeneity in patient-specific genome-scale models. Using

consensus clustering analysis we identify metabolic processes

involved in the individual responses to endurance training in

older adults.

RESULTS

Distance Metrics Enables Consensus Clustering and
Visualization of GSMM Sets
GSMMs are complex data structures with three main features:

they are databases of metabolic genes and the associated me-

tabolites and biochemical reactions which were experimentally

found or predicted to be present in a certain tissues or organ-

isms; they are mathematical representations of the topology of

the metabolic network; and they are used to simulate how the

metabolism of a tissue or organism adapts to a particular envi-

ronment or condition by limiting with upper and lower bounds

the metabolic fluxes through exchange reactions with the

external medium.

Starting from the idea of Euclidean distance between data

points as a similarity measure in ML, we asked how this concept

could be expanded and applied to GSMMs. In this context, dis-

tance can be thought of as a proxy for functional similarities be-

tween the metabolisms of two organisms. As an example, let us

consider Bacilli and Clostridia, two families of sporulating bacteria

belonging to the same phylum (Firmicutes). What distinguishes

them is the fact that the former is aerobic, and the latter is not.

One way to quantify their similarity is by measuring the propor-

tion of biochemical reactions they have in common. This informa-

tion is summarized by the Jaccardmetric. We computed the pair-

wise Jaccard distance between hundreds of bacterial models

belonging to the Bacilli (n = 197) and Clostridia (n = 131) families,

which were included in the AGORA model set. The results are

visualized in Figure 1D. The two bacterial families are clearly

distinguishable on the basis of the proportion of their shared reac-

tions (i.e., their Jaccard distance), implying that distance is corre-

lated with functional similarity. Another example is presented in

Figure 2, which is a visualization of the Jaccard distance between

each model in the AGORA model set: here we can observe how

models belonging to the same taxonomic family cluster close to

each other. The Jaccard metric is the de facto standard to mea-

sure similarity between genome-scale models.10,14,15

We hypothesized that the heterogeneity within each of these

three complementary components contributed to the ‘‘total’’

model heterogeneity and defined a different distance metric for

each of them: the Jaccard metric was used to compute the over-

lap between the reaction lists of a pair of models; A graph kernel,

i.e., a function to compute similarity between network topol-

ogies, was used to obtain a similarity score between metabolic

networks. Pearson’s correlation coefficient was instead used

as similarity score between normalized flux distribution vectors

as a metric of similarity between constraint-based models. The

flux distributions are obtained averaging 1,000 random samples

of the solution space of each model, then the flux through each

reaction is normalized by subtracting the mean and dividing by

the standard deviation of each reaction. A more detailed discus-

sion of these metrics can be found in the Experimental Proced-

ures section. To compare the properties of these metrics, we

computed the pairwise distances for the models in the AGORA



Figure 1. Distance Metrics Enable Consensus Clustering Analysis and Visualization of GSMM Sets

Comparison of three distance metrics applied to a subset of the AGORAmodel set (Bacilli and Clostridia, n = 328models). From top to bottom: Jaccard distance,

Weisfeiler-Lehman subtree (WLS) kernel distance, flux distribution correlation. Left: heatmaps of the three distance matrices that were used as input in for the

consensus clustering algorithm. Right: results of the embedding of the same distancematrices, obtained via kernel PCA. Variance of each principal component is

reported in parentheses.
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Figure 2. Visualization of the Full AGORA Mi-

crobial Model Set

kernel PCA embedding of the AGORA dataset (n =

817 models), obtained using Jaccard distance.

Variance of each principal component is reported in

parentheses.

ll
OPEN ACCESS Article
and PD-GSM datasets for each of the three different distance

metrics. To test our hypothesis, we then looked at the correlation

between the resulting pairwise symmetric distance matrices.

The clustered distance matrices for each of the three metrics

are shown in Figures 1A–1C and 3A–3C, respectively, for the AG-

ORA and the PD-GSMM sets. Kernel PCA, a non-linear variant of

principal-component analysis,22 was used to embed and visu-

alize the pairwise distance matrices, allowing the visual inspec-

tion of the clustering results and of the overarching structure of

the model set.

Reaction List Similarity and Network Similarity Are
Highly Correlated
Figure 1 illustrates how the Jaccard (Figure 1D) and graph

kernel (Figure 1E) metrics can give similar representations of

this model collection, and how in both cases the two classes

are well separated. In the third case, flux correlation (Figure 1F),

we can instead observe three clusters, a main one containing

elements of both classes, and two smaller one containing

only elements of one class. Contrary to our initial expectations,

Jaccard distance and graph kernel distance showed an almost

perfect correlation (Table 1), suggesting that these two metrics

actually convey much of the same information. Jaccard dis-

tance does not only measure similarity between the reaction

content of two metabolic reconstructions, but also expresses

similarity between their network topologies. The third metric,

Pearson’s correlation between flux distributions, shows only a

modest correlation with reaction content and network topology.

This observation suggests that flux distribution and network to-

pology/composition are the two complementary aspects of

metabolic heterogeneity.

The modest correlation between network structure,

described by the first two metrics, and the flux correlation

metric (Table 1) can be explained by the degeneracy of the

metabolic network, i.e the existence of many possible flux dis-

tributions for a given topology. While the topology sets the

limits of the possible states of the network, infinite different

flux distributions are possible given the same topology. The

composition and topology of the metabolic network is inferred

from the genome of an organism or tissue: for example, meta-

genomic data from gut microbiota were used to draft the meta-

bolic networks of the bacteria in the AGORA dataset.10 For any

given environment, an organism will attain only one particular

metabolic flux distribution, in principle the one that ‘‘optimizes’’
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their fitness. This cellular behavior can be

simulated with optimization techniques,

such as flux balance analysis (FBA), which

identifies the flux distribution that maxi-

mizes a certain cellular objective, for

example, biomass production, when the

organism is subjected to certain nutri-
tional constraints. This particular solution can be thought of

as the ‘‘metabolic phenotype’’ expressed by that organism un-

der that particular condition.23

Flux Distribution and Network Composition Are the Two
Main Aspects of Metabolic Heterogeneity
To test if the observations we made regarding distance between

microbial models are valid also for human metabolic models, we

studied the distances in a subset of the PD-GSMM set, contain-

ing 100 patient-derived models of skin and liver metabolism.

Figure 3 shows how different metrics can give vastly different

representations of the same model set. In the case of the Jac-

card metric (Figure 3D), the two classes are well separated,

forming two main clusters and two smaller ones. The graph

kernel representation (Figure 3E) gives a different picture,

showing instead two tight and overlapping clusters. In the third

case, flux correlation (Figure 3F), the models are widely spread,

but the two classes are even more overlapped.

The correlation between the metrics (Table 2) is lower than in

the AGORA model set; nevertheless the Jaccard and graph

kernel distancematrices still remain very highly correlated. Given

the larger size of the human metabolic network compared with

bacterial ones, the graph similarity metric may not have enough

resolution to discriminate between the two classes. The differ-

ence between the networks in the PD-GSM set are too small,

relative to their size. Looking at these results we can already

conclude that our initial hypothesis, that metabolic heterogeneity

can be described by three different metrics, is not supported by

the data: the very high correlation between Jaccard and graph

kernel shows that Jaccard is able to summarize the similarity

of the metabolic networks as well as the overlap in the reaction

content of two models.

Given the low correlation between flux correlation and the

other two metrics, flux distribution similarity should be viewed

as a separate and complementary component of metabolic

heterogeneity. Nevertheless, when we applied this metric to

the PD-GSMM set, the two classes overlapped significantly.

From an ML perspective, the flux correlation metric could

not discriminate between the two classes. A classifier algo-

rithm trained using this similarity metric would have worse

performance than one trained using the Jaccard metric. For

these reasons we decided to use only the Jaccard metric as

a measure of metabolic heterogeneity for the remainder of

this study.



Figure 3. Comparison of the Three Metrics for a Subset of the PD-GSMM Set (Liver and Skin Cancer Models, n = 100)

From top to bottom: Jaccard distance, WLS kernel distance, flux distribution correlation. Left: heatmaps of the three distance matrices that were used as input in

for the consensus clustering algorithm. Right: results of the embedding of the same distance matrices, obtained via kernel PCA. Variance of each principal

component is reported in parentheses.
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Description of the Proposed Workflow
The publication of large GSMM collections, such as AGORA for

gut microbiota models and PD-GSM for individualized human

cancer models, showed the need for new scalable methods of
analysis that can be applied to large model sets. We were inter-

ested in the concept of distance between individualized models

and whether it could be applied to obtain biologically relevant

insights about a set of GSMMs. Once we established the
Patterns 1, 100080, September 11, 2020 5



Table 1. Reaction List Similarity and Network Similarity Are

Highly Correlated

Jaccard Graph Kernel Flux Correlation

Jaccard 1.000 0.986 0.197

Graph kernel 0.986 1.000 0.189

Flux correlation 0.197 0.189 1.000

Pearson’s correlation coefficients between pairs of distance matrices

computed with different metrics for the full AGORA dataset (n = 817

models) obtained via the Mantel test. p values < 0.001.

Table 2. Flux Distribution and Network Structure Are Two

Complementary Aspects of Metabolic Heterogeneity

Jaccard Graph Kernel Flux Correlation

Jaccard 1.000 0.892 0.127

Graph kernel 0.892 1.000 0.151

Flux correlation 0.127 0.151 1.000

Pearson’s correlation coefficients between pairs of distance matrices

computedwith different metrics for the PD-GSMdataset (n = 100models)

obtained via the Mantel test. p values < 0.001.
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properties of distance metrics in GSMMs, we developed a dis-

tance-based workflow for the characterization of heterogeneity

in metabolic models sets that, through the combination of ML

and constraint-based metabolic modeling techniques, such as

FBA,24 enables the visualization of the large-scale structure of

the model set, allows cluster analysis of the models and iden-

tifies the set of reactions that differentiates the clusters. The

workflow is presented in Figure 4.

The distance between each pair of models is computed using

three different metrics: Jaccard distance, graph kernel and flux

correlation, resulting in three square distance matrices of size

n3 n, where n is the number of models in the set. Each of the

three metrics gives a different view of the heterogeneity present

in a given model set. A consensus clustering approach is used to

reconcile these differences and give a more comprehensive and

robust view of metabolic heterogeneity: agglomerative hierarchi-

cal clustering is applied separately to each of the three distance

matrices, then a consensus algorithm is applied to find an agree-

ment between the three label vectors. For this task, we consid-

ered three consensus algorithms: the cluster-based similarity

partitioning algorithm, the hyper graph partitioning algorithm,

and themeta-clustering algorithm.25 In each of these algorithms,

the optimization problem is reformulated in terms of a (hyper)

graph partitioning problem. Among the three solutions, the defin-

itive consensus is identified as the one with the highest average

mutual information score between the input label vectors and the

output consensus label vector. To visualize the structure of the

model set, the pairwise distance matrices were transformed

into a set of coordinates in an abstract Cartesian space using

kernel PCA, an embedding algorithm. The output of this embed-

ding can alternatively be used as input for other non-kernel-

based ML algorithms.

The label predicted by the consensus clustering algorithm is

used to investigate the differences in the flux distributions of

the models between the clusters. A flux distribution matrix is

created, merging the flux distribution vectors obtained via aver-

aging 1,000 random samples of the solution space of the

models. The flux matrix is then normalized, by subtracting the

mean for each flux and dividing by its standard deviation. Using

the Kruskal-Wallis test,26 a non-parametric version of ANOVA, is

possible to identify the reactions whose activity differs between

the clusters.

Development of Patient-Derived GSMMs of Aging
Skeletal Muscle Metabolism Before and After Metabolic
Intervention
Skeletal muscle plays an important role during the aging pro-

cess, not only in maintaining the ability to perform activities of
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daily living, but also because it increases resilience against

stressors and adverse events, such as traumatic injuries and dis-

eases.27 Low muscle mass and strength are predictors of mor-

tality and adverse health outcomes in older adults,28 and are

associated with development of frailty, a multifactorial condition

of disability and increased vulnerability to adverse external

stimuli.

Nutritional and physical activity interventions are currently the

only possible treatments to slow muscle wasting in older adults.

Nevertheless, aging individuals express a large variation of

health outcomes, due to causes ranging from genetic differ-

ences to socioeconomic and behavioral factors,29 and not all in-

dividuals will experience the same magnitude of benefit from a

given treatment.30 We are interested in modeling the heteroge-

neity of the individual responses to interventions that could

improve health in older adults, from a metabolic point of view.

Modeling the distance between GSMMs derived from individual

data could help find the mechanisms behind the difference in in-

dividual responses to the same metabolic intervention and help

the development of metabolic markers for each intervention.

We developed an original set of 24 patient-derived GSMMs

from longitudinal gene expression data of skeletal muscle of 12

older adults (84 ± 1 years old), before and after an intervention

consisting of 12 weeks of resistance training. Although previous

studies have investigated the metabolism of skeletal muscle us-

ing GSMMs,31,32 none has used longitudinal data to develop

pairs of PD-GSMM and examine the response to a metabolic

intervention, such as resistance training in a group of older indi-

viduals. All the models are based on a general human metabolic

reconstruction, Recon2.2.33 Gene expression data were used to

identify the reactions with experimental support, while a model

generation algorithm, CORDA,8 was used to create drafts of

the models, keeping only high-confidence reactions and a

minimal number of lower-confidence reactions to ensure the

functionality of the resulting network. Details about the model-

building procedure are presented in the Experimental

Procedures section. Information about the size and content of

the resultingmodels for each of the two conditions are presented

in Figure 5 and Table 3.

Figure 5 describes the content of the models included in the

aging skeletal muscle model set in terms of reactions, genes,

and metabolites for each of the two classes. UT models contain

on average 42% of the reactions, 46% of the metabolites, and

73% of the genes of the ‘‘parent’’ model, Recon2.2, while AT

models contain on average 44%of the reactions, 47%of theme-

tabolites and 79% of the genes of the parent model.

The observation that AT models are on average somewhat

larger than UT models (Table 3), suggests that individualized



Figure 4. Description of the Proposed Work-

flow

Three metrics of distance are computed between

each pair of models. The resulting square distance

matrices are used as input for the consensus clus-

tering algorithm. The consensus label and a matrix

of normalized flux distributions obtained via random

sampling are used in the Kruskal-Wallis test to

identify reactions whose activity differs between the

clusters.
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genome-scale models are able to capture at least in part the

increased baseline gene expression after the end of the training

program that was reported in the original study.34

Clustering and Visualization of the Skeletal Muscle
Model Set
We applied our distance-based workflow to visualize the rela-

tionships between the models in the skeletal muscle model

set and to perform a cluster analysis. The first step was to

compute the Jaccard distance between each pair of models.

The pairwise distance matrix was clustered with hierarchical

clustering, and presented as a heatmap in Figure 6A. Figure 6B

presents the embedding of the distance matrix, obtained via

kernel-PCA. While it is immediately possible to identify two

well-separated clusters, the two classes are not perfectly

segregated as each of the clusters contain elements of both

classes. The two clusters are enriched respectively in trained

(left cluster) and UT (right cluster) models. One model, UT no.

5, is detected as an outlier.

Metabolic Interventions as Trajectories in theMetabolic
Health Space
Health is not a single immutable state but rather can be defined

as a set of dynamic processes at different points in time that

together form a health trajectory.35 The ability to model the

health trajectories of different individuals over time to understand

the causes of different individual responses to the same inter-

ventions and how the present condition affects future health

would have a large impact not only on basic biomedical

research, but also in clinical practice.

The ability to model the health trajectories of different individ-

uals over time to understand the differences in their responses to

the same interventions and how their present condition affects

future health would have a large impact not only on basic

biomedical research, but also in clinical practice. Previous ex-

amples include modeling the progression of biological treatment
in a ‘‘health space,’’ whose axis represent

biological processes, such as oxidative

stress, inflammation, and metabolism.36

The availability of pre- and post-interven-

tion gene expression data allowed us

to model the tissue-specific metabolic

response of each individual to a lifestyle-

change intervention (Figure 7). By tracing

the arrows that join the two training states

for each of the individuals in the cohort, it

was possible to visualize the metabolic
response to training in older adults as a trajectory in the meta-

bolic health space.

The different directions and magnitudes of these shifts in the

metabolic space reveal the heterogeneity of the individual

response to the training program. The results of consensus clus-

tering are visualized as colored shapes. Three main responses

can be observed: individuals 4, 6, and 10 show a limited shift

and remain in cluster 1 (orange) withmostly UTmodels even after

the training is finished. UT model no. 5 starts as an outlier, but

clusters together with UT models at the end of the intervention

and was included in this group. Individuals 1, 2, 3, and 12 remain

in the blue cluster, which includes mostly AT individuals, but also

show a limited shift during the training. Conversely, individuals 7,

8, 9, and 11, who were starting from the orange cluster on the

right, show the largest shift during the training intervention, clus-

tering with other ATmodels in the blue cluster after the end of the

treatment.

Since this study is based on publicly available data, we do not

have any information about the physiological status or lifestyle

of these individuals (e.g., frailty score, muscle strength, muscle

mass, nutritional status, and diet), neither at baseline nor in

response to the intervention. Thus we can only speculate whether

the three different responses that we detected are correlated with

the baseline fitness of the individual and to actual improvements in

their condition after the intervention. For this reason, we will

compare the models both according to the ground truth (i.e., AT

versusUT) and to the predicted classes (i.e., cluster 0 versus clus-

ter 1), inspecting the reaction content and average flux distribution

of the models in each of the two groups.

Detection of Condition-Specific Patterns from a Set
of GSMMs
In the last step of the workflow, we use a statistical test (Kruskal-

Wallis) to analyze the differences between flux distributions

across groups of models and identify the metabolic processes

associated with a certain class of models. We applied this step
Patterns 1, 100080, September 11, 2020 7



Figure 5. Distribution of the Contents of the Models in the Skeletal Muscle Model Sets

From left to right: reaction content for the models of the untrained and trained classes; genes content distributions for the two classes; metabolites content

distributions for the two classes. n = 12.
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both to the ground truth label (i.e., AT versus UT models) and to

the label predicted by the consensus clustering (i.e., cluster

0 versus cluster 1).

The Kruskal-Wallis test is applied to a normalized flux distribu-

tionmatrix obtained by random sampling of the solution space of

each model in the set. All the exchange reactions of the models

were constrained with input flux values that reproduce the nutri-

tional intake of an average European diet (retrieved from www.

vmh.life/#nutrition). The statistical test is used to screen for reac-

tions whose activity differs between the groups, using a p value

of 0.05 as threshold. In total, we identified 147 reactions whose

activity significantly differed between AT and UT models, and

238 significant reactions when comparing models of consensus

clusters 0 and 1. The full list of significant reactions and associ-

ated p values, for both cases, is available in Tables S1 and S2.

The most represented pathways associated with resistance

training, except for transport and exchange reactions, were fatty

acid oxidation, nucleotide interconversion, tryptophan meta-

bolism, cholesterol/squalene metabolism, and beta-alanine

metabolism (Figure 8, top panel). Inspecting the exchange reac-

tions, i.e., the reaction responsible for exchange of metabolites

from the simulated culture medium into the extracellular space,

we can have an idea of how metabolic demands change in

consequence of the intervention. Most of the selected reactions

were related to exchange of fatty acids (linolenic acid, octanoate,

and pentadecanoate) and amino acids, in particular tryptophan

and proline (Tables S1 and S2). This pattern of increased energy

generation through fatty acid oxidation is a known response to

endurance training.37 The increased uptake and mitochondrial

transport of fatty acids suggests that difference in fatty acid

oxidation between trained and UT individuals may be due to

enhanced fatty acid transport into the mitochondria38 in trained

individuals.
Table 3. Overview of the Content of the Models in the Skeletal

Muscle Model Set

Untrained Trained

Median no. of reactions 3,318 3,358

Median no. of metabolites 2,466 2,488

Median no. of genes 1,224 1,237

Median number of reactions, metabolites and genes for the two classes

of models in the skeletal muscle model set.
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beta-Alanine is a non-proteinogenic amino acid, and is the

limiting substrate in the biosynthesis of carnosine. Carnosine

acts as buffer to stabilize pH in muscle and brain39 but has

been shown to have antioxidant and antiglycating effects,40

thus potentially reducing the accumulation of advanced glyca-

tion end-products, toxic metabolic byproducts which have

been implicated in several degenerative diseases, including ag-

ing.41 Increases in muscle carnosine content have been hypoth-

esized to be an adaptation to long-term high-intensity training as

demonstrated by higher plasma values found in bodybuilders42

and trained sprinters.43

Tryptophan metabolism and in particular the kynurenine

pathway is emerging as a potential link between physical activity

and health. The kynurenine pathway converts the amino acid

tryptophan in NAD+, an important cofactor in energy meta-

bolism. Interestingly, the intermediates of this pathway are also

involved in inflammation, immune response, and neurotransmis-

sion,44 and have been associated with psychiatric conditions,

such as depression45 and schizophrenia.46 Kynurenine metabo-

lites accumulate with age and have recently been associated

with bone loss, frailty, and increased mortality in older adults.47–49

Skeletal muscle tissue contributes to systemic kynurenine

metabolism, and exercise training has been shown to affect the

expression of kynurenine aminotransferase enzymes,50 possibly

shifting kynurenine metabolism away from kynurenine, a toxic

intermediate, toward the production of kynurenic acid.51

Figures 9 and 10 show the normalized fluxes for significant re-

actions belonging to one of the selected pathways, for the treat-

ment (Figure 9) and clustering (Figure 10) groups, respectively,

and give an insight about individual responses, providing an

insight about individual differences in the activity of the selected

pathways. Figure 9 (right) shows the activity of kynureninase

(normalized fluxes), a reaction responsible for kynurenine degra-

dation, whose average flux is on average increased in AT models.

This observation supports the conclusion that training has an ef-

fect on peripheral kynurenine metabolism, through upregulation

of PGC-1a,52 reducing the accumulation of kynurenine and might

explain the benefits of physical activity on mental health.

When comparing models of the two clusters, we can observe

how distance is related to metabolic activity in certain pathways

(Figure 10): For example, the flux through reaction carnitine pal-

mitoyl transferase (reaction ID: ELAIDCPT1) is on average higher

for the models in cluster 0 (Figure 10, right panel) while

http://www.vmh.life/#nutrition
http://www.vmh.life/#nutrition


Figure 6. Comparison of the Three Metrics on the Skeletal Muscle Model Set (n = 24)

From top to bottom: Jaccard distance, WLS kernel distance, flux distribution correlation. Left: heatmaps of the three distance matrices that were used as input in

for the consensus clustering algorithm. Right: results of the embedding of the same distance matrices, obtained via kernel PCA. Variance of each principal

component is reported in parentheses.
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production of isovalerylcarnitine (reaction ID: C50CPT1) is on

average higher in cluster 1. It is also important to notice how

certain individuals have fluxes with a high deviation from the

mean, more than 2.5 times the standard deviation. Even when
considering flux degeneracy (i.e., many possible alternative

flux distributions satisfy the same metabolic task), deviations

of this magnitude are significant, and highlight the variability of

the individual fluxes.
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Figure 7. Kernel-PCA plot showing themeta-

bolic trajectories taken by the individuals

during the 12-weeks training program

From top to bottom: Jaccard distance (A and D),

WLS kernel distance (B–E), flux distribution corre-

lation (C–F). Left: heatmaps of the three distance

matrices that were used as input in for the

consensus clustering algorithm. Right: results of the

embedding of the same distancematrices, obtained

via kernel PCA. Variance of each principal compo-

nent is reported in parentheses.
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Our method was able to recover a biological signature of exer-

cise training from a set of individualized GSMMs, identifying

pathways associated with the metabolic intervention and

enabled the characterization of individual metabolic heterogene-

ity in response to the same stimulus.

DISCUSSION

Patient-derived genome-scale models are a novel data class

that integrates individual transcriptomics and other omics data

with previous knowledge structured in large-scale metabolic

networks. To quantify the degree of similarity between pairs of

models in a large set, we investigated different distance metrics

to express metabolic heterogeneity, a key step toward the appli-

cation of ML algorithms to sets of GSMMs. Statistical learning

methods have been successfully applied to find patterns in large

amounts of data, without any previous knowledge about the sys-

tem being examined, and have become relevant in the emerging

field of personalized medicine in tasks, such as patient stratifica-

tion,53,54 automated diagnosis of medical images,55 and plan-

ning of targeted therapeutic treatments.56 Still, despite its

many advantages, ML has several shortcomings. Firstly, ML

cannot offer mechanistic insights, just statistical correlations.

Secondly, it is difficult to introduce in such algorithms any previ-

ous knowledge, for example, taken from the literature. Finally,

ML models often trade explainability and transparency for pre-

dictive power.57 These are all seen as serious problems in the

biomedical sciences, where knowing the mechanism of a dis-

ease or the rationale of a diagnosis is often preferable to pure

predictive accuracy.

In this study we investigated the concept of distance be-

tween GSMMs, as a strategy to integrate previous knowledge

about the metabolic network into ML algorithms. The structure

of a GSMM simplifies the aggregation of different types of

omics data in a system context: gene-level information (such

as microarray or RNA sequencing), is organized and inte-

grated, enabling the interpretation of the results in terms of

the resulting system-level metabolic phenotype. The resulting
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individualized model is a snapshot of

the status of the metabolic network of

an individual in a particular condition

that combines a metabolic knowledge

base and experimental data. When ML

algorithms are applied to these novel

data structures and a pattern is detected,

the relevant models can be further inter-
rogated to generate and test hypotheses, going beyond

mere correlations and toward mechanistic insights.

To harmonize these two approaches, we used distance

between GSMMs as a proxy for metabolic similarity. Our initial

hypothesis considered three different aspects of a GSMM,

and assigned to each of them a different metric, to describe

different but complementary components of metabolic dis-

tance. When we compared these three metrics—Jaccard dis-

tance, graph kernel similarity, and correlation between flux

distributions—we found that the first two were very highly

correlated, while the flux similarity metric had a medium to

low correlation with the other two metrics. This observation

made us reject the initial hypothesis in favor of a two-compo-

nents interpretation of metabolic heterogeneity: a static

component, which is the structure of the metabolic network,

described by the Jaccard metric, and a dynamic one, which

is the flux distribution.

Nevertheless, our proposed metric for flux distribution sim-

ilarity, flux distribution correlation, was found to lack the reso-

lution power to sufficiently separate the model classes and to

be successfully used in ML applications. The problem of

defining a suitable metric for flux similarity is still open. The so-

lution space of the flux distribution is constrained by the topol-

ogy of the metabolic network in combination with bounds set

on particular reactions in the network. For example, lower and

upper bounds on transport fluxes are used to incorporate in-

formation on medium composition and implement physiolog-

ical conditions. We expect the metric based on flux correlation

to be strongly dependent on these boundaries. Unknown vari-

ation and uncertainty in these boundaries can make the flux

correlation metric less reliable. This could potentially explain

why flux correlation performed worse than the other two met-

rics, when considering the separation of the classes, in both

benchmark model sets.

Comparing the normalized fluxes between AT and UT

models, we were able to extract a metabolic signature consis-

tent with the effects of resistance training (Figure 8A). Fatty

acid oxidation, kynurenine pathway, and beta-alanine pathway



Figure 8. Number of Significant Reactions

Identified for Each Pathway

Top: number of significant reactions per path-

way(p<0.05), AT versus UT models. Bottom: num-

ber of significant reactions per pathway, cluster

0 versus cluster 1 models
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were the most represented pathways among the significant re-

actions identified. While the metabolic shift toward fatty acid

oxidation is a known metabolic response to physical activity,

this observation is a validation of our data-driven method to

analyze sets of GSMMs parametrized with individual omics

data. The identification of kynurenine and beta-alanine as

pathways affected by endurance training is less trivial, and

especially in the case of kynurenine pathway, establishes a

mechanism to explain the beneficial effects of physical activity

in older adults.

The results of the comparison between models of the two

groups identified via consensus clustering (Figure 9B) shows

that distance is indeed correlated with similarities in metabolic

activity, also in large human models. Distance-based visuali-

zation of the model set in a metabolic health space also al-

lowed to model the progress of a lifestyle intervention as tra-

jectories. GSMMs are considered ideal platforms for the

integration and interpretation of different types of high-

throughput experimental data, but their scope is limited to

modeling relationships between metabolic genes and the

biochemical reactions that they encode. There is no descrip-

tion of biological processes, such as protein synthesis and
gene regulation. Instead, gene expres-

sion and protein abundance data are

used to constrain the model to a state

which is closer to experimental observa-

tions by turning off reactions that are un-

supported by data. The annotation of the

model, specifically the link between

gene, enzyme, and reaction levels, is

thus fundamental for the process of

‘‘individualization,’’ i.e., the mapping of

multi-omics data of a single individual to

a ‘‘generic’’ human GSMM. We expect

that the degree of heterogeneity ex-

hibited by individualized models will in-

crease as the annotation coverage of

the generic human model’s reactions in-

crease. The inclusion of a particular reac-

tion in an individualized model during the

model-building phase, is conditioned by

the expression of the genes associated

with that reaction. The type of model-

building algorithm, the threshold that

defines when a gene is considered to

be ‘‘expressed,’’ and the quality and

coverage of the gene-protein reaction

annotations of the ‘‘template’’ model,

are all confounding factors that will influ-

ence whether a reaction will be included

in a specific individualized model and
consequently could alter the results of the analysis. Jaccard

distance in particular is sensitive to these factors. Opdam

et al.58 reviewed the effects of different combinations of

model-building algorithms and parameter sets on the resulting

model composition. Consensus analysis addresses this issue,

reducing the sensitivity of the results to the influence of one

particular metric. We also ensured to only compare

models developed with the same algorithm and with the

same sets of parameters (e.g., expression threshold). Never-

theless, increasing the standardization of the model-building

process, and improving model annotation and coverage would

increase the reliability of the results and the impact of this

framework.

Conclusions
In this study we investigated the concept of distance between

patient-derived models comparing the properties of different

distance metrics. We identified flux distribution and network

topology/composition as the two complementary aspects of

metabolic heterogeneity and developed a distance-based

workflow that combines the ability of patient-derived meta-

bolic models to provide previous knowledge of the structure
Patterns 1, 100080, September 11, 2020 11



Figure 9. Plot of Normalized Fluxes for Selected Reactions Belonging to Significant Pathways

Normalized fluxes for reactions belonging to some of the most represented pathway found to be associated with the intervention (resistance training). Left: fatty

acid oxidation (mitochondrial), right: kynureninase (tryptophan metabolism). Dashed lines at ± 2.5 sigma signal a deviation of more than 95% from the mean.
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of metabolic networks and a context for the integration and

interpretation of omics data with the scalability and the pattern

recognition capabilities of ML.

By applying this workflow to a set of patient-derived

genome-scale models of aging muscle metabolism before

and after a 12-week endurance training program, we identified

subgroups of individuals expressing heterogeneous re-

sponses to the intervention. The fatty acids oxidation, kynure-

nine, and beta-alanine pathways were identified as differen-

tially active between the two groups. Increased activity of

these pathways in response to training explains the benefits

of physical activity on metabolic and mental health during ag-
Figure 10. Plot of Normalized Fluxes for Selected Reactions Belonging

Normalized fluxes for reactions belonging to some of themost represented pathwa

carnitine palmitoyl transferase and butanoate mitochondrial transport (fatty acid o

the mean.
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ing. We believe that the application of ML algorithms to sets of

physiology-based computational models parametrized with

individual molecular data will contribute significantly to the

advancement of personalized medicine in the near future.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Andrea Cabbia (a.cabbia@tue.nl)

Materials Availability

This study did not generate any new reagent or material.
to Significant Pathways

y found to be associatedwith consensus clustering outcome. From left to right:

xidation). Dashed lines at ± 2.5 sigma signal a deviation of more than 95% from

mailto:a.cabbia@tue.nl
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Data and Code Availability

Patient-derived GSMMs of skeletal muscle models developed for this study

are available and the custom codes to reproduce the results and figures are

available at github.com/acabbia/tissueModels-distance. Gene expression

data used in this study are available at Gene Expression Omnibus, under

accession number GEO: GSE28422.
Distance Metrics

Jaccard Distance

The Jaccard metric is used to compute the similarity score between pairs of

binary vectors and has been previously applied to lists of reactions to compute

the distance between pairs of models.10 The variability of these reconstruc-

tions was assessed computing the distance between the lists of reactions of

every reconstruction pair using the Jaccard distance:

JðA;BÞ = 1� jAXBj=jAWBj: (Equation 1)

It can be summarized as computing the ‘‘intersection over union’’ of two bi-

nary vectors to find their overlap. To allow for the analysis ofmodels of different

sizes, we summarized the reaction content of each model in a binary vector of

length equal to the number of reaction in the template model (Recon2.2 in our

case). For each reaction r in the parent model, if r is also included in the contex-

tualized model, the rth position of the vector will be 1, else it will be 0.

Graph Kernels

Graph kernel functions were used to compute similarity scores between pairs

of networks. Kernels are non-linear functions that map the data samples to a

different dimensional space, known as the Hilbert space, usually with a higher

dimensionality than the starting one. In this new space, the distance of sam-

ples represents their similarity. The exact coordinates in the Hilbert space,

but rather their distance, is found by simply computing their inner products,

an operation that is often computationally cheaper than the explicit computa-

tion of the new coordinates.

KðX;YÞ = 4ðXÞ,4ðYÞ: (Equation 2)

Kernel methods have been applied to heterogeneous types of data, such as

biological sequence data,59 text,60 images,61 as well as graphs.62 Graph ker-

nels are kernel functions that compute a similarity score between pairs of net-

works. We compared three different graph kernel functions: the random walk

kernel,63 as implemented in Vishwanathan et al.,64 theWeisfeiler-Lehman sub-

tree (WLS) kernel, proposed in Shervashidze et al.65, and the neighborhood

subgraph pairwise distance kerne,l66 to compute a similarity score between

pairs of genome-scale metabolic networks. Since our method is based on

the analysis of hundreds of networks of several thousands nodes, we priori-

tized computational speed. We chose the last two kernels because their run-

time complexity is lower than that of the random walk kernel, allowing them to

be computed in a reasonable time. Figure S1 shows the runtime of the three

kernels when applied to our library of 24 GSMMs of skeletal muscle meta-

bolism. WLS has a runtime several orders of magnitude lower than the two al-

ternatives and thus was chosen to be used in our pipeline. Highly connected

metabolites, such as water, ATP, or NADH, also known as currency metabo-

lites, were deleted from the models before computing the graph kernel similar-

ity score.

Flux Correlation

Two main approaches can be considered to compute the similarity between

pairs of constraint-based metabolic models, defined as: the first consists in

comparing the functionality of twomodels, for example, comparing their ability

to utilize different carbon sources or the minimal nutrient combinations pre-

dicted from the structure of the metabolic network.67 The similarity between

the nutrient profiles of different models can then be compared by computing

their Jaccard similarity (i.e., their overlap). We deemed this method to be un-

suitable for the comparison of models of the same tissue type, since the differ-

ences in their carbon utilization profiles and minimal medium would be too

small. Alternately, one could compare the functionality of two models by

computing the overlap between sets of elementary flux modes (EFM).68

EFMs are minimal independent subnetworks of biochemical reactions that

can operate at steady state and are considered the functional building blocks

of metabolism. Enumerating and comparing sets of EFMs could give a mea-

sure of the functional similarity of the models; unfortunately the computation
of EFMs becomes computationally too expensive for large networks. A second

approach is to compute the distance between flux distribution vectors, ob-

tained either via FBA or via Monte Carlo sampling of the model’s solution

space. The choice of metric, also in this case, is fundamental: the Euclidean

metric is ineffective in high-dimensional spaces, composed of hundreds or

thousands of dimensions, such as the reaction space of a GSMM (in such cir-

cumstances, as the number of dimensions tends to infinity, the Euclidean dis-

tance between any two points tends to converge). This effect is also known as

the ‘‘curse of dimensionality.’’69 In a study comparing a number of alternative

metrics, Pearson’s correlation and cosine similarity were found to have the

best performances, in terms of both clustering accuracy and computational

cost, when applied to high-dimensional microarray data.70 The choice of using

FBA to obtain the flux distribution vector would be suboptimal for several rea-

sons: first, FBA results are scarcely reproducible, mainly due to the degener-

acy of stoichiometric networks (many different flux distributions can satisfy the

same objective function) and to its sensitivity to the particular software or algo-

rithm used to solve the linear programming problem. In addition, FBA imposes

the use of an arbitrary optimization objective, meaning that each flux distribu-

tion found with FBA is inherently biased, and not representative of the

complexity of the entire solution space of a constraint-based model. Possible

alternatives, such as geometric FBA,71 so far remain hampered by excessive

computational requirements, which limit their application in large model sets

that are the focus of this analysis. As a measure of similarity between flux dis-

tributions, we will take instead the absolute Pearson’s correlation coefficient

between pairs of normalized flux vectors. These vectors were obtained by

averaging 1,000 random samples of the solution space of a metabolic model,

and were normalized by subtracting the mean flux value of all individuals and

dividing them by their standard deviation. Using random sampling instead of

FBA reduces the bias of the analysis, since it is not necessary to define an

objective function.

Metrics Comparison

We hypothesized that, since each of these three different aspects of a GSMM

encapsulates different aspects of metabolic heterogeneity, they would need

different definitions of distance. Two recently published largemodel sets of mi-

crobial and human cancer metabolism, the AGORA model set,10 which in-

cludes 818 metabolic reconstructions of human gut bacteria, and a subset

of the PD-GSMM set, which includes hundreds of cancer patient-derived tis-

sue-specificmodels,9 were usedwere used to test this hypothesis. For each of

these two model sets, we computed the distance between every pair of

models using three different distance metrics. The inverse of the flux correla-

tion and graph kernel similarity scores were used as metrics of distance to

allow the comparison between the three metrics. The resulting (symmetric)

pairwise distance matrices were clustered with hierarchical clustering

(average linkage) and presented as heatmaps (Figure 1). To test whether the

three metrics actually are complementary and describe different aspects of

metabolic heterogeneity, we used theMantel test72 to compute the correlation

between distance matrices, since the assumptions of independence,

normality, and homoscedasticity do not hold for metabolic flux distirbutions.

Data

The workflow described in the section above was applied to a set of metabolic

models that was developed for this study. This model set describes the skeletal

muscle metabolism of 12 older individuals, and was created from longitudinal

gene expression data, collected before and after a resistance training program

of 12weeks. The gene expression dataset fromwhich the skeletal muscle meta-

bolism models were developed was collected during a study on the acute and

long-term effects of resistance training on skeletal muscle gene expression in

older adults34 and has beenpublishedon theGeneExpressionOmnibus73 under

accession number GEO: GSE28422. Gene expression data weremeasuredwith

microarray technology (platform HG U133 Plus 2.0). Older participants (n = 12,

84 ± 1 years old) included 6 men and 6 women. All subjects participated in

12 weeks of progressive resistance training consisting of bilateral knee exten-

sions with 33 10 reps at 70%of 1-RM, and 3 days/week for a total of 36 training

sessions. Vastus lateralis biopsieswere obtained in conjunctionwith the first and

last training session. We refer to the former as UT status, and to the latter as AT

status. From this dataset we developed 24 patient-derived GSMMs, two for

each subject, respectively, for the UT and AT status.
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Model Building

Several different methods for the integration of multi-omics data in GSMMs

have been reviewed in Opdam et al.58 The dataset introduced in the sec-

tion above was used, in combination with a template human metabolic

network reconstruction, Recon2.2,33 to create a collection of patient-

derived models of older adults’ skeletal muscle metabolism in UT and

trained conditions. Gene expression data are used to identify model reac-

tions with high experimental support. To convert gene expression data into

a confidence score for Recon2.2 reactions, microarray probeset intensity

value was log transformed and sorted by decreasing expression values.

When two or more probes mapped to the same gene, we merged them

averaging their expression value. The top 30% highly expressed probes

were assumed to be ‘‘high confidence.’’ Using this gene-level confidence

score and the gene-protein reaction rules included in the Recon2.2 model,

we computed a reaction-level confidence score, which was then used as

input for the model-building algorithm. The CORDA algorithm 8 generates

a draft model, including all the high-confidence reactions and a minimal

amount of lower-confidence reactions, such that the resulting network is

fully connected and that all the reactions can carry flux. After the models

had been drafted by the algorithm, they underwent substantial manual cu-

ration and validation, starting with a comparison with known physiological

properties of the tissue being examined. This resulted in the manual addi-

tion of reactions that were excluded by the algorithm but are known to be

active in myocytes (e.g., ATP synthase). The models completed muscle-

specific functional tests, such as ATP production from a range of different

sources and glycogen synthesis. The outcome of this process was a

collection of 24 PD-GSMMs of muscle metabolism in older individuals

(n = 12 AT, n = 12 UT).

Other Software

We used the CobraPy74 library to work with GSMMs and for FBA. The patient-

derived metabolic modes were created with the CORDA algorithm 8; the Gra-

KeL75 python library was used for the graph kernels computations and the Sci-

Kit-Learn76 for hierarchical clustering. We usedMETIS77 to perform consensus

clustering analysis. All the computations were performed in Python 3.6 on a

Ubuntu 18.04 machine with Xeon CPU E5-1620 at 3.50 GHz and 16 GB RAM.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100080.
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