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Optogenetic control of morphogenesis
goes 3D
Barry James Thompson

The generation of form in living embryos,
a process termed “morphogenesis” from
the Greek word lοqφοcέmerg, is one of the
most fascinating unsolved problems in
biology. In embryonic epithelia, most
attention has been paid to events occur-
ring at the apical surface of epithelia,
particularly the regulation of actomyosin
contractility during morphogenetic
change. In a new report, De Renzis and
colleagues demonstrate a key role for
regulated actomyosin contractility at the
basal surface of the epithelium during
formation of the first epithelial fold in
Drosophila (the “ventral furrow”) (Krueger
et al, 2018).
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E pithelia are the most ancient type of

animal tissue, being present in all

animals, including those derived

from the very base of the metazoan evolu-

tionary tree. Epithelia are also typically

the first type of tissue to arise in animal

development, appearing during or immedi-

ately after the blastocyst stage of embryo-

genesis. In many species, establishment of

the first epithelium is followed by forma-

tion of a single epithelial fold, namely the

“primitive streak” in vertebrates or the

“ventral furrow” in Drosophila. Genetic

screens in Drosophila identified the twist

and snail genes as being required for

epithelial folding and the subsequent

process of epithelial-to-mesenchymal tran-

sition (EMT) that produces mesodermal

tissues inside the protective outer epithe-

lium (Simpson, 1983; Nusslein-Volhard

et al, 1984).

The Drosophila ventral furrow has since

become an excellent model system for

understanding how epithelial folding can

occur, with numerous studies demonstrat-

ing the importance of apical actomyosin-

driven constriction in driving indentation

of the epithelium (Leptin & Grunewald,

1990; Sweeton et al, 1991; Dawes-Hoang

et al, 2005; Martin et al, 2009). Thanks to

these impressive studies, it is often thought

that the problem of ventral furrow forma-

tion is now solved. However, computer

simulations indicate that apical constriction

is not actually sufficient to explain the

complete invagination of the epithelium.

Instead, the models suggest that apical

constriction must be accompanied by basal

relaxation to achieve the pyramidal cell

shape observed in folds. Just such a disas-

sembly of basal contractile actomyosin has

been visualised during ventral furrow

formation (Sweeton et al, 1991; Dawes-

Hoang et al, 2005). However, whether

basal relaxation is truly necessary for fold-

ing remained unclear, as some models

point to basal relaxation as a passive

consequence of apical constriction

(Polyakov et al, 2014).

In a new study, De Renzis and colleagues

deploy optogenetic control of actomyosin

contractility to prevent basal relaxation and

consequently disrupt ventral furrow forma-

tion. The findings unequivocally demon-

strate the essential role of basal relaxation in

allowing pyramidal cell shape changes

necessary for full folding of the epithelium.

The authors voice their support for the

model that apical constriction, which

recruits myosin-II, may ultimately cause

basal relaxation through passive depletion

of myosin-II. Nevertheless, it will be

interesting to determine whether specific

molecular mechanisms exist to antagonise

basal myosin-II recruitment and thus

promote basal relaxation during ventral

furrow formation.

The findings in the Drosophila embryo

are likely to be relevant to epithelial

morphogenesis in other developmental

stages and other species. The basal surfaces

of many different epithelia experience

dynamic changes in locally generated

actomyosin contractile forces (He et al,

2010; Sherrard et al, 2010; Sun et al, 2017;

Huebner & Wallingford, 2018) as well as in

the constraining force of the basal extracel-

lular matrix (Haigo & Bilder, 2011; Diaz-de-

la-Loza et al, 2018). Thus, a full understand-

ing of epithelial morphogenesis will require

moving from 2D analysis of the apical

surface towards 3D analysis of tissue

mechanics at both the apical and basal

surface of epithelia.
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