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Abstract 
Diabetes, a disease marked by consistent high blood glucose levels, is associated with various complications such as neuropathy, nephropathy, 
retinopathy, and cardiovascular disease. Notably, skeletal fragility has emerged as a significant complication in both type 1 (T1D) and type 2 (T2D) 
diabetic patients. This review examines noninvasive imaging studies that evaluate skeletal outcomes in adults with T1D and T2D, emphasizing 
distinct skeletal phenotypes linked with each condition and pinpointing gaps in understanding bone health in diabetes. Although traditional DXA-
BMD does not fully capture the increased fracture risk in diabetes, recent techniques such as quantitative computed tomography, peripheral 
quantitative computed tomography, high-resolution quantitative computed tomography, and MRI provide insights into 3D bone density, 
microstructure, and strength. Notably, existing studies present heterogeneous results possibly due to variations in design, outcome measures, 
and potential misclassification between T1D and T2D. Thus, the true nature of diabetic skeletal fragility is yet to be fully understood. As T1D and 
T2D are diverse conditions with heterogeneous subtypes, future research should delve deeper into skeletal fragility by diabetic phenotypes and 
focus on longitudinal studies in larger, diverse cohorts to elucidate the complex influence of T1D and T2D on bone health and fracture outcomes. 
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Lay Summary 
Diabetes, a disease marked by consistent high blood glucose levels, is associated with various complications such as neuropathy, nephropathy, 
retinopathy, and cardiovascular disease. Notably, increased fracture risk has emerged as a significant complication in both type 1 (T1D) and 
type 2 (T2D) diabetic patients. This review examines noninvasive imaging studies that evaluate fracture outcomes in adults with T1D and 
T2D, emphasizing distinct skeletal phenotypes linked with each condition and pinpointing gaps in understanding bone health in diabetes. 
Notably, existing studies present heterogeneous results possibly due to variations in design, outcome measures, and potential misclassification 
between T1D and T2D. Thus, the true nature of diabetic fracture risk is yet to be fully understood. As T1D and T2D are diverse conditions with 
heterogeneous subtypes, future research should delve deeper into fracture risk by diabetic phenotypes and focus on longitudinal studies in 
larger, diverse cohorts to elucidate the complex influence of T1D and T2D on bone health and fracture outcomes. 

Introduction 
Diabetes is a highly prevalent disease characterized by 
habitually elevated blood glucose levels. In the USA alone, 
more than 37 million adults have diabetes, accounting 
for over 11% of the population.1 The major categories 
of the disease include type 1 diabetes (T1D, 5%–10% of 
cases) and type 2 diabetes (T2D, 90%–95% of cases)2 

which differ in pathophysiology and clinical manifestation. 
T1D, typically diagnosed in children or young adults, is an 
autoimmune condition that leads to the destruction of insulin-
producing pancreatic beta cells resulting in little to no insulin 
production. In contrast, T2D is often diagnosed in adulthood, 
is strongly associated with obesity and lifestyle factors, and is 
characterized by insulin resistance. 

Both T1D and T2D lead to chronic hyperglycemia if not 
adequately managed, which can result in complications like 
neuropathy, nephropathy, retinopathy, and cardiovascular 
disease. More recently, skeletal fragility has emerged as a 

common and potentially severe complication of diabetes. 
This is particularly notable as fracture risk increases with 
age and nearly 30% of individuals over age 65 have 
diabetes.3 Both T1D and T2D are associated with an 
increased risk of fracture.4-13 In meta-analyses, individuals 
with T1D had a 30%–88% increased risk of fracture at 
any skeletal site,8-10 with a 3.8- to 8.7-fold increased risk 
of hip fracture.4-11 and 2.9-fold increased risk of vertebral 
fracture6 compared to similar-aged controls without diabetes. 
The increase in fracture risk among individuals with T2D is 
more moderate compared to those with T1D,4,11 with meta-
analyses reporting that individuals with T2D have 20% to 
70% increased risk of hip and other nonvertebral fractures 
compared to nondiabetic controls.4,5,7,9-13 Regardless of 
diabetic type, there is significant heterogeneity in fracture 
risk,4-13 suggesting some individuals with diabetes have 
substantially greater risk of fracture than others, possibly 
due to the substantial heterogeneity in the pathophysiology

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

 2589 17259 a 2589 17259 a
 
mailto:semerzia@bidmc.harvard.edu
mailto:semerzia@bidmc.harvard.edu
mailto:semerzia@bidmc.harvard.edu
mailto:semerzia@bidmc.harvard.edu
mailto:semerzia@bidmc.harvard.edu
mailto:semerzia@bidmc.harvard.edu
mailto:semerzia@bidmc.harvard.edu
mailto:semerzia@bidmc.harvard.edu
mailto:semerzia@bidmc.harvard.edu


2 JBMR Plus, 2024, Volume 8 Issue 2

and resulting clinical phenotypes within T1D and T2D.14-17 

Overall, factors associated with greater duration or severity 
of diabetic disease herald increased risk of fractures.18,19 

The reason for higher fracture risk in those with diabetes 
is multifactorial, with increased risk of falls and reduced 
bone strength likely to be key contributors. However, the 
increased risk of falling, in part due to hypoglycemic events, 
only partially explains the increased risk of fracture in adults 
with diabetes.20-27 Importantly, the factors that diminish bone 
strength and increase skeletal fragility in patients with dia-
betes have not yet been fully elucidated. Although one possible 
factor is reduced bone quantity, increased fracture risk in those 
with T1D is only partially explained by lower areal bone 
mineral density (aBMD) measurements via DXA.4 Moreover, 
paradoxically, individuals with T2D have normal to elevated 
aBMD, yet increased fracture risk.28 As aBMD by DXA 
underestimates fracture risk in both T1D and T2D,4,29 numer-
ous other skeletal imaging techniques have been utilized to 
better understand the factors which may negatively impact 
bone strength, thereby increasing fracture risk, in patients 
with diabetes. Several important contributors to whole bone 
strength can be assessed with noninvasive imaging, including 
bone mass (bone density and BMC), morphology (geometry 
and shape), and microarchitecture. Noninvasive imaging has 
also been utilized to quantify bone marrow adiposity, another 
potential contributor to skeletal fragility.30,31 

The aim of this review is to discuss the key findings from 
studies that have used noninvasive imaging to assess skeletal 
outcomes in adults with T1D and T2D. Furthermore, we 
highlight the varying skeletal phenotypes associated with T1D 
and T2D and identify knowledge gaps regarding bone health 
in the setting of diabetes. Although antidiabetic medications 
have been shown to influence the risk of hip fracture,32-34 

their effect on fracture risk and bone density is out of the scope 
of this review. 

Impact of diabetes on areal bone mineral 
density (aBMD), trabecular bone score (TBS), 
and hip structural analysis (HSA) by DXA 
With DXA, a 2D projection of the proximal femur, lum-
bar spine and/or forearm is used to assess aBMD. Although 
DXA-derived aBMD is the clinical standard for osteoporosis 
diagnosis and evaluation of fracture risk, its 2D acquisitions 
cannot reflect structural aspects of the bone and prohibit inde-
pendent assessment of cortical and trabecular bone. To com-
pensate for this limitation, additional DXA-based analyses 
have been developed. Trabecular bone score (TBS), a texture 
metric of grey-level variations in lumbar spine DXA images, 
is intended to reflect bone quality via indirect measurement 
of bone structure. A higher TBS value indicates better bone 
“structure” and lower risk of fracture.35,36 Another DXA-
based method, hip structural analysis (HSA), uses 2D DXA 
scans to derive measurements of femoral geometry (eg, hip 
axis length, cross-sectional area, cortical thickness, buckling 
ratio, cross-sectional moment of inertia, section modulus) by 
making a few assumptions: constant mineral density, circular 
cross-sectional shape at the neck and shaft and elliptical shape 
at the trochanter, and a fixed percentage of cortical bone 
at different anatomical regions.37 Additionally, 3D modeling 
methods have been developed to derive the cortex, femoral 
shape, and trabecular macrostructure from conventional hip 
DXA scans, called 3D-DXA.38 

Areal bone mineral density 
Most studies have reported lower aBMD in T1D compared 
to nondiabetic controls, particularly at the hip, although 
the magnitude of difference between T1D and nondiabetic 
controls varies substantially between studies.39-41 This deficit 
in hip aBMD appears to occur early in the disease42-44 and 
persists throughout early and middle adulthood.45-48 For 
example, a meta-analysis showed that femoral neck aBMD 
is mildly lower (∼0.45 standard deviation deficit), whereas 
lumbar spine aBMD is similar to or slightly lower in T1D 
compared to controls.41 These moderate aBMD deficits in 
T1D only partially explain the increased risk of fracture.4 

Longitudinal studies in adults with T1D, particularly older 
adults, are lacking and therefore it is unknown whether 
individuals with T1D are more prone to accelerated bone loss 
than those without diabetes. 

Diabetic history and complications may influence aBMD in 
patients with T1D. For example, increased HbA1c is associ-
ated with lower aBMD in individuals with T1D at the hip, but 
not the spine.6,41,49 In older adults with T1D, nephropathy, 
but not neuropathy or retinopathy, has been associated with 
lower total hip aBMD.49,50 As data are limited, further studies 
are needed to better define the association between diabetic 
complications and aBMD in T1D. 

Paradoxically, although T2D is associated with increased 
fracture risk, numerous studies have showed that individuals 
with T2D have normal to high aBMD at both lumbar spine 
and hip (∼0.25–0.50 standard deviation higher), perhaps 
due to increased body weight and/or hyperinsulinemia.4,51 

Although aBMD underestimates fracture risk in T2D and 
those with T2D have higher fracture rate at a given T-score 
than nondiabetics,29 aBMD does stratify fracture risk among 
them.29,52 Longitudinal studies have suggested that women 
with T2D experience greater age-related declines in aBMD, 
particularly at the hip, which might contribute to their higher 
risk of fracture.53-55 Meta-analyses in T2D have shown a 
positive association between BMI and both spine and hip 
aBMD.4,51 However, in some studies, higher aBMD among 
T2D remains even after adjustment for BMI,51 suggesting 
that other mechanisms contribute to increased aBMD, such 
as insulin resistance and hyperinsulinemia.56,57 Importantly, 
T2D is known to develop along a continuum starting with 
prediabetes and insulin resistance and culminating in diabetes, 
and eventually hypoinsulinemia. Studies suggest that even 
at the earlier stage of prediabetes, aBMD is already ele-
vated compared to normoglycemic individuals, perhaps due to 
hyperinsulinemia.58-60 However, over time, worsening insulin 
resistance has negative effects on bone; the longitudinal Study 
of Women’s Health Across the Nation found that greater 
increase in insulin resistance is associated with more rapid 
BMD decline among nondiabetics.61 

As with T1D, diabetes characteristics may influence aBMD 
in patients with T2D. One meta-analysis found that HbA1c 
was positively associated with aBMD at the lumbar spine and 
hip,51 whereas another meta-analysis found no association 
between aBMD and HbA1c or diabetes duration.4 In the 
Rotterdam study, individuals with T2D and poor glycemic 
control (HbA1c ≥ 7.5%) had higher lumbar spine and hip 
aBMD than individuals with well-controlled diabetes (HbA1c 
<7.5%).62 In contrast, glycemic control did not influence 
aBMD in the Health, Aging, and Body Composition Study, 
though longer duration of diabetes was negatively associated
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with hip aBMD.63 Similarly, men with T2D duration greater 
than 5 yr had lower hip aBMD compared to those with shorter 
T2D duration.64 More studies are needed to understand how 
the evolution of diabetes, from insulin resistance to T2D with 
complications, affects BMD. 

Trabecular bone score 
Despite similar lumbar aBMD between individuals with T1D 
and non-diabetic controls, some studies report lower TBS in 
T1D,23,65-67 whereas others show no differences.68,69 Patients 
with T1D and history of any clinical fracture (excluding ribs, 
toes and fingers) have lower TBS values than those with 
T1D and no prior fracture, despite having similar lumbar 
aBMD.68 When considering diabetic complications, a large 
study found no association between TBS and HbA1c or pres-
ence of nephropathy in patients with T1D.49 However, TBS 
data in T1D are limited and further studies are needed, par-
ticularly with larger sample sizes and in prospective cohorts 
to determine whether TBS predicts fracture risk in T1D. 

Numerous studies have reported lower TBS in individu-
als with T2D compared to nondiabetic controls (−1.5% to 
−15.6%).70-81 Notably, TBS is lower among women, but not 
men, with T2D compared to nondiabetic controls.82-86 A few  
studies have further reported a negative association between 
TBS and HbA1c.71,83,87,88 However, these studies are diffi-
cult to interpret, as TBS is negatively associated with waist 
circumference,77,88 abdominal soft tissue thickness,80,89 and 
visceral fat mass,90 suggesting TBS might be reflecting body 
composition in those with T2D, rather than deficits in bone 
structure. Accordingly, additional studies are needed to delin-
eate the extent to which increased abdominal fat contributes 
to lower TBS values among individuals with T2D. An update 
to TBS (v4.0)91 has been introduced that minimizes the body 
composition associations; however few studies of diabetic 
skeletal fragility have used the newer software version that 
accounts for soft tissue thickness. 

TBS has also been evaluated as a predictor of fracture in 
T2D. In a Canadian cohort of postmenopausal women with 
T2D, low TBS values predicted incident major osteoporotic 
fractures independently of aBMD.70 In addition, reduced TBS 
is associated with prevalent vertebral fractures in those with 
T2D,78,92-95 although only one study included men.94 It is 
unclear to what extent abdominal thickness may modulate 
the observed relationships between TBS and fracture risk in 
diabetes, as studies were performed with TBS prior to soft 
tissue correction. Thus, future prospective studies are required 
to assess whether TBS v4.0 also predicts fracture in those with 
T2D, particularly among men. 

Hip structural analysis 
A few studies have used HSA to assess hip geometry in 
individuals with T1D. In middle-aged men with T1D, hip 
strength indices by HSA were similar to healthy age-, weight-, 
and height-matched controls.96 However, in slightly older men 
and women, T1D was associated with deficits in hip geome-
try, including thinner cortices and higher buckling ratios.97 

Furthermore, in middle-aged adults with T1D, earlier onset of 
diabetes was associated with a smaller femoral neck, includ-
ing smaller cross-sectional area, section modulus, and outer 
diameters.98 Due to the limited number of studies examining 
hip structure among T1D, small sample sizes, and lack of 
information about hip structure in individuals with fracture, it 

remains unknown whether deficits in hip structure contribute 
to increased fracture risk in T1D. 

Similarly, little is known regarding altered hip structure 
in individuals with T2D. Pre- and postmenopausal women 
with T2D have unfavorable hip structure compared to non-
diabetics, with lower composite strength, section modulus, 
cross-sectional moment of inertia and buckling ratio, as well 
as regionally higher stresses at the femoral neck.78,81,99-102 

However, these studies vary in reported outcomes and adjust-
ment for cofounders. One study found no differences in 
HSA outcomes between men with T2D and nondiabetic con-
trols.103 Another study applied 3D-DXA in a cohort of men 
and women with T2D but did not identify any impairment 
in 3D-DXA–derived cortical and trabecular parameters com-
pared to nondiabetic controls.81 

Quantitative computed tomography and 
peripheral quantitative computed tomography 
Like DXA, quantitative computed tomography (QCT) enables 
imaging at numerous anatomical sites relevant to bone 
fragility assessment, including the proximal femur, lumbar 
spine, and distal radius. In contrast to DXA, QCT permits 3D 
evaluation of bone morphology and structure, differentiation 
between trabecular and cortical bone compartments, and 
quantification of volumetric BMD (vBMD) if a reference 
phantom or internal calibration is used. However, QCT is 
limited in its ability to evaluate bone microstructure, including 
trabecular bone microarchitecture and cortical porosity. 
Peripheral quantitative computed tomography (pQCT) is also 
used to assess bone density and geometry but is limited to 
a relatively small region within the appendicular skeleton, 
generally the radius and tibia.104,105 

Only a handful of studies have used QCT to assess bone 
health in individuals with T1D (Table 1).106-108 Specifically, in 
young adult men with relatively well-controlled T1D (n = 17, 
age 18–49 yr), CT scans of the hip and spine revealed cortical 
deficits in the proximal femur, but normal trabecular bone in 
both the hip and lumbar spine compared to nondiabetic age-
and sex- matched controls (n = 18).106,107 In contrast, another 
study showed that spine DXA-aBMD and vertebral trabecular 
vBMD were lower among young adult men, but not women, 
with T1D compared to age- and sex-matched controls.108 

Given the limited and conflicting CT-based imaging studies 
in patients with T1D, additional investigations are needed. 

Studies using QCT scans have shown that older adults 
with T2D have greater vBMD at the femoral neck109,110 and 
lumbar spine63,109,111 compared to age- and sex-matched 
nondiabetic controls (Table 1). However, patients with T2D 
may not benefit from elevated BMD, as they have deficits in 
femoral neck geometry112 and similar ratio of estimated fall 
force to bone strength (ie, load-to-strength ratio113) at the  
hip and spine compared to nondiabetic controls, indicating 
that improvements in bone strength are offset by higher loads 
upon falling.109 In contrast, in younger cohorts of adults with 
T2D (mean age < 65 yr), no differences have been detected 
in hip or spine vBMD compared to controls,111,114-116 sug-
gesting that age and/or T2D duration may play an important 
role in diabetes-related differences in BMD. Notably, post-
menopausal women with T2D and prior history of fragility 
fracture have lower femoral neck vBMD compared to non-
fracturing patients with T2D, but similar vBMD compared 
to nondiabetic controls,110 suggesting measures of vBMD by
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Table 1. Volumetric bone mineral density at the spine and hip as measured with QCT. Reported as percent differences in means between adults with 
diabetes and nondiabetic controls. 

First author Year Sample size 
(% diabetic) 

% Female Age (yr) Spine Femoral neck 

Level Tb.BMD Tot.BMD Tb.BMD Ct.BMD 

Type 1 Diabetes 
Ishikawa 2015 35 (49%) 0 38 L2-L4 −5.1% −8.8% −4.2% 
Barmpa 2023 212 (56%) 55 30 L3 −7.3% 
Barmpa (Women) 2023 117 (56%) 100 31 L3 −1.9% 
Barmpa (Men) 2023 95 (56%) 0 29 L3 −13.7% 
Type 2 Diabetes 
Strotmeyer 2004 2979 (19%) 43 73 L3 15.1% 
Register (Women) 2006 483 (85%) 100 62 T12-L3 0.1% 
Register (Men) 2006 398 (92%) 0 63 T12-L3 −5.3% 
Melton 2008 700 (7%) 57 72 L1-L3 16.3% 15.6% 19.5% 5.4% 
Baum 2012 26 (50%) 100 59 L1-L3 4.7% 
Patsch (Fx−) 2013 33 (48%) 100 61 L1-L3 −6.8% 
Patsch (Fx+) 2013 34 (50%) 100 66 L1-L3 22.0% 
Heilmeier (Fx−) 2015 39 (51%) 100 60 8.5% 14.4% 4.0% 
Heilmeier (Fx+) 2015 38 (50%) 100 63 −0.4% −13.5% 4.4% 
Wang (Women) 2022 4420 (7%) 100 64 L1-L2 −28.2% 
Wang (Men) 2022 5889 (10%) 0 59 L1-L2 −4.6% 
Gao (50–65 yr) 2022 163 (54%) 100 59 L1-L3 16.5% 
Gao (>65 yr) 2022 150 (59%) 100 73 L1-L3 46.7% 

Proportion of females (%) and mean age are presented for the diabetic group. Data presented as percent difference between reported unadjusted group means 
for diabetic vs control, unless otherwise specified. Abbreviations: Ct, cortical; Tb, trabecular; Tot, total (integral) Fx−, no fracture; Fx +, fracture Bold indicates 
significant difference between those with diabetes and nondiabetic controls (P < .05). 

QCT might identify patients with T2D at highest risk of 
fracture. However, it is also possible that individuals who 
suffered a fracture subsequently lost bone mass, and therefore 
evaluation of vBMD in prospective cohorts is needed to 
elucidate whether QCT will be useful to predict fracture risk 
in patients with T2D. 

Due to its very low radiation dose, pQCT has been fre-
quently used in pediatric diabetic populations, but few studies 
have been conducted in adults with diabetes. Deficits in pQCT 
measures have been observed in the tibia of young adult 
women,117 the radius of middle-aged adults,118 and the radius 
and tibia postmenopausal women with T1D,119 with lower 
trabecular vBMD and cortical thickness compared to non-
diabetic controls. Importantly, postmenopausal women who 
were diagnosed with T1D before the age of 20 had greater 
deficits in pQCT measures compared to those diagnosed later 
in life, with lower total vBMD (−28%), trabecular vBMD 
(−30%) and cortical thickness (−15%) at the tibia.119 In 
older adults with T2D, most studies show greater total and 
trabecular vBMD (+3–15%) but lower cross-sectional area 
(−5%) at the distal radius and tibia, and no significant differ-
ences in cortical bone, compared to nondiabetics.109,120-123 

High-resolution peripheral quantitative 
computed tomography 
An increasing number of studies are using high-resolution 
peripheral quantitative computed tomography (HR-pQCT) 
for 3D evaluation of vBMD, geometry, and microstructure at 
the distal radius and tibia. At a relatively small isotropic voxel 
size (82 μm and 61 μm for the first- and second-generation 
scanners, respectively) and low radiation dose (<5 μSv per 
scan), HR-pQCT allows for assessment of cortical and tra-
becular bone compartments. A standardized analysis provides 
measures of total, cortical, and trabecular vBMD, trabecular 
bone microarchitecture (ie, trabecular number, thickness, and 
separation), cortical thickness, and cortical porosity.124 In 

addition, HR-pQCT images can be used to build finite element 
models to estimate bone strength.124 

Like QCT, only a few cross-sectional studies have eval-
uated trabecular bone microarchitecture and cortical bone 
microstructure via HR-pQCT in adults with T1D (Table 2). A 
recent meta-analysis proposed a T1D bone phenotype defined 
by trabecular deficits at the radius but no differences at the 
tibia.125 However, few individual studies exhibit this proposed 
T1D phenotype (Table 2), possibly due to the small number of 
studies included in the meta-analysis (4), half of which were 
in adolescents.125 Overall, some studies found that adults 
with T1D have lower total vBMD,126,127 but no differences 
in failure load at the radius and similar vBMD and failure 
load at the tibia126,128 compared to nondiabetic controls. 
When considering microstructure, most studies suggest that 
patients with T1D have similar trabecular and cortical bone 
microstructure at both the radius and tibia compared to 
nondiabetic controls (Table 2).50,126-128 In contrast to these 
studies, a large recent cross-sectional study in men and women 
with T1D129 showed greater total vBMD, cortical vBMD, cor-
tical area, and cortical thickness with lower cortical porosity 
at the radius compared to nondiabetic controls, potentially 
due to the relatively small proportion of patients with diabetic 
complications. 

Consideration of clinical factors and comorbidities is criti-
cal when examining diabetic bone disease. For patients with 
T1D, age at diagnosis127 and presence of complications such 
as microvascular diseases126 and neuropathy50,128 have been 
shown to affect bone outcomes. For example, the presence of 
microvascular diseases was associated with significant trabec-
ular bone deficits and lower bone strength at the radius and 
tibia in older adults with T1D.126 These differences persisted 
after adjustment (age, BMI, sex, disease duration, glycemic 
control), suggesting that the presence of microvascular dis-
ease may be an independent risk factor for trabecular bone 
microarchitecture deficits.126 In contrast, recent studies have 
not shown an association between neuropathy and deficits in
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trabecular bone, but rather deficits in cortical bone. In adults 
with T1D, increased cortical porosity 128 and diminished corti-
cal vBMD50 were associated with the presence of neuropathy. 
More studies are needed to better understand bone microar-
chitecture outcomes in T1D and to establish which clinical 
factors and comorbidities common in patients with diabetes 
may influence the observed skeletal heterogeneity. 

Numerous studies have used HR-pQCT in individuals 
with T2D, though findings are heterogeneous. Patients with 
T2D generally have similar to enhanced total vBMD,129,130 

trabecular microarchitecture,129-132 and cortical thick-
ness129,132,133 at both the radius and tibia compared to 
nondiabetic controls (Table 3). Differences in cortical porosity 
have been mixed, with some studies showing an increase in 
porosity,131,134-138 while others have found no difference 
compared to controls.20,129,133,139,140 A recent meta-analysis 
sought to synthesize these results in a proposed a T2D skeletal 
phenotype with improved trabecular bone structure and 
cortical thickness at the radius and tibia with greater cortical 
porosity only at the load-bearing tibia.125 As with T1D, it 
is important to consider clinical factors and comorbidities 
among those with T2D. After adjustment for weight or 
BMI, differences in trabecular and cortical bone measures 
in patients with T2D no longer differed from nondiabetic 
controls,130,133,139,141 suggesting body composition may 
play an important role in the T2D skeletal phenotype. 
Furthermore, increased soft tissue thickness overlying the 
radius or tibia leads to decreased measures of total and 
cortical vBMD,142 suggesting that HR-pQCT outcomes must 
be interpreted carefully when comparing individuals with dif-
ferent body size and BMI. Patients with longer T2D duration, 
presence of microvascular complications, or higher fasting 
glucose levels may have higher cortical porosity134,137-139 but 
more advantageous trabecular microarchitecture compared 
to nondiabetic controls.133 This suggests that the primary 
T2D phenotype might be dominated by deficits in cortical 
bone, but it is not clear whether the cortical bone deficits 
(often quite small) are driving the skeletal fragility or 
serving as a biomarker of disease severity and/or duration. 
Additional investigations, including longitudinal studies, 
are needed to clarify the connection between clinical 
factors, altered bone microstructure, and fracture risk in 
diabetes. 

Bone marrow adiposity from MRI 
In contrast to the imaging modalities mentioned previously, 
MRI enables 3D evaluation of trabecular bone microstructure 
and bone marrow composition without ionizing radiation. 
However, MRI does not enable quantification of BMD. To 
date, a few studies with small sample sizes have used MRI 
techniques in patients with diabetes. Patients with T1D have 
similar bone marrow adipose tissue (BMAT) content in the 
lumbar spine, distal femur, and proximal tibia compared 
to nondiabetic controls.143-145 Postmenopausal women with 
T2D also have similar BMAT content at the spine compared 
to controls.116,146,147 Data in men with T2D are conflicting, 
with one study showing increased vertebral BMAT content123 

and another showing decreased vertebral BMAT content148 

compared to nondiabetic controls. Much work remains to be 
done to evaluate trabecular bone and BMAT using MRI in 
adults with diabetes.
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Conclusion 
As patients with diabetes have increased risk of fracture that is 
not well explained by DXA-BMD, other noninvasive imaging 
techniques have been implemented to elucidate the diabetic 
skeletal phenotype, including measures of 3D bone density, 
microstructure, and strength. Overall, adults with T1D are 
characterized by mildly lower aBMD at the hip as well as 
lower total vBMD but similar microarchitecture at the radius 
and tibia. In contrast, adults with T2D generally have normal 
to elevated aBMD and vBMD with improved trabecular but 
deficient cortical bone structure at the radius and tibia. 

Studies of bone density and structure in both T1D and 
T2D are notably heterogeneous in their findings. These 
conflicting results might in part be due to factors such as 
differences in study design, outcome assessments, adjustments 
for potential confounders, and/or possible misclassification 
of T1D and T2D when using electronic medical records to 
identify subjects. However, it is also critical to recognize that 
diabetes is a heterogenous group of hyperglycemic disorders 
with varying pathophysiology and clinical tendencies.17 

For example, a new categorization of phenotypic diabetes 
subtypes has been proposed based on a combination of 
clinical phenotypes and pathophysiology, encompassing 
severe autoimmune diabetes, severe insulin-deficient diabetes, 
severe insulin-resistant diabetes, mild obesity–related diabetes, 
and mild age–related diabetes.17 The risk of diabetic 
complications, such as nephropathy and neuropathy, appears 
to vary based on these diabetes subtypes.17,149,150 Genotypic 
information may be able to further aid in categorizing diabetic 
phenotypes.151 Overall, improved classification into more 
homogeneous diabetes subtypes offers the potential for more 
accurate phenotypic characterizations that may portend 
different types of skeletal fragility. 

Our current understanding of diabetic bone disease as eval-
uated through clinical imaging presents significant knowledge 
gaps. Predominantly, the existing literature is characterized 
by cross-sectional studies with relatively small sample sizes, 
necessitating robust prospective, longitudinal research encom-
passing larger cohorts of both T1D and T2D populations to 
elucidate the impact of diabetes on bone health. It is also 
imperative to incorporate greater racial and ethnic diversity 
in future studies. Moreover, larger studies are needed to 
facilitate stratification based on the history of diabetes and 
associated comorbidities, something that is paramount to 
comprehensively discern fracture risk within the vast and 
varied diabetic population. For T2D, a conspicuous gap lies 
in the limited research available on men, with the current 
literature disproportionately skewed toward postmenopausal 
women. 

Furthermore, recognizing the progressive nature of T2D— 
which often originates from obesity, progresses through 
metabolic syndrome/insulin resistance, and culminates into 
diabetes—is essential. Although initial phases might be 
manageable through lifestyle alterations, unchecked progres-
sion can lead to poorly controlled diabetes and subsequent 
complications, like macro- and microvascular diseases. 
Epidemiological data consistently suggest that fracture risk 
in diabetes depends on multiple factors, such as the disease’s 
duration, insulin use, microvascular complications, and 
glycemic management. As such, the relationship between 
bone fragility and diabetes may fluctuate depending on the 
disease’s stage. Notably, the initial stages of insulin resistance 
might even have a paradoxical enhancement effect on bone 

health, making comparisons with baseline health challenging, 
as these individuals could be starting from an inadvertently 
advantageous position induced by insulin resistance.152 

Current evidence is equivocal about whether prediabetes 
is associated with increased risk of fracture.153,154 Thus, 
longitudinal studies along the progression of diabetes are 
desperately needed to gain further insight. 

Finally, given the rapidly changing landscape of treatments 
for obesity and diabetes, additional studies are needed to 
understand the effects of these interventions on skeletal 
health in adults with diabetes.155 Several pharmacological 
treatments for diabetes, such as thiazolidinediones and 
canagliflozin, are already known to have negative skeletal 
effects and to increase risk of fracture.156 Indeed, one 
limitation of existing work is the confounding factor of 
diabetic treatments, which are accounted for differently in 
different studies and may contribute to the heterogeneity of 
skeletal outcomes in this population. Furthermore, newer 
antidiabetic agents, especially those resulting in pronounced 
weight loss such as with GLP-1 agonists, will likely have 
resultant skeletal effects.156 As the prevalence of diabetes 
continues to rise globally, understanding the full spectrum of 
side effects associated with treatment modalities is imperative. 

In summary, diabetic skeletal fragility remains to be well 
characterized. There is an opportunity to recognize that both 
T1D and T2D are heterogeneous diseases and future stud-
ies should consider assessing skeletal fragility by phenotypic 
diabetic subtypes.14-17 Further research including longitudinal 
studies and larger, more diverse populations are needed to 
fully understand the nuanced effects of T1D and T2D on bone 
structure and fracture outcomes in this growing population. 
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