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implemented by the evolution from battery-like
capacitance to resistive switching memory

Guangdong Zhou,1,5,* Xiaoye Ji,2 Jie Li,3 Feichi Zhou,3,* Zhekang Dong,2 Bingtao Yan,1 Bai Sun,4,*

Wenhua Wang,1 Xiaofang Hu,1 Qunliang Song,1 Lidan Wang,1 and Shukai Duan1,*

SUMMARY

Memristor-based Pavlov associative memory circuit presented today only real-
izes the simple condition reflex process. The secondary condition reflex endows
the simple condition reflex process with more bionic, but it is only demonstrated
in design and involves the large number of redundant circuits. A FeOx-based
memristor exhibits an evolution process from battery-like capacitance (BLC) state
to resistive switching (RS) memory as the I-V sweeping increase. The BLC is trig-
gered by the active metal ion and hydroxide ion originated from water molecule
splitting at different interfaces, while the RS memory behavior is dominated by
the diffusion and migration of ion in the FeOx switching function layer. The evo-
lution processes share the nearly same biophysical mechanism with the second-
order conditioning. It enables a hardware-implemented second-order associative
memory circuit to be feasible and simple. This work provides a novel path to
realize the associativememory circuit with the second-order conditioning at hard-
ware level.

INTRODUCTION

Memristor, which is characterized by the nonvolatile resistance switching, has made great breakthrough in

ultra-high data storage (Wang et al., 2020a, 2020b; Sun et al., 2021a, 2021b), circuit system (Kim et al., 2021;

Wan et al., 2014), and neuromorphic computing because of its non-linearity, low-power consumption, and

synaptic bionic (Li et al., 2020; Wang et al., 2019; Zhou et al., 2021; Martin et al., 2022).

Different applications require different types of memristor (Zhou et al., 2019a, 2019b, 2019c, 2019d; Ma

et al., 2020). The digital-type memristor that is featured by high resistance ratio, fast switching speed,

and long retention time is suitable for the ultra-high data storage and digital logic circuit, while the

analog-type memristor, which is characterized by the high non-linearity, reliable nonvolatility, and multi-

conductance states, is desirable for neuromorphic computing and associative memory circuit (Ma et al.,

2020; Zhou et al., 2022; Zhang et al., 2020).

The ion dynamic process during the non-linear resistance change endows the memristor with unique merit

to mimic the brain function. For instance, the in-sensor computing was realized using the coupling effect

between photon and ion (Zhang et al., 2020; Wang et al., 2020a, 2020b; Mennel et al., 2020); the third-order

nanocircuit element of the neuromorphic computing was developed by controlling the crystallization ki-

netic process (Zhou et al., 2018; Hu et al., 2021; Kumar et al., 2021); and the neuro-transistor could faithfully

mimic the neurotransmitter release by the ion diffusion process (Wang et al., 2018). Utilizing the ion/elec-

tron accumulation, diffusion, and migration in the switching function layer, the RS evolution processes

including the non-standard faradic capacitance (NFC), battery-like capacitance (BLC), and RS memory

behavior were discovered in our previous work (Sun et al., 2019; Zhou et al., 2020; Sun et al., 2020a,

2020b; Sun et al., 2021a, 2021b). The ion/electron dynamic processes offer the unique route to the mem-

ristor to faithfully mimic the function of human brain, such as forgetting and learning, which are the core

processes of associative memory (Ziegler et al., 2012; Bannur et al., 2022; Bannur and Kulkarni, 2020).

The learning and forgetting functions of the classical Pavlov associative memory were demonstrated in

both digital and analog memristor (Bannur et al., 2019; Liu et al., 2016; Wang et al., 2018; Sun
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et al., 2020a, 2020b). Memristor-based Pavlov associative memory circuit was designed to realize associa-

tive cognitive functions (Zhang and Zeng, 2021). In addition, the electron vision of Pavlov associative mem-

ory was realized in the AgInSbTe and Ag/HfOx/ITOmemristor (Li et al., 2015; Pei et al., 2020; Ji et al., 2021).

After combining the merits of analog memristor, the full-function Pavlov associative circuits were devel-

oped (Wu et al., 2016; Yang et al., 2018; Wang et al., 2018). Importantly, the group of Hong stressed

that the Pavlov associative memory with second-order conditioning, which included two types of learning

and forgetting processes, exhibited high performance on image classification (Du et al., 2021). Both simu-

lation and real memristor for the associative circuit, thus, have made milestone progress during past de-

cades. However, the associative circuit presented today still suffers from the limitation in the complexity

of circuit and physical realization, because the circuit design does not take the elaborate RS dynamics

into account.

In this work, an elaborate RS dynamic involving the evolution process from the BLC to RS state is demon-

strated in the FeOx-based memristor. Utilizing the different interaction between ion and electron for the

BLC and RS state, an associate memory circuit verified by Pavlov associative memory with second-order

conditioning is realized at hardware level.

RESULTS AND DISCUSSION

The memristor with the structure of Ag/FeOx/Fe-based alloy is prepared to examine the evolution of RS

memory behavior, as shown in Figure 1A. The cross-section FE-SEM image illustrates the thickness of

the FeOx switching layer is �300 nm (top side of the Figure 1A). The FE-SEM image exhibits that the

FeOx switching layer is composed by nanosheets. Each nanosheet has an average width of �100 nm

and an average thickness of �5 nm (Figure 1B). The 1.7 Å of inter-planar spacing observed in the HR-

TEM image is contributed by the lattice plane of [422] (Figure 1C). The lattice planes of [211], [220],

[311], [222], [400], [422], [511], and [440] obtained from the XRDmeasurement are consistent with the feature

of g-Fe2O3 (JCPDS: 39-1346). Thus, the main component of the switching layer is Fe2O3 (Figure 1D). The

non-defined 2q diffraction peaks located at 51.77� and 65.59� are also detected, implying that the Fe2O3

nanosheet possibly contains another iron-based component. The binding energy of the core level of Fe

2p is 710.7 and 724.5 eV, resulting in a splitting energy of 13.8 eV between 2p3/2 and 2p1/2 (Figure 1E).

The splitting energy of 13.8 eV is mainly contributed by the Fe-O bond in the Fe2O3. The binding energy

of 529.8 eV for the O 1s core level is well agreed with the Fe-O bond in the Fe2O3 (Figure 1F). Based on the

characterization and analysis, the function layer is composed of Fe2O3.

Evolution process of the memristive system, which contains the pure capacitance state, non-standard

faraday capacitance, BLC, and RS state (Zhou et al., 2020; Sun et al., 2021a, 2021b), is schematically demon-

strated in Figure 1G. To further examine the evolution process of the Ag/Fe2O3/Fe-based alloy memristor,

the current-voltage (I-V) sweepings were operated. One can see that the memristor presents a stable BLC

state ranging from 1st to 200th voltage sweeping (Figure 2A). The BLC state is featured by an obvious oxida-

tion peak located at �0.2 V and a reduction peak located at �1.2 V. The redox peaks are weaking as the

increase of the I-V sweeping from 300th to 500th and the current also presents an obvious increase from

�6 to �30 mA (Figure 2B). It notes that the redox peaks nearly disappear when the I-V sweepings increase

from 600th to 782th and the corresponding current reaches to the compliance current level (Figure 2C).

Therefore, the redox process is possibly submerged by the increasing current. Entering 900th � 903th

sweepings, the redox process is thoroughly suppressed by the high current, but a pinched I-V hysteresis

is detected (Figure 2D). The observation of the pinched I-V hysteresis implies that the Ag/Fe2O3/Fe-based

alloy presents the RS memory behavior (Sun et al., 2020a, 2020b; Zhou et al., 2019a, 2019b, 2019c, 2019d).

The RS memory behavior is maintained during 905th � 917th I-V sweepings (Figure 2E). The RS memory be-

comes stable during the 990th � 1000th I-V sweepings (Figure 2F). It is worth noting that the negative dif-

ferential resistance (NDR) effect is also detected during this range.

The Ag/Fe2O3/Fe-based alloy memristor has experienced three stages: i) BLC stage at very beginning

state, ii) RS memory behavior, and iii) coexistence of the RS memory behavior and NDR effect. It notes

that the BLC and NDR effect involve the ion/electron-based redox reaction process. To calculate the num-

ber of charge (Q) of redox process, thememristor is set to short-circuit once it reaches to the oxidation peak

current density (Jp-oxi) or reduction peak current density (Jp-red). After integrating the area of discharge cur-

rent versus time, the Q was obtained. The redox process was described by the Randles-Sevcik equation

(Valov et al., 2011; Valov et al., 2013):
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Jp� redox = 2:99$105,Z
3
2$Credox$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
awDredox

p
(Equation 1)

where the Jp, Z, Credox, a, w, and Dredox denote the redox peak current value (A/cm2), the number of elec-

trons transferred during redox process, ions concentration (mol/cm3), charge transfer coefficient, bias

voltage scan rate, and ions diffusion coefficient (cm2/s), respectively. The Jp-oxi and Jp-red can be given

by integration area of discharge curve. At very initial stage, the active Ag electrode is oxidized to Ag+,

thus the number of transferred electrons in oxidation process is one (Z = 1). The charge transfer coefficient

of a is �0.5 and the bias voltage is 500 mV/s. In the Equation 1, the Dredox is given by the Nernst-Einstein

relation (Valov et al., 2013).

mredox =
DredoxZe

KBT
(Equation 2)

Figure 1. Memristor preparation and characterization

(A) Schematic diagram the memristor with the structure of Ag/Fe2O3/Fe-alloy. The FeOx switching layer is about 300 nm, the scale bar is 100 nm.

(B) FE-SEM image of self-assembled FeOx nanosheets.

(C) HR-TEM image of the FeOx nanosheet characterized by the crystalline inter-planar spacing of 1.7 Å contributed by the lattice plane of [422] of the Fe2O3.

(D) The XRD pattern of the FeOx film.

(E and F) XPS spectra of the core level of Fe 2p and O 1s.

(G) Schematical diagram the evolution process of memristor.
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The mredox, KB, and T are the ion mobility (cm2/Vs), boltzman constant, and temperature, respectively. Here,

the laboratory temperature is 27�C (T = 300 K) and KB is 1.383 10�23 J/K. According to the Qredox obtained

from the integration of discharge versus time evolution, the Credox can be calculated from the Equations 1

and 2. Therefore, the ion concentration of Credox versus both Dredox and mredox can be given for the evolu-

tion process from BLC stage to RS memory behavior.

To the BLC stage, the peak current density of the Jp-oxi (1.36 3 10�4) and Jp-red (1.1 3 10�4A/cm2) is calcu-

lated by the corresponding peak current (inset of the Figure 3A) and the area of the top electrode (pr2). After

integrating the area of the discharge current versus time curve (Figures 3B and 3C), the Qoxi (1.283 10�5 C)

andQred (3.93 10�6 C) are obtained. The ion concentration of Coxi (0.13mol/cm3) andCred (0.012mol/cm3) is

further calculated according to the transfer charge of the redox process. According to the Equation 1, the

ions diffusion coefficient for the oxidation process is 4.893 10�17 cm2/s (Doxi), while the reduction process is

3.76 3 10�15 cm2/s (Dred). From the Equation 2, the corresponding ion mobility is 1.73 3 10�15 cm2/Vs and

1.44 3 10�13 cm2/Vs for the oxidation (moxi) and reduction (mred) process, respectively.

Entering the RS memory stage, the corresponding charge is obtained from the integration (Figures 3D and

3E). Comparing with the BLC stage, the Cred and Coxi for the RS memory stage increase to 0.42 and 4.05

mol/cm3, respectively. It will lead to the decrease of Dredox and mredox (Figure 3F). In particular, the moxi is

3.983 10�16 cm2/Vs and the Dred is 2.643 10�16 cm2/s, which decreases one order of magnitude compared

with BLC stage. The calculation demonstrates that i) the Ag/Fe2O3/Fe-based alloy with a low ion concen-

tration at the BLC stage, but the ion holds a high mobility and diffusion; ii) entering the RS memory stage,

the ion concentration sharply increases, but themobility and diffusion are weakened. It notes that the Coxi is

higher than Cred for both BLC stage and RS memory behavior. Considering the oxidation reaction, the

ionized Ag is described as following (Wan et al., 2019; Wan et al., 2020; Zhou et al., 2019a, 2019b, 2019c,

2019d; Yan et al., 2022):

Ag#Ag+ + e (Equation 3)

According to Equation 3, the Ag electrode is ionized to be Ag+, and then electric-field driven diffuses into

the Fe2O3 layer. In addition, the oxygen vacancy (V0) of the Fe2O3 is sensitive to water molecule. According

Figure 2. The converter from battery-like capacitance state to resistive switching (RS) behavior triggered by the

cycling endurance

(A) Redox-based capacitance behavior during 200 I-V sweepings.

(B) The degraded redox-based capacitance behavior during the 300th�500th I-V sweepings.

(C) The degraded redox-based capacitance behavior becomes very weaken during the 600th �782th I-V sweepings.

(D and E) Evolution from capacitance state to RS memory behavior.

(F) Coexistence of the negative differential resistance and RS memory behavior.
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to the half-cell theory, the reduction reaction occurs at the counter electrode. Therefore, the redox reaction

between water and Fe2O3 film is described as following (Yan et al., 2022; Liao et al., 2022; Messerschmitt

et al., 2015):

H2O + O3
0 +V0#2OH � (Equation 4)

where the O3
0 and V0 denote the oxygen in lattice and oxygen vacancies, respectively. According to Equa-

tions 3 and 4, the current increases because the electron/ion diffusion and migration is enhanced, which is

described by (Valov et al., 2013; Zhou et al., 2018):

s = qhh:ch: +qhe0ce0 + 2qhV ::
O
cV ::

O
+qhOH:

O
cOH:

O
(Equation 5)

where the s, q, c, m, h, e, V ::
o , and OH:

o denote the electric conductivity, elemental charge, ions concentra-

tion, ions mobility, holes, electrons, oxygen vacancy, and proton bound to oxygen in the metal oxide,

respectively.

Therefore, the Coxi and Cred are respectively contributed by the Ag+ and OH� for both BLC stage and

RS memory behavior. According to our previous studies, the evolution process was dominated by ion/electron

accumulation at interface, reaction, andmigration (Zhou et al., 2018, 2019a, 2019b, 2019c, 2019d). In other words,

if the accumulation, reaction, andmigration orderly happen under external stimulation, the evolution processes

will happen regardless of the type of stimulations. To further verify this assumption, the I-V sweepings are

measured under different moisture level because the water splitting on the surface can accelerate the evolution.

Being similar with our previous studies (Zhou et al., 2019a, 2019b, 2019c, 2019d, 2020; Sun et al., 2020a, 2020b),

the evolution processes are expectedly observed (Figure 4A). It notes that the similar evolution processes are

observed under the voltage sweepings and high relative humidity. Therefore, the evolution processes for the

memristive system are verified. To investigate the stability of the evolution process, resistance states for the

BLC and RS are investigated. One can see that the transition state between the BLC and RS memory stage ex-

hibits slightly volatile (Figure 4B). It stresses that the FeOx-based memristor is nonvolatility and is modulated by

compliance current after entering the RS memory and the coexistence stage (Figure 4C).

Based on above results and analysis, the evolution process can be comprehended. At very beginning stage,

the Ag+ andOH� ion respectively distributes at the interface of Ag/FeOx and FeOx/Fe-alloy, resulting in the

Figure 3. Ion concentration during the evolution process

(A) Evolution from the redox-based capacitance phase to the RS memory phase.

(B)–(E) Current versus time under short circuit for the memristor at different current peaks.

(F) Ion concentration versus migration rate and ions diffusion coefficients.
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memristor exhibiting capacitance effect. The increase of ion concentration provides enough ions to diffuse

andmigrate in the switching layer, and finally forms a conduction filament, which directly leads to the mem-

ristor entering the RS memory behavior. The oxygen vacancy at surface (Vo-sur) and subsurface (Vo-sub) not

only facilitates thewater split to generateOH�but also penetrates the switching layer to form nanofilament.

In this case, the three types ofmechanisms including theAg filament, OH�, and Vo conduction path lead to a

coexistence of the RS memory behavior and NDR effect (Figure 4D).

According to the electron/ion dynamic, a second-order associative circuit that verified by the Pavlov asso-

ciative memory is proposed. A flexible compact model is proposed to explore the dynamics in simulation.

The simulation includes two current sources (Gm andGx), and the 1F capacitor (Cx). Themodel is connected

as the circuit schematic, in which the terminals plus and minus denote the top and bottom electrode of

memristor. Notably, at the device level, 1F capacitance may be unrealistic; while at the model level, the

1F capacitor makes the circuit structure and mathematical expression easier and simpler. According to

the equivalent circuit, the relationship between current and voltage is described as following:

iGmðtÞ =

�
a1xðtÞn1vðtÞb1 + a2ð1 � xðtÞn2 Þ�1 � e�m1vðtÞ�; vðtÞR0

a3xðtÞn3vðtÞb2 + a4ð1 � xðtÞn4 Þ�1 � e�m2vðtÞ�; vðtÞ<0
(Equation 6)

where v(t) denotes the applied voltage, iGm(t) denotes the current passing through the memristor, a1, a2, a3,

a4, b1, b2, n1, n2, n3, n4,m1, andm2 are the fitting parameters of themodel. The I-V response curve of amath-

ematical model can approximate the actual physical model. The a1x(t)
n1 and a3x(t)

n3 terms are used to

stimulate the dynamics of the kg/(g+1) term in the space-charge limited current mechanism. The a2
(1-x(t)n2)(1-e-m1v(t)) and a4 (1-x(t)n4)(1-e-m2v(t)) terms are used to represent the Schottky tunneling current.

The x(t) denotes the state variable for characterizing the conductivity of the device, where x ˛ [0,1]. The

Figure 4. Physical mechanism for the evolutions

(A) The memristor shows the evolution process from the BLC, RS to NDR as the relative humidity increasing from 0% to

85%.

(B) The retention time measurement of the transition state between BLC and RS stage.

(C) The RS memory behavior is similar with most of memristive devices modulated by the compliance current once our

memristor complicated the evolution process.

(D) Physicochemical dynamic process for the evolution RS memory behaviors. Under ultra-low bias voltage, the device

exhibits the capacitance state due to the interface ions. A typical RS behavior is triggered by increasing voltage

sweepings.
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value of x(t) is derived by integrating the current iGx(t) over time through capacitor Cx in the equivalent

circuit.

The change in the state variable is mathematically expressed as:

iGxðtÞ =
dx

dt
=

�
a1

�
eb1vðtÞ � e� b2vðtÞ�foff ðxÞ; vðtÞ>0

a2

�
eb3vðtÞ � e� b4vðtÞ�fonðxÞ; vðtÞ%0

(Equation 7)

where a1 and a2 are the fitting parameters. The b1, b2, b3, and b4 denote the voltage control parameter. The

foff(x) and fon(x) as the window functions are employed to ensure the state variable x(t) at the range of [0, 1].

They are described as following:

8>>><
>>>:

foff ðxÞ = exp

�
� exp

�
x � aoff

wc

�	
; vðtÞ>0

fon ðxÞ = exp

�
� exp

�
aon � x

wc

�	
; vðtÞ%0

(Equation 8)

where wc, aoff, and aon are the fitting parameters.

Based on above theoretical description and mathematical derivation, the proposed memristor-based

Spice model is obtained, in which the detail sub-circuit description is shown in Table S1. The gradient

descent and minimized the relative error function value were used to measure the fit between the real

memristor and circuit model. Here, the error function is selected as the relative root mean squared error

(RRMSE):

Errms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
,

0
BBB@

PN
k = 1

ðVk � Vref ;kÞ2

V2
ref

+

PN
k = 1

ðIk � Iref ;kÞ2

I2ref

1
CCCA

vuuuuuut (Equation 9)

where N is the total number of samples, and Vk and Vref,k denote the kth voltage applied to the terminals of

the memristor and the circuit model, respectively. The Ik and Iref,k represent the kth current through the

memristor and circuit model, respectively. The Vref and Iref are the Euclidean norms of voltage and current

of the circuit model, respectively.

The corresponding fitting result and parameter setting are shown in Figure 5A, where the solid spheres

and solid lines represent the experimental data and model data, respectively. The whale optimization

algorithm is used to obtain all the parameters in Equations 6, 7, and 8. The initial value of state variable

x(t) is 0. Figure 5B illustrates the simulation results of the memristor after 300th switching cycles. When the

state variable x(t) approaches to zero, the memristor exhibits a BLC behavior. After obtaining the RRMSE

from the theoretical fitting, a 0.106% is obtained for the experimental data. When the switching cycles

increase to 600th and 782th, the state variable x(t) gradually increases as the maximum current increases

to 12 mA. In this case, a typical RS behavior is observed in positive voltage region (Figure 5C). In this re-

gion, the fitted curve is well matched with the target data and the corresponding RRMSE is 0.227%. The

coexistence of NDR and RS memory behavior is observed when the x(t) approaches to one (Figure 5D).

By comparison, the peak current value of the memristor increases from 12 to 100 mA, and the RRMSE is

0.514%.

The second-order Pavlov conditioning behavior emerges along with the establishment of the classic Pavlov

conditioned reflex (Figure 6A). The fabricated memristor exhibits an impressive evolution process from the

BLC state to RS state, which shares the nearly same biophysical mechanism with the second-order condi-

tioning. It enables a fully hardware-implemented second-order associative memory circuit to be feasible

and simple (Figure 6B). The U1A and U2A are two XOR logic gates. The Camp means the voltage amplifi-

cation circuit with the magnification A of 7. The M1 and M2 are the two memristor cells in BLC state and

RS state, respectively.

The initial memristance of 106 (RH1) and 104 (RL1) is selected in BLC state, respectively. The R1, R2, R3, and

R4 are four fixed resistors, satisfying R1 = R3 = RL2� R2 = R4�RH1. Meat signal SM, ring signal SR, and light

signal SL are three input voltages with two different states, which can be respectively represented by the

ll
OPEN ACCESS

iScience 25, 105240, October 21, 2022 7

iScience
Article



high-level state VH (2 V) and the low-level state VL (0 V). The transistor plays the role of switch with a

control voltage g. The output voltage Vout depends on the sum of Vout1 and Vout2. The output voltage

Vout = 2 V (Vdd) indicates the dog secretes saliva. Contrarily, the dog does not secrete saliva when the

output voltage Vout = 0 V(GND). To further demonstrate the merit of the proposed second-order asso-

ciative memory circuit, simulation and analysis are conducted. One can see that the proposed circuit not

only realizes the classical Pavlov conditioned reflex but also has the second-order conditioning behavior,

in which the first conditioned reflex is realized by the BLC state, and the second conditioned reflex is

realized by the RS state (Figure 6C).

Classic Pavlov conditioned reflex is divided into three phases: the premise phase, first learning phase, and

first forgetting phase. To simulate these three phases, the control voltage g (green line) and light signal SL
(black line) remain in low-level state VL. During the premise phase (0–200 ms), the meat signal SM (red line)

and ring signal SR (blue line) are respectively assigned to VH and VL. In this case, the output voltage

Vout = Vdd = VH implies the dog secretes saliva. Contrarily, the SM and SR are respectively assigned to VL

and VH; the output voltage obeys the Vout = GND = VL, indicating the dog does not secrete saliva. M1 (or-

ange line) and M2 (cyan line) are maintained in the BLC state and RS state, respectively. During the first

learning phase (200–700 ms), the SM and SR are assigned to VH, implying that the meat and ring are both

provided to the dog. M1 quickly switches from BLC state to RS state and the output Vout = Vdd = VH, which

means that the dog secretes saliva. Once the SM is removed, the first forgetting phase will start along with

the entire second-order Pavlov conditioning.

Similarly, the second-order Pavlov conditioning is also divided into three phases: the premise phase, sec-

ond learning phase, and second forgetting phase (Figure 6D). To simulate these three phases, the control

signal g and SM are respectively operated to the VH and VL, implying that the meat is removed. During the

Figure 5. Equivalent circuit and simulations for the evolution from capacitance state to RS behaviors

The related programming code shows in Table S1.

(A) The equivalent circuit model for the Ag/Fe2O3/Fe-alloy memristor.

(B–D) Simulation (line) versus experimental results (dot): (B) the capacitance state, (C) the typical RS behavior, and (D) the coexistence of the negative

differential resistance and RS memory behavior.
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Figure 6. A fully hardware-implemented second-order associative memory circuit for neuromorphic computing

(A) The collected information of classic/secondary Pavlov conditioned reflex experiments.

(B) Input signals of the proposed second-order associative memory circuit.

(C) The Ag/Fe2O3/Fe-alloy memristor-based second-order associative memory circuit.

(D) Outputs of the proposed second-order associative memory circuit.
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premise phase (0–200 ms), the SR and light signal (SL) are operated to VH and VL, respectively. In this case,

the output voltage satisfies the Vout = Vdd = VH; thus, the dog secretes saliva. Contrarily, the SR and SL are

respectively assigned to VL and VH. In this case, the output voltage Vout = GND = VL implies the dog does

not secrete saliva. During the second learning phase (200–650 ms), the SR and SL are assigned to VH, indi-

cating that the ring and light are both provided to the dog. Here, theM1 andM2 are 0.5 and 7.6 kU, respec-

tively. The dog secretes saliva (Vout = Vdd = VH) and the associative memory between the ring and light is

established. During the second forgetting phase (650–1,200 ms), the SR and SL are respectively operated to

VL and VH. TheM1 remains unchanged at 1.5 kU, whileM2 increases to 2 kU. The Vout decreases from VH to

VL, indicating the dog does not secrete saliva. In other words, the second-order conditioning established

before is disappeared.

Conclusion

Memristor evolution involving the BLC stage and RS memory behavior is systemically examined. The elec-

tron/ion accumulated at interface and the concomitant redox reaction is responsible for the BLC stage.

Electron/ion accumulation, migration, and diffusion are enhanced by the increasing I-V sweepings. The

RS memory behavior and coexistence of NDR are ascribed to the growth of the different types of conduc-

tion paths. The corresponding dynamics in simulation are also explored by constructing a flexible compact

model of the developed memristor. Furthermore, a memristor-based second-order associative memory

circuit with second-order conditioning is designed and implemented, which opens a novel path for the

deep integration of physical memristors into neuromorphic computing systems.

Limitations of the study

This work is mainly focused on the physical mechanism of the memristor and related the second-order

associative memory circuit with second-order conditioning with the evolution process (From BLC to

the coexistence of NDR and RS memory behavior). The circuit model and simulation only represent

the specific I-V curve; thus, it is limited in terms of the cycle-to-cycle stability. In addition, the evolution

can be triggered by the electric field, or testing environment, these factors have not considered in the

physical models. The charge releasing is roughly estimated by the releasing charge by the short circuit.

Large number of peripheral circuits and ideal capacitors are used during the simulations. Large-scale

memristor array integration and parameter control are required to further realize the complex function

and application in the future.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Prof. Guangdong Zhou (zhougd@swu.edu.cn).

Materials availability

All materials generated in this study are available from the lead contact.

Data and code availability

This study does not generate data sets/code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study does not use experimental models typical in the life sciences.

METHOD DETAILS

All measurements of the electric properties were carried out in the air atmosphere. The Ag electrodes were

deposited by the magnetron sputtering. Analytically pure chemical was used without further purification.

The deionized water with the resistance of 18 MU. The measurements, instruments, device fabrication and

characterization, and circuit simulation are listed as follows.

Measurements and instruments

Themorphology and cross-section structure of the FeOx film were characterized by the field emission scan-

ning electron microscopy (FE-SEM, JSM-6510). The crystal structure was measured by the high-resolution

transmission electron microscopy (HR-TEM, JEM-2100F) and X-ray diffraction (XRD-7000). The current-

voltage curves (I-V) and current-time curves (i-t) are measured by the electrochemical workstation (CHI,

760E). The software of PSpice (Cadence 17.2 Pspice) is used to conduct the circuit simulations.

Device fabrication and characterization

A 2 3 2 cm2 Fe-C alloy sheet was orderly cleaned by the deionized water, ethanol, and deionized water at

60�C for 45 minutes. The cleaned Fe-C alloy sheet was dried at 85�C in N2 for 3 hours. Air plasma cleaner

(PDC-32G-2) was employed to clean the surface of the dried Fe-C alloy sheet for 90 seconds in order to

remove the possible contaminants. The processed Fe-C alloy sheet was transferred into a glove-box to

control the moisture air with a relative humidity of 85%. After reacting with oxygen and water for 72 hours,

the FeOx switching layer was synthesized.

Ag target with a purity of 99.99% was employed to deposit Ag top electrode. The Ag electrode with a diam-

eter of 200 mm and �50 nm thickness was sputtered at 20 W in 0.85 Pa Ar for 30 seconds. Thus, the mem-

ristor with the structure of Ag/FeOx/Fe-C alloy sheet was developed. The self-designed glovebox was em-

ployed to control the relative humidity.

Circuit model and soft simulation

Classical Pavlov conditioning can be divided into three phases, i.e., the premise phase, 1st learning phase

and 1st forgetting phase. Notably, the control voltage g and light signal SL remain in low-level state VL.

REAGENT or RESOURCE SOURCE IDENDIFIER

Chemicals, peptides, and recombinant proteins

Ethanol (>99.9%, GC) Aladdin CAS: 64-17-5

Metal steel sheet (Fe-C alloy) Kobetool N/A

Ag target (>99.99%, 4N) Beijin Jinyuan Adv. Mater. Technol. N/A
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The premise phase:

When meat signal SM = VH and ring signal SR = VL, the node voltage equation according to Kirchhoff’s cur-

rent law (KCL) is expressed as:

VH � VS

R1
+
VH � VS

M1
= 0 (Equation 10)

According to the parameter setting, the initial memristance ofM1 is RH. As R1 << RH, (Equation 10) is simpli-

fied to VS = VH. At this point, output voltage Vout1 = Vdd, indicating that the dog secretes saliva.

When SM = VL and SR = VH, the node voltage equation according to KCL is described as:

VL � VS

R1
+
VH � VS

M1
= 0 (Equation 11)

Based on the parameter setting, the initial memristance ofM1 is RH. Due to R1 << RH, (Equation 11) can be

further simplified to VS = VL. Output voltage Vout1 = Gnd, indicating that the dog dose not secrete saliva.

1st learning phase: When SM = SR = VH, the node voltage equation according to KCL is:

VH � VS

R1
+
VL � VS

M1
= 0 (Equation 12)

According to the law of change of memristance,M1 quickly switch fromBLC state to RS state and the output

Vout=Vdd=VH, which means that the dog secretes saliva.

1st forgetting phase: When SM = VL and SR = VH, the node voltage equation can be obtained according

to KCL as:

VL � VS

R1
+
VH � VS

M1
= 0 (Equation 13)

Notably, once the meat signal SM is removed, the 1st forgetting phase will start along with the entire sec-

ondary Pavlov conditioned reflex.

Similarly, the secondary Pavlov conditioned reflex can also be divided into three phases, i.e., the premise

phase, 2nd learning phase and 2nd forgetting phase. Notably, the control signal g always keeps in VH, while

the meat signal always keeps in VL (i.e., the meat is removed).

The premise phase:

When ring signal SR = VH and light signal SL = VL, the node voltage equation according to Kirchhoff’s cur-

rent law (KCL) is expressed as:

VH � VS

R2
+
VH � VS

M2
= 0 (Equation 14)

According to the parameter setting, the initial memristance ofM2 is RH. As R2 << RH, (Equation 14) is simpli-

fied to VS = VH. At this point, output voltage Vout2 = Vdd, indicating that the dog secretes saliva.

When SR = VL and SL = VH, the node voltage equation according to KCL is described as:

VL � VS

R2
+
VH � VS

M2
= 0 (Equation 15)
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Based on the parameter setting, the initial memristance of M2 is RH. Due to R2 << RH, (6) can be further

simplified to VS = VL. Output voltage Vout2 = Gnd, indicating that the dog dose not secrete saliva.

2nd learning phase: When SR = SRL = VH, the node voltage equation according to KCL is:

VH � VS

R2
+
VL � VS

M2
= 0 (Equation 16)

According to the law of change of memristance, M1 increases while M2 decreases in a certain time range.

The output Vout=Vdd=VH, which means that the dog secretes saliva and the associative memory between

the ring and light is established.

2nd forgetting phase: When SR = VL and SL = VH, the node voltage equation can be obtained according

to KCL as:

VL � VS

R2
+
VH � VS

M2
= 0 (Equation 17)

According to the law of change ofmemristance,M1 remains unchanged whileM2 increases. The output Vout

decreases from VH to VL, which means that the dog does not secrete saliva and the previously established

secondary conditioned reflex is disappeared. Therefore, the circuit model can be established by the

Equations 10–17.

QUANTIFICATION AND STATISTICAL ANALYSIS

This study does not include statistical analysis or quantification.

ADDITIONAL RESOURCES

Additional resource contains code programming for thememristor-based circuit model can be found in the

supplemental information.
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