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Abstract: Melanoma as a very aggressive type of cancer is still in urgent need of improved treatment.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and arginine deiminase (ADI-
PEG20) are two of many suggested drugs for treating melanoma. Both have shown anti-tumor
activities without harming normal cells. However, resistance to both drugs has also been noted.
Studies on the mechanism of action of and resistance to these drugs provide multiple targets that can
be utilized to increase the efficacy and overcome the resistance. As a result, combination strategies
have been proposed for these drug candidates with various other agents, and achieved enhanced
or synergistic anti-tumor effect. The combination of TRAIL and ADI-PEG20 as one example can
greatly enhance the cytotoxicity to melanoma cells including those resistant to the single component
of this combination. It is found that combination treatment generally can alter the expression of the
components of cell signaling in melanoma cells to favor cell death. In this paper, the signaling of
TRAIL and ADI-PEG20-induced arginine deprivation including the main mechanism of resistance
to these drugs and exemplary combination strategies is discussed. Finally, factors hampering the
clinical application of both drugs, current and future development to overcome these hurdles are
briefly discussed.

Keywords: ADI-PEG20; apoptosis; arginine deprivation therapy; autophagy; melanoma; rhArg; TRAIL

1. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Signaling and
Anti-Tumor Effect in Melanoma
1.1. General TRAIL Signaling in Melanoma

TRAIL was first discovered based on its sequence similarities to other members of
the tumor necrosis factor family [1,2]. As its name suggests, TRAIL can induce apoptosis
in tumor or transformed cells; however, normal cells are not susceptible to its death-
inducing activity [3–5]. It has thus become a very attractive macromolecule for research
and development with the hope that it can be a specific cancer-targeting drug with minimal
side effects.

TRAIL is a transmembrane protein with extracellular, transmembrane, and intracellu-
lar domains. Its apoptosis-inducing function depends on the ligation of membrane-bound
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TRAIL receptors (also called death receptors) on target cells. To date, five receptors for
TRAIL have been identified [6,7]. Two of them, DR4 (TRAIL-R1) and DR5 (TRAIL-R2)
are genuine receptors that can initiate the death signaling upon binding of TRAIL. The
rest three, DcR1, DcR2, and osteoprogeterin (OPG) are decoy receptors because they are
generally not able to transduce the death signal of TRAIL ligation. DcR1 lacks the death
domain which is required for transducing the death signal, while DcR2 has only a trun-
cated death domain, and OPG is a soluble protein with lower affinity for TRAIL [8]. These
decoy receptors are considered competitors for TRAIL binding and may serve as a form of
protection in normal cells from the toxicity of TRAIL because they are usually expressed in
various normal tissues [9]. However, the expression of decoy receptors on melanoma cells
may not correlate with their sensitivity to TRAIL (see Section 1.2).

The ligands for DR4 or 5 are not restricted to cell membrane-bound TRAIL because
TRAIL can also exist in soluble form which can be a cleaved product containing most
of its extracellular domains [10] or secreted by some cells. Recombinant soluble TRAIL
(sTRAIL) [3] has been widely used; in addition, agonistic monoclonal antibodies specifically
engaging DR4 or DR5 are also in use [11,12].

TRAIL-induced signaling through its cognate receptors can be complex; for example,
there is evidence suggesting that DR-mediated TRAIL signaling can lead to the activation
of NFκB and result in the upregulation of anti-apoptotic proteins under some circum-
stances [13]. Nonetheless, a generally accepted pro-apoptotic pathway has been established.
TRAIL or sTRAIL exists as a homotrimer with each monomer able to bind a death receptor;
thus after ligation of TRAIL, the receptors will be brought together to form clusters. The
clustered intracellular domains bring in the adaptor protein Fas-associated death domain
(FADD) through the interaction of death domains present in both FADD and the intracel-
lular domains to form a structure called death-inducing signaling complex (DISC) [14].
FADD further recruits procaspase-8 or 10 [15] to the DISC through the interaction of their
common death effector domains, and caspase-8 or 10 will be activated presumably through
auto-catalysis. These activated initiator caspases (8 or 10) then activate downstream effector
caspase-3, 6, or 7 which ultimately leads to the completion of apoptosis. This pathway is
usually known as the extrinsic apoptosis pathway, and the activation of extrinsic pathway
alone can lead to apoptosis in so-called type I cells. However, the activation of extrinsic
apoptosis pathway can interact with the intrinsic or mitochondrial pathway of apoptosis
through a cytosolic protein Bid. This interaction is believed to start from the cleavage of
Bid by activated caspase-8 (or possibly 10) to produce the truncated Bid (tBid) [16,17]; tBid
then can translocate to the outer membrane of mitochondria to interact with Bcl-2/Bcl-xL,
releasing their inhibition on Bax/Bak. Activated Bax/Bak initiates the intrinsic apoptosis
pathway by forming pore complexes to induce mitochondrial outer membrane perme-
abilization (MOMP). This in turn leads to the release of cytochrome c, and other factors
such as second mitochondrial activator of caspases (SMAC/Diablo), apoptosis-inducing
factor (AIF), and endonuclease G (endoG) from mitochondria. Released cytchrome c com-
bines with APAF-1 and procaspase-9 to form the apoptosome to produce the activated
caspase-9. In addition to activating the effector caspase-3, 6 or 7, caspase-9 can activate
more caspase-8 or 10 to form a positive feedback loop with the net effect of enhanced apop-
tosis. Released SMAC/Diablo can counter the anti-apoptotic effect of various inhibitors
of apoptosis proteins (IAPs). Sometimes AIF and endoG released from mitochondria can
cause apoptosis without the activation of caspase (caspase-independent apoptosis). Cells
where the extrinsic pathway alone cannot induce apoptosis and require the participation of
the intrinsic pathway to do so are called type II cells, and melanoma cells generally fall
into this category [18] (see Diagram).
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Diagram illustrated TRAIL induced apoptosis (extrinsic) pathway which can join
intrinsic pathway through Bid. (Cyt C = cytochrome C; IAP = inhibition of apoptosis,
MOMP = mitochondrial outer membrane permeabilization).

1.2. Resistance Mechanism to TRAIL in Melanoma

In melanoma, as well as in other types of cancer, many components along the apoptosis
pathway can impart resistance, innate or acquired, to TRAIL.

It has been proposed that the relative amount of the DRs and DcRs on a cell would
determine the susceptibility to TRAIL. However, in melanoma, evidence seems to indicate
that the membrane-bound DcRs may not be correlated with the resistance to TRAIL [19,20].
Nonetheless, the expression levels of surface DR4 or 5 have been confirmed to be one of
the main factors that can determine the resistance to TRAIL in melanoma [20,21]. In turn,
many factors can influence the expression levels of DRs. The loss of DR expression can
be a direct result of gene deletion [20,22], or of inability to anchor the receptors on the
cell membrane [20]. One report shows the epigenetic control of DR4 expression [23] as
exemplified by the finding that 5-aza-2′-deoxycytidine, a demethylating agent, can increase
the surface expression of DR4 in TRAIL-resistant melanoma cell lines, conferring reversal
of the resistance to TRAIL, and ectopic expression of DR4 in these cells also achieved
the reversal of resistance. A more recent study reveals that gene silencing through the
methylation of H3K27 (H3K27me3) may be responsible for the lack of expression of DR4
in lymphoid leukemia cells [24]; whether this is true for melanoma cells remains to be
explored. Post-translational modification of the DRs can also affect the signal transduc-
tion of TRAIL. High expression of peptidyl O-glycosyltransferase GALNT14 is found in
melanoma cell lines contributing to the sensitivity to TRAIL by modifying DR4 or 5 through
O-glycosylation to enhance the DISC formation through clustering of these receptors [25].
Melanoma cells can use the downregulation of GALNT14 to attenuate TRAIL signaling at
the receptor level. In summary, downregulation of surface DRs or dampened glycosylation
of these DRs can confer resistance to TRAIL in melanoma.

Although the death receptors at cell surface are required for TRAIL-induced apoptosis,
expression of DR4 or 5 on the cell surface will not guarantee the susceptibility to TRAIL.
Many downstream components of apoptosis also play a crucial role in determining the fate
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of the cell after the ligation of TRAIL and DRs. These regulators mainly include cellular
FLICE-inhibitory protein (cFLIP), IAPs, and Bcl-2 family proteins.

cFLIP can block the activation of initiator caspase-8 or 10 through the formation of
another structure called apoptosis inhibitory complex (AIC) at DISC [26]. One early survey
of a panel of melanoma cell lines found that the high expression of cFLIP is correlated
with the resistance to TRAIL [19]. A later study using siRNA targeting individual inhibitor
molecules including cFLIP clearly showed that knocking down cFLIP is able to impart
sensitivity of melanoma cells to TRAIL [27]. The important inhibitory role of cFLIP in
melanoma against TRAIL-induced apoptosis is further supported by a series of studies in
melanoma where manipulating the expression or stability of cFLIP by various experimental
means was able to change the sensitivity of melanoma cells to TRAIL accordingly [28–33].

IAPs are a group of inhibitors that can inhibit activated caspases through channeling
the caspases to degradation via the proteasome pathway [34]. One member of the IAPs,
ML-IAP (also known as Livin), was originally identified in the study of melanoma [35] as
inducible by apoptosis stimuli including TRAIL. Elevated levels of ML-IAP are responsible
for the insensitivity to TRAIL and other drugs in some melanoma cells. Upregulation
of XIAP is also one of the mechanisms in TRAIL-resistant melanoma to prevent apopto-
sis [36], which can be counteracted by SMAC/Diablo. In some melanoma cells, knocking
down XIAP or survivin (an IAP) seems to be very potent in overcoming the resistance to
TRAIL [27].

The expression levels and activity of Bcl-2 family proteins can be important determi-
nants of resistance to TRAIL in melanoma because they directly control the permeability
of mitochondria that initiates the intrinsic pathway. These proteins can be further di-
vided into three subgroups, anti-apoptotic, pro-apoptotic multidomain, and pro-apoptotic
BH3-only. For example, Bid and Noxa belong to the pro-apoptotic BH3-only subgroup,
and Bcl-2, Bcl-xL, Mcl-1 belong to the anti-apoptotic subgroup. Bax and Bak are in the
pro-apoptotic multidomain subgroup. An earlier study revealed that knockdown of Bcl-2
in TRAIL-resistant melanoma cells could make these cells sensitive to TRAIL although
the effect was not as potent as that of XIAP knockdown [27]. Another study found that
IGF1 could induce resistance to TRAIL in melanoma cells by upregulating Bcl-2, Bcl-xL
and survivin [37]. Mcl-1 knockdown in two resistant melanoma cell lines could re-sensitize
them to TRAIL [38]. The importance of Bax in relation to Bcl-2 in the resistance to TRAIL
in melanoma is supported by a series of studies [39–41]. Many more studies on the critical
role of Bcl-2 family proteins in TRAIL resistance in melanoma can be found in a recent
review [42].

TRAIL resistance may also be accounted for by the downregulation of initiator caspase-
8 and 10 as reported in a study of acquired resistance to TRAIL in melanoma [21]. Intrinsic
resistance to TRAIL has been linked to the downregulation of caspase-8 through the
hypermethylation of its promoter in Ewing tumor [43] although this is still to be seen
in melanoma.

1.3. Combination Strategies for TRAIL

Investigations on the resistance to TRAIL with melanoma and other cancer cells have
been providing valuable information to design combination therapeutic strategies for
TRAIL-resistant cancers. Many factors can contribute to the resistance of TRAIL, and
these factors can be regulated by again multiple pathways. Therefore, the possibility of
combinations with TRAIL can be huge; a recent review can be consulted for the categories
of agents including irradiation that have been used with TRAIL in melanoma to overcome
the resistance [42]. To reconcile the multitude of combination strategies with various
immediate targets, the author of the review proposed that the underlying mechanism of all
the enhancement of TRAIL is a cell cycle regulation step [44]. Nevertheless, most of the
combination strategies can be seen as a convergence of signaling on the factors associated
apoptosis. For example, histone deacetylase inhibitor suberoylanilide hydroxamic acid
(SAHA) [45], interferon-beta [46], and aurora kinase inhibitor MLN 8237 [47] all can be
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combined with TRAIL to enhance cytotoxicity in melanoma, and these chemically different
entities all can lead to the upregulation of DR5.

One interesting observation from the combination of TRAIL studies reveals that
inhibition of B-RAF/MEK/ERK signaling actually decreases DR5 in melanoma cells, pre-
venting or attenuating apoptosis induced by TRAIL, agonistic antibody against DR5, or T
cells [48]. Similarly, downregulation of DR5 by B-RAF inhibitor and associated resistance
to TRAIL receptor agonist in melanoma was reported by another group [49]. However,
B-RAF inhibition was found to sensitize the resistant melanoma cells to TRAIL in an earlier
study [50]. This discrepancy may be due to the fact that different B-RAF inhibitors were
used. The earlier study used a pan-B-RAF inhibitor L-779450 while the latter two used
V600E-specific inhibitor vemurafenib (PLX4032). This may caution the selection of drugs
even the seemingly same pathway is considered as the target.

One unconventional combination is the creation of a fusion protein as anti-PD-
L1:TRAIL because it may not actually enhance TRAIL signaling directly but need T cells
and other myeloid cells to enhance the effect of TRAIL [51].

2. Arginine Deprivation Therapy (ADT) for Melanoma Cells

In our former investigation, we found that arginine deprivation can efficiently en-
hance TRAIL toxicity in melanoma cell lines which do not express argininosuccinate
synthetase (ASS1). As proposed mono-therapies, ADT and TRAIL can enhance each other
in fighting melanoma.

Arginine is regarded as a semi-essential amino acid because in addition to being
synthesized de novo from metabolic intermediates, outside supply of arginine is required
for tumor growth and under certain pathophysiological conditions such as in wound
healing. Arginine can be biosynthesized in the urea cycle with ASS1 as a rate-limiting
and essential enzyme. Arginine and its multiple metabolic intermediates participate in
many biological processes [52,53]. Arginine is a direct building block for protein; some key
proteins such as collagen and histone have high proportion of arginine residues. Arginine
is the only direct source for generation of nitric oxide (NO). NO in turn assumes many
important but sometimes contradicting functions especially when the anti- or pro-tumor
activity of NO and its role in the regulation of immune response in tumor microenvironment
are concerned. Polyamine which is made from ornithine, a metabolite of arginine, has
pro-proliferation effect in tumor growth. Arginine is also used to make proline, another
amino acid, and agmatine, a molecule in neurotransmission. Thus the lack of arginine can
have a profound and complex effect on tumor cells. Nonetheless, there is no question that
arginine deprivation has shown cytostatic and cytotoxic effects on various kinds of cancer
cells including melanoma in vitro and in vivo.

ADT is based mainly on the fact that arginine is in high demand in cancer cells and that
cancer cells cannot synthesize arginine from metabolic intermediates such as normal cells.
It has been found that in many cancers, including melanoma, hepatocellular carcinoma,
and prostate cancer, the incidence of low or negative expression of ASS1 is prevalent [54].
On the contrary, normal cells have low demand on arginine and are able to synthesize
arginine if needed. This difference between cancer and normal cells makes ADT, such
as TRAIL, a targeted therapy against cancer cells. Partial response or stable disease and
minimal toxicity to normal tissue have been shown in a series of clinical studies.

Arginine deprivation can be achieved through several means; however, in practice, the
commonly used are arginine-degrading enzymes in the form of recombinant arginine deim-
inase (ADI-PEG20) [55,56] or recombinant arginase I (rhArg1-PEG/rhArg1-PEG5000) [57].
These enzymes are used to degrade extracellular arginine, drastically restrict the exter-
nal supply of arginine. In particular, ADI-PEG20 hydrolyzes arginine into citrulline and
ammonium while rhArg1-PEG converts arginine into ornithine and urea. Some normal
cells can convert ornithine back to citrulline with the enzyme ornithine transcarbamoylase
(OTC), and ASS1 and argininosuccinate lyase (ASL) in normal cells can make arginine from
citrulline. Just as ADI-PEG20 is against tumors without ASS1 expression, rhArg1-PEG
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shows its anti-tumor effect on cancer cells with negative expression of OTC. Herein, the
discussion is mainly on ADI-PEG20 based ADT (see diagram).

2.1. Signaling of and Response to Arginine Deprivation in Melanoma

Upon arginine depletion or starvation, the mTORC1 complex will sense this nutri-
tional defect in melanoma cells; in fact, arginine starvation has been shown to inhibit the
mTORC1 signaling [58]. However, the details of how the signal of arginine availability
is transmitted to mTROC1 can be quite complex [59]. It is later found that SLC38A9, a
lysosomal transmembrane protein, plays a crucial role in sensing arginine [60]. SLC38A9
shares sequence similarity to other amino acid transporters and can actually transport
arginine. Without this SLC38A9, mTORC1 cannot be activated. It is known that mTORC1
can repress autophagy, and inhibition of mTORC1 resulting from arginine depletion would
activate autophagy, a process deeply implicated in tumorigenesis and antitumor processes.

Under ADT, autophagy generally acts as a pro-survival mechanism to counter the
deprivation; it is even regarded by some as a mechanism of resistance to ADT. Autophagy
is known as a mechanism to maintain the cellular amino acid levels [61], and a recent
study also suggests the importance of autophagy in supplying arginine under arginine
starvation [62]. In response to ADT, the initial autophagy can provide a window of
time for cancer cells to cope with the dearth of arginine, and reprogram their biological
machineries including developing long-lasting resistance to this deprivation. We and
others have shown that autophagy is a response to ADI-mediated arginine deprivation in
melanoma [63,64], prostate cancer [65], lymphoma [66], glioblastoma [67], small cell lung
cancer [68], sarcoma [69], and breast cancer [70]. The induction of autophagy in melanoma
was also noted with treatment of rhArg1 [71]. Thus, autophagy induction seems to be a
common response among cancer cells to ADT, and autophagy actually can be targeted to
enhance the anti-tumor effect of ADT in various types of cancers.

In addition, lack of arginine will stall the protein synthesis in the endoplasmic retic-
ulum (ER), inducing ER stress and in turn, unfolded protein response (UPR) [72]. These
responses are closely related to autophagy [73]. Arginine deprivation-induced ER stress
and UPR have been observed in several cancer cell lines belonging to colorectal carcinoma,
glioblastoma, and ovarian carcinoma before cell death could occur [74], suggesting they
are relatively early responses. UPR is generally regarded as a means to alleviate ER stress,
and it can contribute to the decision of cell fate, life or death.

UPR is also closely linked to the production of reactive oxygen species (ROS) [75].
Indeed, ROS have been detected in breast cancer cell lines with ASS1 deficiency under
arginine deprivation [70,76]. ROS are induced or upregulated with arginine deprivation,
and the excessive ROS was shown to damage mitochondria. In prostate cancer cells,
the damage of mitochondria could be caused by prolonged arginine deprivation and
be accompanied by the increase of ROS [77]. Interestingly, ER stress is also linked to
mitochondria dysfunction through calcium ion transfer from ER to mitochondria [78]. The
dysfunction of mitochondria, in turn, generates ROS; elevated ROS, if not cleared, will
damage cellular components including DNA and lead to cell death.

ADI can induce cell cycle arrest in both normal and tumor cells [79,80]. However,
experimental evidence for cell cycle arrest in melanoma is mainly from rhArg1-induced
arginine deprivation [81]. Cell cycle arrest by rhArg1 has been described in hepatocellular
carcinoma [82] and malignant pleural mesothelioma [83] as well. The cell cycle arrest may
explain the anti-proliferative or cytostatic effect of ADT. More investigation may be needed
to provide evidence for cell cycle arrest caused by ADI in melanoma. Likewise, the cellular
senescence induced by ADI, which has been described for glioblastoma [84], is yet to be
explored in melanoma.

Most of the above responses to ADT reflect the attempt of cancer cells to evade the
effect of arginine deprivation. In some cases, when the deprivation is removed, the cancer
cells will resume their proliferation and malignancy. However, if the deprivation sustains
long enough, cell death will ensue. Several modes of cells death have been proposed
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concerning the cytotoxic effect of ADT. We have shown that ADI-PEG20 treatment can
lead melanoma cell lines to caspase-dependent apoptosis [63,85]. This caspase-dependent
apoptosis is also observed in lymphoma under arginine deprivation with ADI-PEG20 [66],
pancreatic cancer [86], and leukemia [80]. However, in prostate cancer, the final outcome
for cancer cells under ADI treatment is caspase-independent apoptosis [65], and the same
cell death mode is reported in glioblastoma [67] and small cell lung cancer [68]. Moreover,
autophagic death is noted in breast cancer as a result of damage to mitochondria [70].
Autophagic death is also reported in prostate cancer cells treated by ADI-PEG20, again
associated with damaged mitochondria and elevated ROS [77]. It is worth noting that the
final fate of tumor cells as a result of ADT may be a mixture of different modes of death.
For example, cell death comprising both caspase-dependent and independent mode is
suggested by data from Syed et al. [67] and Bean et al. [69]. It is thus postulated that the
mode of cell death may be different in cancers depending on cell type.

Furthermore, anti-angiogenesis activity has been observed for ADT [87,88], and there
is ample evidence to support that this activity is mediated by reduced NO production by
ADT [89]. In addition, NO along with polyamine also influences the migration of cancer
cells [90]. Therefore, ADT could hamper the metastasis and angiogenesis, as additional
anti-tumor activities.

As ADT with arginine-degrading enzymes degrade the arginine in circulation, it
would have other consequences. The production of NO may be affected this way. It was
actually observed in a clinical study with ADI-PEG20 that the levels of NO were lowered
in patients receiving this form of ADT [91]. As NO plays an important role in immune
cells, ADT will likely to bring changes in the tumor immune microenvironment [92].
Furthermore, it is known that T cells need arginine to proliferate, and depletion of arginine
with arginase is a strategy used by myeloid-derived suppressor cells (MDSCs) to suppress
the anti-tumor function of T cells. It is thus has been reported, for instance, that rhArg1-
PEG could induce the accumulation of MDSCs into tumor in a mouse model, and the
accumulation of MDSCs is correlated with tumor growth [93]. This study also found that
in vitro, the supply of citrulline in the presence of rhArg1-PEG could reverse the anti-
proliferation effect of arginine deprivation on activated T cells, but in vivo, the increase
of citrulline associated with arginine degradation by rhArg1-PEG could not prevent the
adverse effect on T cells. Nonetheless, immune cells including T cells and stromal cells
have the ability to make arginine de novo, and adaptation to arginine deprivation is
possible. It was found that under arginine depletion, activated primary human T cells
could upregulate the expression of ASS1 and use supplemented citrulline to support
proliferation [94]. Contrary to the rhArg1-PEG study, another investigation showed that
ADI-PEG20 could induce T-cell infiltration in a melanoma syngeneic mouse model, and
ADI-PEG20 either alone or with anti-PD-1 could reduce the growth of tumor [92]. In
addition, ADI-PEG20 alone or combined with anti-PD-L1 also had an anti-tumor effect
in a colon carcinoma syngeneic mouse model. Riess et al., further argue that since the
requirement of ariginine is concentrated mainly at early stimulation of T cells, the large
amount of T cells already primed by tumor as infiltrating ones will likely be less affected by
arginine deprivation [95]. In summary, these results suggest that the response to arginine
deprivation inside the immune microenvironment is complex, and more investigations on
this subject are warranted.

2.2. Mechanisms of Resistance to ADT

Re-expression or upregulation of ASS1 can be the main molecular mechanism of
resistance in melanoma and quite a few other cancers. In one clinical study, two patients
with initial ASS1-negative melanoma under ADI-PEG20 treatment were found to be ASS1-
positive after tumor progression [96]. More cases of the upregulation of ASS1 after ADI-
PEG20 treatment were reported in another investigation [97]. Studies using melanoma
cell lines revealed that the suppression of ASS1 expression is due to Hif1α binding to the
promoter region of ASS1, but this suppression can be relieved under ADT by induced
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downregulation of Hif1α and binding of upregulated c-Myc to replace Hif1α. However,
in a cell line that cannot develop resistance, c-Myc somehow cannot replace Hif1α at the
binding region [98]. Subsequently, it was found that ADI-PEG20 could activate Ras and the
downstream ERK and PI3K pathways to phosphorylate c-Myc, resulting in the diversion
of c-Myc from degradation by proteasome [99], and the p300-HDAC2-Sin3A system is
responsible for initiating the degradation of Hif1α at the ASS1 promoter [100].

In other tumor cells as reported in lymphoma, methylation of the promoter region can
be one of the mechanisms that silence the expression of ASS1, and demethylating agents
such as 5-aza-2′-deoxycytidine can induce the re-expression of ASS1 and confer resistance
to ADI-PEG20 [66]. This methylation mechanism is also observed in malignant pleural
mesothelioma [101], glioblastoma [67], ovarian cancer [102], and myxofibrosarcoma [103].
However, so far there has been no report on demethylation and subsequent upregulation
of ASS1 expression as a mechanism to acquire resistance in tumor cells to ADT.

Apart from the upregulation of ASS1, reprogramming of tumor cell metabolism may
also contribute to the resistance to ADI-PEG20 in melanoma [104]. By studying induced-
resistant melanoma cell lines, the investigators found that these cells had lowered mTOR
activity but enhanced glycolysis in addition to upregulated ASS1 expression. More inter-
estingly, these cells developed a shift to glutamine utilization, and c-Myc seemed to be
the regulator for all the metabolic changes revealed in this study. Another study employ-
ing ADT-resistant sarcoma and melanoma cell lines identified attenuated glycolysis, and
enhanced glutamine usage along with enhanced oxidative phosphorylation was identi-
fied [105]. Furthermore, this study also revealed an increase in serine biosynthesis in the
resistant cells.

As ADI is of mycoplasma origin, it is quite immunogenic in humans. Although the
pegylation mitigates the immunogenic issue to some extent, ADI-PEG20 remains capable
of inducing an immune response resulting in the production of neutralizing antibodies.
The production of such antibody has been reported in advanced melanoma [91,106] and
advanced hepatocellular carcinoma [106,107] patients undergone ADI-PEG20 treatment.
This confers another mode of resistance to ADI-PEG20-based therapy.

2.3. Combination Strategies to Enhance ADT

As a monotherapy such as TRAIL, ADT can be used in combination to enhance other
anti-tumor drugs, and also benefit from the anti-tumor effect from these drugs. Although
the reported combination cases are not as numerous as those for TRAIL, there are many
proposed combination strategies which can potentially improve the efficacy of ADT.

As discussed before, autophagy is usually a pro-survival mechanism for tumor cells
induced by ADT; therefore, inhibition of autophagy can enhance the cytotoxicity of ADT
except in tumors that will undergo autophagic death [70]. Autophagy inhibitors such as
chloroquine have been used in researches studying the tumor response to ADT. In fact,
combination of ADT with autophagy inhibition has been investigated with promising
results. An example of proposed combination strategies using chloroquine and ADI-PEG20
was conducted in sarcoma [69]; combination of rhArg1 was investigated for triple-negative
breast cancers with chloroquine or 3-methyladenine [108], and in non-small cell lung
cancer with chloroquine or LY294002 (not a direct autophagy inhibitor) [109]. However, the
possible systemic toxicity of these inhibitors especially chloroquine to normal cells should
be noted.

More strategies involve chemotherapeutic drugs. The enhancement of gemcitabine in
pancreatic cancer with ADI was noted by different groups probably through multiple mech-
anisms including cell cycle arrest, upregulation of caspases, reduction of the ribonucleotide
reductase subunit M2, etc. [110,111]. Enhancement is also achieved through combination of
ADI-PEG20 with cisplatin in melanoma. ADI could induce the downregulation of proteins
responsible for DNA damage sensing and repair such as FANCD2 and ATM; furthermore,
cisplatin could attenuate ADI-induced autophagy and further repress the expression of
ASS1 through DEC1 [112,113]. Other promising combination candidates with ADI-PEG20
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include 5-flurouracil for hepatocellular carcinoma [114], docetaxel for solid malignant
tumors [115], and temozolomide for glioblastoma multiforme [116].

Other drugs showed encouraging effect in combination with ADT as well. An early
study using dexamethasone and ADI in leukemia CEM cells showed synergestic effect
against tumor [117]. Enhancement of cell killing was found in primary gliobalstoma
treated by ADI derived from Streptoccus pyogenes with different drugs including SAHA and
Palomid 529 (an mTOR inhibitor) [118]. Panobinostat (a histone deacetylase inhibitor) has
also been reported to work with ADI-PEG20 for pancreatic ductal adenocarcinoma [119].
More recently, arginine analogs have entered the scene of combination therapy with
ADT. Indospicine, a natural arginine analog from plant, when combined with rhArg1
has shown enhanced anti-tumor activity in colorectal cancer cell lines [120]. Elevated ER
stress and perturbation of some pro-survival pathways may be the underlying reason
for this enhancement, and these induced changes and associated enhanced cell death are
dependent on protein translation, suggesting that the misincorporation of the analog into
newly-made protein may help to initiate cell death signaling. Arginine deprivation, as
the investigators postulated, may help to enhance this misincorporation. In addition, data
from this study also indicate that the combination may not be cytotoxic to normal cells.

3. Combination of TRAIL and ADI-PEG20 for Melanoma Cells

As one of the proposed combination strategies, we have used ADI-PEG20 with soluble
TRAIL to accelerate the death of melanoma cells. By rapidly leading to cancer cell death,
combination strategies not only achieve effective cytotoxicity but also reduce the likelihood
of resistance, such as induced upregulation of ASS1 or production of neutralizing antibody
against ADI.

In our investigation [85], melanoma cell lines (A2058, A375, Mel-1220, and SK-MEL-2)
all showed response to ADI-PEG20 mono-treatment from 48 to 72 h as detected with
MTS assay; live cells were from around 50% to around 70% of the controls. TRAIL alone
also slightly reduced the live cells in A2058 (by around 15% vs. control) and SK-MEL-2
(by around 30% vs. control) while virtually no change was seen in A375 and Mel-1220
compared with their controls. However, the combined treatment was able to reduce the live
cells by about 85% in A375 and SK-MEL-2, 90% in Mel-1220, and 95% in A2058, comparing
with their respective controls. This is more significant for Mel-1220 and A2058 because
Mel-1220 while sensitive to ADI-PEG20, needs relatively prolonged arginine deprivation
to undergo apoptosis, and A2058 can be induced by arginine deprivation to upregulate
ASS1 expression and become resistant to ADT.

PI/Annexin V double-staining flow cytometry data from A2058 and A375 showed
correlated cell death with caspase activation, and inhibitor to caspase-3 could prevent part
of the cell death, proving that the part of the death caused by this particular combination is
caspase-dependent. ADI-PEG20 single treatment resulted in the increase of surface DR4
and 5 in both cell lines, as well as the upregulation of a pro-apoptotic protein Noxa and
the downregulation of an IAP protein survivin. Single treatment by TRAIL could also
upregulate the levels of Noxa although not as strong as that by ADI-PEG20. The interesting
observation is that the combination can further increase the levels of Noxa to an extent
that is higher than that induced by either single treatment. Similarly, a single treatment by
TRAIL could induce the production of tBid, and the production is further enhanced in the
combination treatment. The importance of tBid participation in causing the cell death by
the combination was confirmed with siRNA-induced knockdown of Bid, where apparent
inhibition of cell death was achieved under the combination treatment.

In a subsequent study in A375 and A2058 [64], we confirmed that the combination of
TRAIL and arginine deprivation could result in enhanced apoptosis, and more interestingly
found that autophagy induced by arginine deprivation could be attenuated by the inclusion
of TRAIL. This attenuation was associated with the cleavage of at least two essential
proteins, Beclin-1 and ATG5, essential for autophagosome formation (which is a key step
in autophagy). This cleavage was not apparent in cells with TRAIL single-treatment, but
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prominent when cells were treated with arginine-depleted medium plus TRAIL. Inhibition
of various caspases (3, 6, 8, 9, and 10) could achieve prevention of the cleavage of Beclin-
1 and ATG5 to different extents, and the degree of prevention of cleavage is generally
correlated with that of the prevention of cell death. Inhibition of single caspase in the
combination treatment would bring the cell death back to a level higher than but close
to that resulting from arginine deprivation single-treatment. For example, inhibition of
caspase-8 resulted in 97% live cells in A375 and 96% in A2058 if their corresponding
arginine deprivation single-treatment control was set to 100%. These results highlight the
critical role of autophagy as a pro-survival mechanism in the initial response to ADI and
the apoptosis-inducing function of TRAIL.

Taken together, this combination is an example displaying the interaction of two
anti-cancer drugs facilitating each other by tweaking the cellular pathways of apoptosis
and autophagy in melanoma cells. The ADI-PEG20 could make the cells more susceptible
to TRAIL through upregulating DR4/5, pro-apoptotic protein Noxa, and downregulating
IAP member survivin. At the same time, TRAIL can induce the production of tBid through
caspase-8 or 10 activation to enhance the mitochondrial apoptosis pathway. The increase of
Noxa induced somehow by TRAIL may also contribute to the mitochondrial pathway. More
importantly, TRAIL through ADT-induced upregulation of surface DR4/5, can activate
more caspase-8 to cleave Beclin-1 and ATG5, leading to the attenuation of autophagy; thus
accelerate the transition from autophagy to apoptosis.

One important feature of combining arginine deprivation with TRAIL is that the
resulting modality can still preserve the specificity to cancer cells without systemic toxicity
resulting from harming the normal cells. A recent development of this combination is the
production of a fusion protein comprising TRAIL and ADI. This novel fusion protein has
been shown to have activity in a xenograft model of colorectal cancer [121]. According
to the investigators, the fusion protein also added structural synergy between these two
proteins in addition to their functional one. This may spawn the design of other novel
fusion proteins with distinct functions but with the same aim to attack tumor cells.

4. Future Perspective and Summary
4.1. TRAIL

The current issue with TRAIL as an anti-tumor agent is that its activity in clinical
trials has been disappointing. Reasons for this failure have been postulated. The soluble
TRAIL used is not very stable, with poor pharmacokinetic property such as short half-life,
and the agonist antibody only binds to one type of death receptor while the binding to
receptors is not strong or good enough to start the successful signaling [122]. The soluble
form is also regarded not as potent as the membrane-bound TRAIL in inducing apoptosis
possibly because the former cannot bring the receptors into proper conformation [123].
Delivery of TRAIL to tumor site may also be a potential problem. Different ways to
improve TRAIL have been tested and showed positive results. Tagging strategies are
used to improve the stability and efficacy of soluble TRAIL as a trimer through adding
protein tags to soluble TRAIL [124,125]. Mesenchymal stem cells are also engineered to
express membrane-bound TRAIL in its natural form. The exosomes derived from such
cells, or the cells themselves have been used to deliver TRAIL to tumor [126–129]. These
strategies not only provide the natural form of TRAIL, but also take advantage of the
special “homing” properties of mesenchymal stem cells to deliver TRAIL to tumor sites.
As viral vectors have been used to deliver TRAIL [130], nanoparticles are also adopted
for this purpose [131]. Second-generation TRAIL receptor angonists such as hvTRA [49]
or IZI1551 with IAP antagonist [132] have also showed improvement and enhancement,
respectively. It is expected that improving the TRAIL or agonist molecule itself and the
delivery system with various means would lead to a new generation of TRAIL with much
better biological and pharmacological properties than those used in previous trials.
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4.2. ADI-PEG20

As induced upregulation of ASS1 can be the main cause of resistance to ADT in
melanoma, the convenient way to overcome this is to target the transcription factors c-Myc
that contribute to this upregulation as reported in the study of combining cisplatin with
ADI-PEG20 [112]. Inhibition of the pathways that stabilize c-Myc under arginine depletion
can also be considered [99]. One relatively indirect way is to target the metabolic changes
accompanying the resistance [104]. Apart from the induction of ASS1 expression in target
cancer cells, one major obstacle to the clinical application of ADI-PEG20, especially when
used as a mono-therapy, is its immunogenicity. An attempt to reduce the immunogenicity
of ADI from Mycoplasma hominis through the removal of B-cell epitope was reported re-
cently [133]; it is a computational approach to find antigenic residues and replace them with
other amino acids while keeping the structural stability of the enzyme. A mutant protein
with less immune-reactivity was generated computationally; unfortunately, its enzymatic
activity and immunogenicity still need to be confirmed in the laboratory. Notwithstanding,
modification of ADI to reduce its immunogenicity while keep or even improve its activity
and stability can be worthwhile for the future development of ADI-PEG20-based therapy.
Another way to avoid the immunogenicity of ADI is to use rhArg1-PEG5000 since it is
of human origin. Although rhArg1-PEG5000 compared with the natural arginase has
improvement such as higher affinity for arginine and longer half-life, there is still an innate
issue associated with arginase, that is, the degradation product ornithine. It is known
that only specific tissue can re-utilize ornithine [134], and the accumulation of ornithine in
normal tissue as a result of rhArg1-PEG5000 may pose as toxic. To address this issue, novel
combination strategies may be needed. In short, ADT will benefit from the continuing
development of arginine-degrading enzymes to resolve issues that have hampered its
clinical application.

In summary, combination therapy can be an effective modality not only to increase
cytotoxicity to cancer cells through the synergy of anti-tumor activities between the two
agents, but also reduces the likelihood of developing drug resistance. It would be ideal to
combine two well-investigated and approved drugs, but new agents should be explored for
obvious reasons. The designing of such strategies largely depends on our understanding
of the mechanisms concerning the resistance development in the target cancer cells and
the action of these drugs. Then the selection of the combination partner can be based on
its action on the resistance mechanism to the other drug or the signaling that cross-talk
with the action of the other drug. In the case of TRAIL, the combination candidates are
often those which can ultimately bring changes to the expression of the factors in the
apoptosis signaling pathways, reflecting the innate apoptosis-causing function of TRAIL
and the usual tendency of tumors to evade apoptosis. For ADI-PEG20, the other partner
of the combination may be more likely an agent targeting the metabolic response such as
autophagy and cellular stress. With the accumulation of researches on combination therapy
against cancer, more targets and biomarkers will be discovered in melanoma and other
cancers, and new combination strategies (which may not be limited to only two partners)
can be designed for TRAIL or ADI-PEG20. Existing combination strategies can be further
refined and improved. It is quite hopeful that new modalities based on TRAIL or ADT will
be derived from these combination strategies to benefit melanoma or other cancer patients.
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Abbreviations

ASS1 argininosuccinate synthetase
ADI-PEG20 arginine deiminase
ADT Arginine deprivation therapy
ADI-PEG20 arginine deiminase pegylated-20
AIF apoptosis-inducing factor
ASL argininosuccinate lyase
DISC death-inducing signaling complex
endoG endonuclease G
ER endoplasmic reticulum
FADD Fas-associated death domain
HIF1α hypoxia inducible factor-1 alpha
IAPs inhibitors of apoptosis proteins
MDSC myeloid-derived suppressor cell
mTORC1 mammalian target of rapamycin complex 1
NO nitric oxide
OTC ornithine transcarbamoylase
OPG osteoprogeterin
rhArg1 recombinant arginase I
ROS reactive oxygen species
SAHA suberoylanilide hydroxamic acid
SMAC second mitochondrial activator of caspases
sTRAIL soluble TRAIL
tBID truncated Bid
TRAIL tumor necrosis factor-related apoptosis-inducing ligand
UPR unfolded protein response
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