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Summary
Background Consumption of fibre, fruits and vegetables have been linked with lower colorectal cancer (CRC) risk. A
genome-wide gene-environment (G × E) analysis was performed to test whether genetic variants modify these
associations.

Methods A pooled sample of 45 studies including up to 69,734 participants (cases: 29,896; controls: 39,838) of Eu-
ropean ancestry were included. To identify G × E interactions, we used the traditional 1–degree-of-freedom (DF)
G × E test and to improve power a 2-step procedure and a 3DF joint test that investigates the association between a
genetic variant and dietary exposure, CRC risk and G × E interaction simultaneously.

Findings The 3-DF joint test revealed two significant loci with p-value <5 × 10−8. Rs4730274 close to the SLC26A3 gene
showed an association with fibre (p-value: 2.4 × 10−3) and G × fibre interaction with CRC (OR per quartile of fibre
increase = 0.87, 0.80, and 0.75 for CC, TC, and TT genotype, respectively; G × E p-value: 1.8 × 10−7). Rs1620977
in the NEGR1 gene showed an association with fruit intake (p-value: 1.0 × 10−8) and G × fruit interaction with
CRC (OR per quartile of fruit increase = 0.75, 0.65, and 0.56 for AA, AG, and GG genotype, respectively; G × E
-p-value: 0.029).

Interpretation We identified 2 loci associated with fibre and fruit intake that also modify the association of these
dietary factors with CRC risk. Potential mechanisms include chronic inflammatory intestinal disorders, and gut
function. However, further studies are needed for mechanistic validation and replication of findings.

Funding National Institutes of Health, National Cancer Institute. Full funding details for the individual consortia are
provided in acknowledgments.

Copyright © 2024 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND IGO license
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Research in context

Evidence before this study
It is unknown whether genetic polymorphisms modify the
associations of fruits, vegetables and dietary fibre with
colorectal cancer risk as current evidence is limited. Previous
genome-wide diet–gene interaction studies were
underpowered due to insufficient sample size. Additionally,
new statistical techniques have recently been developed that
aim to further increase the statistical power of the interaction
analyses.

Added value of this study
In this large-scale genome-wide interaction analysis, we found
two G × E interactions for fibre, fruits, and colorectal cancer
risk. The most significant finding was rs4730274 close to the

SLC26A3 gene, which provides supportive evidence for an
interaction between fibre consumption, chronic inflammatory
intestinal disorders, overall gut function, and colorectal cancer
risk development. A second signal involved rs1620977 in the
NEGR1 gene and this has been linked with obesity and food
preference.

Implications of all the available evidence
Our study identified a genetic polymorphism that could
modify the protective effect of dietary fibre on colorectal
cancer risk through various mechanisms. Additional studies
are needed to understand functional implications and to
replicate these findings both in European ancestry and other
racial/ethnic populations.
Introduction
Colorectal cancer (CRC) is one of the most common
cancer types at a global level, responsible for almost 2
million new cancer cases and over 900,000 related
deaths in 2020.1 Current evidence suggests that high
consumption of fruits, vegetables, wholegrains and
foods containing dietary fibre are associated with a lower
CRC risk.2 The World Cancer Research Fund classified
the evidence for relationship between wholegrains and
foods containing dietary fibre with CRC as strong while
the evidence for fruits and vegetables and CRC associ-
ations was classified as limited.2

Recent genome-wide association studies (GWAS)
have identified over 200 independent loci associated
with CRC risk explaining up to 35% of total heritability
according to twin studies.3–8 It has been suggested that
gene-environment interactions (G × E) might be able to
explain some of this missing heritability.9 However,
previous genome-wide diet–gene interaction analyses
have reported only one significant interaction between
rs4143094 (10p14/near GATA3) and intake of processed
meat.10,11 Other, earlier studies focusing solely on CRC
susceptibility loci did not find evidence of strong gene–
diet interactions, except for an interaction for vegetable
consumption and rs16892766, on chromosome 8q23.3,
near the genes EIF3H and UTP23.12,13 A recent umbrella
review of gene environment evidence and CRC assigned
this finding a weak plausibility score due to the strong
genetic effect and the weak environmental effects of
vegetable intake on CRC risk.14 Currently, we are still at
the early stages of exploring gene–diet interactions and
prior studies were limited by the relatively small sample
sizes.

These prior studies which conducted traditional
interaction analyses were probably underpowered due to
www.thelancet.com Vol 104 June, 2024
insufficient sample size (16,739 to 18,509 participants).
Additional new statistical techniques have recently been
developed that aim to increase the statistical power of
the interaction analyses including joint tests, which
consider both main and interaction effects, and two-step
methods, which apply a filtering step before the inter-
action testing thus prioritizing single nucleotide poly-
morphisms (SNPs) and decreasing the burden of
multiple testing.15–17

Accordingly, the aim of our study was to identify new
gene-environment interactions for the consumption of
fruits, vegetables, and fibre with risk of CRC cancer by
applying both traditional and modern techniques to a
large-scale dataset of up to 69,734 participants from
three genetic consortia with information on the con-
sumption of fruits, vegetables, and dietary fibre.
Methods
Study population
Up to 45 studies of individuals of European ancestry
from three CRC genetic consortia: the Genetics and
Epidemiology of Colorectal Cancer Consortium
(GECCO), the Colorectal Cancer Transdisciplinary Study
(CORECT) and the Colon Cancer Family Registry (CCFR)
were included in this analysis (Supplemental Table S1).3

For cohort studies, nested case–control sets were
assembled via risk-set sampling, whereas cancer-free
controls were used for case–control studies. Controls
were mostly matched on age at enrolment or diagnosis,
sex, race, and enrolment date/trial group, when appli-
cable. Cases were defined as colorectal adenocarcinoma
and were confirmed by medical records, pathology re-
ports, or death certificate information. In total, 69,599
(cases: 29,820; controls: 39,779), 69,734 (cases: 29,896;
3
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controls: 39,838), and 44,890 (cases: 20,749; controls:
24,141) participants were included in the analyses of
fruits, vegetables, and fibre respectively. Analyses were
limited to individuals of European ancestry, based on
self-reported race and clustering of principal components
with the 1000 Genomes EUR population.

Exposure definition
Information on dietary intake of fruits, vegetables, and
total fibre was ascertained through food frequency
questionnaires and diet histories while data on de-
mographics and additional factors were collected us-
ing in-person interviews and/or structured
questionnaires within a period ranging from three
months to two years prior to diagnosis for case–
control studies and at enrolment for cohort studies.
For both fruits and vegetables consumption, within
each study multiple questions were used to derive the
total consumption of each dietary variable. Most
studies reported fruits and vegetables consumption as
servings per day. For total fibre, grams/day was the
most common measure across contributing studies
and it was derived by multiplying intakes of all fibre
containing foods in the dietary questionnaires by the
fibre content data in nutrient databases. All data were
centrally harmonised at Fred Hutchinson Cancer
Center.12 In summary, a multi-step approach was
implemented for the data harmonization using a pri-
ori defined common data elements (CDEs) to which all
questionnaires and data dictionaries were mapped to.
Definitions, permissible values, and standardized
coding were implemented into a single database via
SAS and T-SQL and the overall data were checked for
potential outlying values and other errors. The
harmonized consumption data were expressed either
as servings per day (fruits, vegetables) or grams per
day (fibre) and entered into the analysis as sex- and
study-specific quartiles, where the quartile groups
were coded with the median value of the quartile
within each study and sex. In the case–control studies,
the study and sex-specific quartiles were based on the
control distribution as this best represents the un-
derlying study populations.

Genotyping and imputation
Details on quality control and genotyping were previ-
ously published and the genotyping arrays used are
summarized in Supplemental Table S1.3,18 In brief,
SNPs were excluded for: missing call rate more than
2–5%, departure from Hardy–Weinberg equilibrium
(HWE) (p < 1 × 10−4), differences between self-reported
and genotypic sex, and discordant genotype calls within
duplicate samples. All individual studies genotyped us-
ing the same build (GRCh37). Autosomal SNPs were
imputed to the Haplotype Reference Consortium (HRC)
r1.1 panel through the University of Michigan Imputa-
tion Server and converted into a binary format for data
management and analyses using the BinaryDosage R
package (https://cran.r-project.org/web/packages/Bin
aryDosage).19,20 The imputed SNPs were filtered based
on a pooled minor allele frequency (MAF) of less than
1% and imputation accuracy R2 over 0.8. Overall,
7,250,911 SNPs that passed the quality control and were
present in all participating studies were included in our
analysis. Principal component analysis (PCA) for pop-
ulation stratification assessment was performed using
PLINK1.9 on 30,000 randomly sampled imputed SNPs
with MAF >5% and R2 > 0.99.

Statistics
Main effects
Logistic regression models adjusted for age (continuous),
sex, total energy consumption (kcal/day, continuous
divided by 1000), and three population-stratification
principal components were used to estimate the associ-
ation between fibre, fruits, and vegetables intakes and
CRC cancer in each of the participating studies. The
study-specific results were then meta-analyzed using
random-effects models (Hartung-Knapp) to calculate the
overall summary odds ratios (ORs) and 95% confidence
intervals (CIs).21 Presence of heterogeneity was examined
and quantified using the Cochran’s Q and I2 statistic
respectively.22 Additional stratified analyses were con-
ducted to assess the relationship between the three
exposures with CRC risk by sex, tumour site (proximal
colon, distal colon, or rectum), and study design (case–
control or cohort study). All meta-analyses were per-
formed using the R package Meta.

Interaction effects
Genome-wide interaction scans were performed to
identify interaction effects using the R package
G × EScanR (https://cran.r-project.org/web/packages/
GxEScanR), which implements a series of different
tests such as the traditional logistic regression models,
case-only analyses and joint tests of G-E association.
Imputed SNP dosages were modelled as continuous
variables and a p-value threshold of 5 × 10−8 was chosen
to denote the significant associations.23 In the context of
the current study the following notation was used to
describe the methods used. E corresponds to the expo-
sures of interest (fibre, fruits, or vegetables), G corre-
sponds to SNPs, D corresponds to CRC status, and C
corresponds to the adjustment covariates in the models.
Logistic regression models were implemented to test for
multiplicative scale interaction: logit(Pr(D = 1|G)) =
β0+βGG+βEE+βGxEGxE+βCC. The adjustment cova-
riates included age at the reference time, sex, total en-
ergy intake (kcal/day), three population stratification
principal components, and study as a fixed effect which
adjusts for the potential for the individual studies to act
as potential confounders. In this case we tested the hy-
pothesis H0 : βGxE = 0, which corresponds to the mul-
tiplicative interaction. Apart from this traditional
www.thelancet.com Vol 104 June, 2024
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approach we also applied two more advanced G × E
techniques as our primary tests. The 3-degrees of
freedom (DF) test further expands the main hypothesis
and considers both the primary D|G the G|E associa-
tions in the combined case/control population:
H0 : βG = βGxE = δG = 0, where δG represents the as-
sociation between G and E in a combined case–control
sample, in an effort to increase the overall statistical
power.24 This test examines a fundamentally different
hypothesis than a G × E analysis since significant results
can occur due to strong D|G effect, G × E effect, and/or
G|E correlation. However, as it has been shown that an
underlying G × E interaction can induce both D|G and
G|E associations in a case–control sample, the 3-DF test
increases the chance that important interacting loci will
be identified and can be further investigated in addi-
tional studies.24 We also implemented a two-step
approach that gives priority to potential interactions af-
ter weighting G × E interaction tests (step 2) based on
ranks of an independent filtering statistic (step 1).25,26

Given the independence between steps 1 and 2, this
approach can reduce the burden of multiple compari-
sons and increase the statistical power to detect signif-
icant interactions. In the weighted testing framework
proposed by Ioanita-Laza et al.,26 SNPs are partitioned
based on their Step-1 p-value into exponentially larger
bins, each assigned with an increasingly more stringent
threshold for interaction test significance. Bins of size
k1 = 5, k2 = 2k1, k3 = 2k2 etc, were recommended with
each bin having step 2 significance threshold α

(2)(5),
α

(4)(10),
α

(8)(20), etc., where α = 0.05. Therefore, SNPs with higher
step 1 ranks were prioritized and interaction testing of
these SNPs conducted at more liberal thresholds. The
step 1 filtering statistic that was applied was a combi-
nation of the marginal D|G associations and the G|E
association in a combined case–control population
(EDGE).25 Since many SNPs are in linkage disequilib-
rium, it is likely that the top bins are populated by
correlated markers from the same locus. Therefore, we
implemented a modified two-step approach accommo-
dating for the correlated SNPs while properly control-
ling for type I error.27 Specifically, SNPs were partitioned
into bins based on the step 1 Pvalue thresholds, which
were calculated based on the original predetermined bin
sizes, assuming uniform distribution of 1 million in-
dependent tests. For step 2 GxE testing, we accounted
for the influx of correlated markers into each bin by
correcting for the effective number of tests, estimated
using principal component analysis performed on ge-
notype correlated matrices for each bin.28 For any sig-
nificant findings, the models were further adjusted for
body mass index (BMI), diabetes, alcohol, red, and
processed meat consumption to examine the robustness
of the results.

We examined the extent of genomic inflation using
quantile–quantile (Q–Q) plots and by calculating the
genomic inflation factor (lambda). Because lambda
www.thelancet.com Vol 104 June, 2024
scales with sample size, we also calculated lambda1000,
which corresponds to the genomic inflation factor for a
study of 1000 cases and 1000 controls.29,30

Regional plots were generated for significant hits
which present the strength of association, the extent of
association signal and linkage disequilibrium (LD) with
other SNPS, as well as the position of loci in relation to
genes in the region. The software LocusZoom v1.3 was
used to generate these plots.31 Measures of LD were
estimated using European populations of the 1000 Ge-
nomes Project study population. Potential expression
quantitative trait loci (eQTL) relationships were explored
using the Genotype-Tissue Expression (GTEx V8) and
the University of Barcelona and University of Virginia
genotyping and RNA sequencing project (BarcUVa-
Seq)32,33 using the available online tool at https://
barcuvaseq.org/cotrex/(accessed on January 2023).
Based on the results from eQTL-gene associations, we
then tested the predicted expression of the eQTL-
associated gene of interest for an interaction with
fibre, fruits, and vegetables consumption in data from
the three consortia involved in this study.

Functional annotation plots were also created to
visualize chromatin accessibility across the functional
datasets and to plot -log10 (p-value) signal tracks. We
used ATAC-seq, DNASE-seq, H3K27ac histone ChIP-
seq, and H3K4me1 histone ChIP-seq datasets
(Supplemental Table S2) of primary tissue from healthy
colon and tumour primary tissue samples from Scacheri
et al.,34 as well as from three colorectal cancer cell lines
(SW480, HCT116, COLO205). These datasets were
processed through ENCODE ATAC-seq/DNASE-seq35

and histone ChIP-seq pipelines36 to perform alignment
and peak calling. -log10 (p-value) tracks were extracted
from the MACS2 step of the pipeline for visualization in
genome browsers. Irreproducible Discovery Rate (IDR)37

peak calls for ATAC-seq and DNASE-seq datasets, as
well as naive overlap peak calls for histone ChIP-seq
datasets, were determined from the ENCODE pipe-
lines. The pyGenomeTracks38 software package was
used to visualize chromatin accessibility across the
functional datasets and to plot -log10 (p-value) signal
tracks. Peaks across samples from the same assay were
concatenated across datasets, cropped to within 200 bp
centered on the peak summit, and merged using bed-
tools39 merge.

Interaction analyses for rare variants
As a separate secondary analysis, we further conducted
G × E testing for rare variants. Interaction tests of the
three exposures of interest and aggregated rare variant
sets at the gene and enhancer level were performed
using the Mixed effects Score Tests for interactions
(MiSTi) method.40 This regression framework includes
the interaction between E and the burden component of
rare variants as the fixed effect and heterogeneous G × E
effects as random effects. A Fisher’s combination
5
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approach under MiSTi (fMiSTi) was applied to combine
both the fixed and random effects for discovering G × E
interactions (42), after adjusting for age at reference
time, sex, study, and three population-stratification
principal components. Since 25,000 genes were tested,
a p-value threshold of 2 × 10−6 (a = 0.05/25,000) was
considered as statistically significant. The analysis was
conducted using the MiSTi R package (42).

Ethics
All participants gave written informed consent and
studies were approved by their respective Institutional
Review Boards.

Role of funders
The funders had no role in the design of the study; the
collection, analysis, and interpretation of the data;
the writing of the manuscript; or the decision to submit
the manuscript for publication.
Results
Consumption of fibre, fruits, and vegetables and
CRC risk
Table 1 shows the baseline characteristics of the par-
ticipants included in the three analyses. Cancer cases
were older, had higher BMI and total energy intake, had
a greater prevalence of family history of CRC, higher
prevalence of type 2 diabetes, and were more likely to
have ever smoked cigarettes. Additionally, CRC cases
consumed less total dietary fibre (grams/day: 1.49 ± 1.14
versus 1.56 ± 1.14), fruits (servings/day: 1.34 ± 1.04
versus 1.45 ± 1.07), and vegetables (servings/day:
1.40 ± 1.03 versus 1.46 ± 1.08) than controls (p-value
<0.001 for all three exposures).

In the meta-analyses, inverse associations were
observed between fibre (OR per quartile increase = 0.79;
95% CI 0.74, 0.85), fruits (OR per quartile in-
crease = 0.79; 95% CI 0.72, 0.86), and vegetables (OR
per quartile increase = 0.82; 95% CI 0.73, 0.93) and CRC
risk (Fig. 1). The inverse associations were similar by sex
(minimum P-het: 0.26 for fibre intake) and cancer
subsite (minimum P-het: 0.17 for fibre intake) (Fig. 1).
There was evidence of heterogeneity in all three analyses
which was driven by the case–control studies (minimum
I2 = 55%; P-het <0.001) (Supplemental Figure S1). In
general, the inverse associations were stronger for case–
control studies (Fruits-OR = 0.69; 95% CI = 0.57, 0.83;
Vegetables-OR = 0.66; 95% CI = 0.48, 0.91; Fibre-
OR = 0.71; 95% CI = 0.64, 0.79) than cohort studies
(Fruits-OR = 0.88; 95% CI = 0.83, 0.92; Vegetables-
OR = 0.94; 95% CI = 0.89, 0.99; Fibre-OR = 0.86; 95%
CI = 0.81, 0.92) (Supplemental Figure S1).

Interaction analysis results
Genomic control inflation and quantile–quantile (QQ)
plots for the SNP-diet interactions for risk of CRC did
not show evidence for residual population stratification
(Supplemental Figure S2).

Fibre
The 3-DF joint test revealed a significant hit for
rs4730274, which maps upstream of the SLC26A3 gene
(Supplemental Figure S3a; 3-DF p-value: 3.8 × 10−8).
This variant was not directly associated with CRC (G|D
p-value: 0.33), but there was a moderate association with
fibre intake (G|E p-value: 2.4 × 10−3), and an interaction
with fibre intake on CRC risk (G × E p-value: 1.8 × 10−7)
(Table 2). Stratifying by genotype of rs4730274 showed
that the strength of the inverse association between fibre
and CRC increased with every copy of the T allele: OR
per quartile of fibre increase = 0.87 for those with CC
genotype; OR = 0.80 for those with TC genotype;
OR = 0.75 for those with TT genotype (Table 3). The
functional annotation analysis showed that rs4730274
and some SNPs in LD with it are in open chromatin
suggesting enhancer activity in normal colon, cancer
tissues, and CRC cell lines (Supplemental Figure S4a).
Furthermore, several SNPs in LD with rs4730274 were
eQTLs for DLD gene in the BarcUVa-Seq and GTEx
transverse colon tissue data but not in GTEx sigmoid
colon tissue data (Supplemental Tables S3–S5). We also
detected statistically significant interactions between
fibre and the expression levels of the SLC26A3 and DLD
genes in relation to CRC. For SLC26A3 a negative
interaction (p-value = 0.0052) was observed with the
inverse association between fibre intake and CRC risk
becoming stronger as the expression levels of SLC26A3
increased, in contrast a positive interaction was
observed for DLD (p-value = 0.0021) (Supplemental
Table S6).

Fruits
Based on the 3-DF joint test, rs1620977 inNEGR1 showed
a highly significant combined effect (Supplemental
Figure S3b; 3-DF p-value: 3.4 × 10−8) with no direct
CRC associations (D|G p-value: 0.77), but with a highly
significant association with fruit intake (G|E p-value:
1.0 × 10−8), and a modest interaction with fruits on risk of
CRC (G × E p-value: 0.03) (Table 2). For this SNP the
associations between fruit intake and CRC risk became
stronger with every copy of the G allele: OR per quartile of
fruit increase = 0.75 for those with AA genotype;
OR = 0.65 for those with AG genotype; OR = 0.56 for
those with GG genotype (Table 3). There was no evidence
for enhancer activity for rs1620977 but a correlated SNP
aligned with open chromatin regions (Supplemental
Figure S4b). No eQTLs were observed for rs1620977 or
other SNPs in LD with it (Supplemental Tables S3–S5).

Vegetables
The analysis for vegetables did not identify any inter-
action effects for either the 3-DF or the 2-step methods.
Several hits were identified in the 3-DF analysis, but
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Fruits Vegetables Fibre

Controls Cases Controls Cases Controls Cases

Age

Mean (SD) 63.5 (9.4) 64.3 (10.8) 63.5 (9.4) 64.3 (10.8) 64.5 (9.7) 64.8 (10.5)

Sex

Men 20,208 15,357 20,238 15,396 11,032 9877

Women 19,571 14,463 19,600 14,500 13,109 10,872

BMI

Mean (SD) 27.0 (4.6) 27.4 (4.9) 27.0 (4.6) 27.4 (4.9) 26.8 (4.7) 27.4 (5.0)

Missing 1460 (3.7%) 1501 (5.0%) 1462 (3.7%) 1508 (5.0%) 473 (2.0%) 582 (2.8%)

Total energy intake Mean (SD) 1900 (719) 1960 (768) 1900 (719) 1970 (769) 1900 (716) 1960 (767)

Family history of CRC

No 25,180 (63%) 20,612 (69%) 25,219 (63%) 20,676 (69%) 18,361 (76%) 14,613 (70%)

Yes 4002 (10%) 4043 (14%) 4019 (10%) 4062 (14%) 2356 (10%) 2822 (14%)

Missing 10,597 (27%) 5165 (17%) 10,600 (27%) 5158 (17%) 3424 (14.2%) 3314 (16.0%)

Education level (highest completed)

Less than High School 8084 (20%) 7427 (25%) 8096 (20%) 7455 (25%) 6013 (25%) 6188 (30%)

High School/GED 6139 (15%) 6025 (20%) 6156 (15%) 6054 (20%) 4047 (17%) 3581 (17%)

Some College 9627 (24%) 6542 (22%) 9653 (24%) 6562 (22%) 6122 (25%) 4942 (24%)

College/Graduate School 12,088 (30%) 7968 (27%) 12,118 (30%) 7979 (27%) 7734 (32%) 5701 (27%)

Missing 3841 (11%) 1858 (6%) 3815 (11%) 1846 (6%) 225 (1%) 337 (2%)

Smoking, never/ever

No 19,298 (49%) 13,525 (45%) 19,326 (49%) 13,530 (45%) 11,460 (47%) 9385 (45%)

Yes 19,869 (50%) 15,656 (53%) 19,896 (50%) 15,727 (53%) 12,224 (51%) 10,953 (53%)

Missing 612 (1%) 639 (2%) 616 (1%) 639 (2%) 457 (2%) 411 (2%)

T2D (ever diagnosed)

No 34,970 (88%) 24,811 (83%) 35,024 (88%) 24,873 (83%) 20,516 (85%) 16,982 (82%)

Yes 3484 (9%) 3638 (12%) 3489 (9%) 3650 (12%) 2335 (10%) 2490 (12%)

Missing 1325 (3%) 1371 (5%) 1325 (3%) 1373 (5%) 1290 (5%) 1277 (6%)

Red meat (servings/day)

Mean (SD) 0.55 (0.54) 0.63 (0.58) 0.55 (0.54) 0.63 (0.58) 0.66 (0.63) 0.66 (0.63)

Missing 189 (0.5%) 193 (0.6%) 191 (0.5%) 193 (0.6%) 102 (0.4%) 103 (0.5%)

Processed meat (servings/day)

Mean (SD) 0.31 (0.35) 0.39 (0.44) 0.31 (0.35) 0.39 (0.44) 0.29 (0.36) 0.35 (0.42)

Missing 2952 (7%) 3211 (11%) 2977 (8%) 3238 (11%) 1047 (5%) 561 (3%)

Alcohol Consumption

No 14,317 (36%) 12,826 (43%) 14,328 (36%) 12,856 (43%) 11,184 (46%) 10,271 (50%)

Low (1–28 g/day) 20,293 (51%) 12,751 (43%) 20,324 (51%) 12,781 (43%) 10,794 (45%) 8164 (39%)

Moderate (>28 g/day) 4766 (12%) 3867 (13%) 4779 (12%) 3880 (13%) 1906 (8%) 2084 (10%)

Missing 403 (1%) 376 (1%) 407 (1%) 379 (1%) 257 (1%) 230 (1%)

Total fruit intake

Mean (SD) 1.45 (1.07) 1.34 (1.04) 1.45 (1.07) 1.34 (1.04) 1.51 (1.10) 1.39 (1.11)

Missing 196 (0.5%) 158 (0.5%) 264 (1%) 230 (1%)

Total vegetables intake

Mean (SD) 1.46 (1.07) 1.40 (1.03) 1.46 (1.08) 1.40 (1.03) 1.53 (1.11) 1.47 (1.11)

Missing 137 (0.3%) 82 (0.3%) 214 (0.9%) 175 (0.8%)

Total fibre intake

Mean (SD) 1.56 (1.11) 1.47 (1.12) 1.56 (1.11) 1.47 (1.12) 1.56 (1.14) 1.49 (1.14)

Missing 15,902 (40.0%) 9301 (31%) 15,911 (40%) 9322 (31%)

g, grams; SD, standard deviation.

Table 1: Baseline characteristics of the participants by control–case status in the three analyses.
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they were all driven by strong D|G or G|E effects with
none showing a significant interaction effect (all G × E
p-value >0.05, data not shown).
www.thelancet.com Vol 104 June, 2024
Secondary and sensitivity analyses
The interaction analysis for rare variants did not identify
any significant interactions for any of the three
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Exposure

Fibre

   Overall

Sex

   Men

   Women

Tumour site

   Proximal colon

   Distal colon

   Rectal

Odds ratio (95% CI)

0.79 (0.74, 0.85)

0.76 (0.71, 0.82)

0.81 (0.75, 0.89)

0.84 (0.77, 0.92)

0.76 (0.70, 0.84)

0.75 (0.68, 0.83)

Heterogeneity

I2=55%; phet <0.001

I2=29%; phet = 0.06

I2=47%; phet = 0.002

I2=51%; phet <0.001

I2=40%; phet = 0.008

I2=17%; phet = 0.20

0.68 0.80 0.90 1.0

Exposure

Fruits

   Overall

Sex

   Men

   Women

Tumour site

   Proximal colon

   Distal colon

   Rectal

Odds ratio (95% CI)

0.79 (0.72, 0.86)

0.80 (0.74, 0.87)

0.77 (0.68, 0.86)

0.83 (0.76, 0.90)

0.74 (0.67, 0.83)

0.77 (0.70, 0.85)

Heterogeneity

I2=75%; phet <0.001

I2=52%; phet <0.001

I2=68%; phet <0.001

I2=60%; phet <0.001

I2=60%; phet <0.001

I2=53%; phet <0.001

0.67 0.80 0.90 1.0

Exposure

Vegetables

   Overall

Sex

   Men

   Women

Tumour site

   Proximal colon

   Distal colon

   Rectal

Odds ratio (95% CI)

0.82 (0.73, 0.93)

0.83 (0.74, 0.94)

0.82 (0.70, 0.95)

0.87 (0.77, 0.97)

0.86 (0.79, 0.92)

0.78 (0.64, 0.97)

Heterogeneity

I2=71%; phet <0.001

I2=55%; phet <0.001

I2=62%; phet <0.001

I2=66%; phet <0.001

I2=32%; phet = 0.02

I2=65%; phet <0.001

0.64 0.80 0.90 1.0

Fig. 1: Results from meta-analysis of association between (a) fibre, fruits, vegetables, and colorectal cancer, overall and stratified by sex and
tumour site. Models adjusted for age, sex, and total energy intake. Intake of fibre (g/day), fruits, and vegetables (servings per day) were coded as
median of intake sex/study specific quartiles, modelled as continuous variables.

Exposure SNP

Fibre rs4730274
Fruits rs1620977

DF, degrees of freedom; SNP

Table 2: Main results from
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exposures (min p-value = 4.3 × 10−6 in the fibre anal-
ysis). Further adjustments for seven additional con-
founders (i.e., smoking, diabetes, family history of CRC,
BMI, alcohol, and red and processed meat) did not
change the strength of the interactions (Supplemental
Table S7).
Discussion
In this large-scale genome-wide interaction analysis of
almost 70,000 participants, we found evidence of in-
teractions between fibre intake and rs4730274 close to
SLC26A3 gene, in relation to CRC risk and an additional
hit was observed for fruits intake and rs1620977 in the
NEGR1 gene.

The SNP rs4730274, which maps upstream of the
SLC26A3, showed the most significant interaction effect
in our analysis. This SNP has been linked with ulcera-
tive colitis (UC) and inflammatory bowel disease (IBD)
in a previous GWAS study of almost 60,000 participants,
with the C allele being associated with a lower risk.41

Current evidence suggests that dietary fibre can help
to maintain remission in patients with IBD and reduce
lesions of the intestinal mucosa.42 It has also been re-
ported that a high-fibre diet in patients with UC in
remission decreased markers of inflammation and
reduced intestinal dysbiosis in faecal samples.43 On the
Chr Position Gene OA EA EAF Method

7 107,479,719 upstream SLC26A3 C T 0.52 Joint tes
1 72,729,142 NEGR1 А G 0.71 Joint tes

, single nucleotide polymorphism; Chr, chromosome; Position, base pair position based o

genome-wide interaction scans of fibre, fruits, and vegetables.a
other hand, it is well documented that patients with IBD
are at higher risk of CRC.44 Therefore, it seems feasible
that the protective effect of fibre is stronger in people
with genetic liability to these chronic inflammatory in-
testinal disorders.

The SLC26A3 gene is located on chromosome 7 and
encodes a 764-amino acid protein that is primarily
expressed in the digestive tract and more specifically
mainly on the cell membrane inside the lumen.45

SLC26A3 is a member of the SLC26A transporter fam-
ily, which includes multifunctional anion exchangers,
and is involved in the regulation of Clˉ absorption and
HCO−

3 secretion.45 Mutations of this gene lead to
congenital chloride diarrhoea (CLD), an autosomal
recessive disorder that enhances colonic proliferation and
up-regulation of ion transporters in the colon.45 Down-
regulation of SLC26A3 has been observed in colon ade-
nomas and adenocarcinomas, colon cancer cell lines, and
has been linked with higher CRC incidence.46–48 Studies
in mice provided further support for the tumour-
suppressive role with SLC26A3 knockout mice showing
symptoms of CLD like humans and increased prolifera-
tion of colonic crypt epithelium denoting an important
role of SLC26A3 in colon tumourigenesis.49 Therefore,
SLC26A3 probably functions as a tumour suppressor;
however, the exact mechanisms are not well defined
although it has been suggested that its ability to export
p-value D|G p-value G|E p-value GxE p-value 3DF

t (3DF) 0.33 2.4 × 10−3 1.8 × 10−7 3.8 × 10−8

t (3DF) 0.77 1.0 × 10−8 2.9 × 10−2 3.4 × 10−8

n NCBI Build37. aNo interaction effects were observed for vegetables.
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Fibre rs4730274 (7:107,479,719)

CC (n = 10,335) TC (n = 22,310) TT (n = 12,245)

0.87 (0.81, 0.94) 0.80 (0.76, 0.84) 0.75 (0.70, 0.80)

Fruits rs1620977 (1:72,729,142)

AA (n = 5715) AG (n = 28,368) GG (n = 35,516)

0.75 (0.59, 0.97) 0.65 (0.59, 0.73) 0.56 (0.50, 0.62)

CRC, colorectal cancer; SNP, single nucleotide polymorphism. aNo interaction
effects were observed for vegetables.

Table 3: Associations between consumption of fibre, fruits, and
vegetablesa and CRC risk, stratified by genotypes of SNPs identified in
the interaction analysis.

Articles
HCO−

3 from the cells might play a role as this reduces
intracellular alkalinization, which facilitates cell prolifer-
ation.50 Finally, downregulation of SLC26A3 may also be
involved in the pathogenesis of UC.51,52 Given that
chronic inflammation is a hallmark of cancer53 and a
prominent driver of CRC development54 and the fact that
patients with UC have a higher risk of CRC, this might
be additional evidence of the tumour suppressive role of
SLC26A3.

Current evidence suggests there could be a
connection between consumption of dietary fibre and
the expression levels of SLC26A3 and CRC. More
specifically, fibre promotes the growth of bacterial
populations in the gut which in turn increases the
expression of SLC26A3.55,56 Additionally, fibre is
metabolized by gut microbiota to short chain fatty acids
(SCFA) which have beneficial anti-inflammatory and
anti-carcinogenic effects.57 However, most SCFAs are
ionized and transporters are needed for their absorp-
tion.58 One of these transporters is SLC26A3 which
show affinities for all three major SCFA (acetate, pro-
pionate, and butyrate).58 Therefore, there may be syn-
ergistic effects between fibre, expression levels of
SLC26A3, and CRC which are also consistent with our
finding that the inverse association between fibre
intake and CRC risk is stronger with increased
SLC26A3 expression.

In our analysis we also found some strong normal
colon eQTLs for SNPs in LD with rs4730274 and the
DLD gene, which also showed an interaction effect with
fibre on CRC risk. This gene is the third catalytic
enzyme of three mitochondrial enzyme complexes:
branched-chain alpha-ketoacid dehydrogenase
(BCKDH); α-ketoglutarate dehydrogenase (αKGDH);
and pyruvate dehydrogenase (PDH).59 The main role of
PDH is to convert pyruvate to acetyl-CoA as a part of the
carbohydrate oxidation pathway.60 There is a lack of ev-
idence of changes in the expression of the genes
encoding PDH due to cancer but PDH kinase 1 (PDK1),
which is often overexpressed in cancer cells and has
been strongly implicated in tumourigenesis, phosphor-
ylates and inactivates PDH.60 However, it is currently
unclear how the DLD gene could interact with fibre
www.thelancet.com Vol 104 June, 2024
consumption and CRC, suggesting that SLC26A3 is the
more likely candidate gene.

We found that the association of fruits with CRC was
modified by rs1620977 in the NEGR1 gene. The SNP
rs1620977 has been linked with BMI in previous GWAS
with the G allele corresponding to lower values,61–63 how-
ever our sensitivity analyses after adjusting for additional
confounders including BMI did not show any change in
the original results. A recent GWAS reported that
rs1620977 was associated with fruit consumption at a
genome-wide significance level (p-value = 1.2 × 10−18) with
A allele been linked with higher intake.64 The NEGR1
gene is highly expressed in the brain and particularly in
the hypothalamus and plays an important role in neuronal
outgrowth during neurogenesis.65 It has been implicated
in regulation of body weight with several SNPs in this
gene identified in GWAS of BMI.61,66 Furthermore, pre-
vious GWAS and individual studies have found associa-
tions between SNPs in the same gene in very low to
moderate LD (0.06 < R2 < 0.59) with rs1620977 and di-
etary intake of fruits, meat (beef, pork, processed meat),
fat, carbohydrates, and fibre.64,67,68 NEGR1 is an extracel-
lular adhesion protein that binds to cell membrane rafts
and promotes cell-to-cell attachment and aggregation,
such properties are important in tumour cell migration
and invasion during metastasis.69 Therefore, NEGR1
might be involved in malignant transformation through
the regulation of intercellular and cell-to-matrix in-
teractions.70 NEGR1 has been shown to be downregulated
in various cancer types, including CRC, suggesting a
tumour suppression role.71 Overall, there is some evidence
connecting NEGR1 with diet and CRC since it might also
play a role in the choice, preference, and intake of specific
type of foods and macronutrients, however, current evi-
dence is limited and further research is needed.67

The current study has several strengths. The large
sample size gave us increased statistical power to iden-
tify G × E interactions by applying an agnostic genome-
wide scan approach. Additionally, we applied a series of
new statistical approaches such as the 3-DF joint test,
and two-step approach to further increase our power to
identify new signals. Finally, the data harmonization
and unified quality control across all pooled studies
allowed us to evaluate various putative confounders.

A limitation of our study is the fact that information
on consumption of fruits, vegetables, and fibre was based
on a single measurement through questionnaires which
are prone to measurement error and cannot capture long-
term consumption efficiently. We also were not able to
conduct analyses by fibre type, so it is unknown if the
interaction effects we observed differ for soluble and
insoluble fibre. Additionally, several of the included
studies had a case–control design which are further prone
to additional biases like recall and participation bias, and
which can lead to biased and inflated results, however the
inverse associations were observed for case–control and
cohort studies when analyzed separately. Furthermore,
9
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the initial models were adjusted for a small number of
confounders which could potentially affect the marginal
associations of the three exposures of interest with CRC.
Regarding the interaction analyses however, for interac-
tion findings to be confounded the confounder not only
has to confound the main effect but also the interactions.
Given gene-environment independence, and no interac-
tion of the confounder with the genetic factor it is unlikely
that these variables act as confounders.72 However,
further adjustments for potential confounders yielded
similar results with our initial analyses, which gives us
confidence for the validity of our results. The two new
statistical approaches used in the current study are not
without some limitations as well. The two-step approach,
even though more statistically efficient, still requires large
sample sizes to detect modest-sized interactions. In
addition, a significant 3-DF test can occur because of a
strong DG effect, G × E effect, and/or GE correlation and
it might not necessarily provide better insights of the
mechanisms through which a SNP might affect a trait.24,25

Finally, the analysis was conducted in participants of
European ancestry and therefore the results may not be
generalisable to other populations. However, it is impor-
tant to follow up in additional population groups where
G × E efforts are limited or underpowered. An important
step is the recent colorectal cancer GWAS including in-
dividuals of east Asian ancestry.8 Additional harmoniza-
tion of epidemiological data is required however before
expanding the G × E testing.

In summary, we conducted the largest G × E study to
date and we found two G × E interactions for fibre,
fruits, and CRC risk. Our most significant finding was
rs4730274 close to the SLC26A3 gene, which provides
supportive evidence for an interaction between fibre
consumption, chronic inflammatory intestinal disor-
ders, overall gut function, and CRC development.
Additional studies are needed to understand functional
implications and to replicate these findings both in
European ancestry and other racial/ethnic populations.
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