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Neuroinflammation and cytokine-dependent neurotoxicity appear to be major contributors to the neuropathology in Parkinson’s
disease (PD). While pharmacological advancements have been a mainstay in the treatment of PD for decades, it is becoming
increasingly clear that nonpharmacological approaches including traditional and nontraditional forms of exercise and physical
rehabilitation can be critical adjunctive or even primary treatment avenues. Here, we provide an overview of preclinical and
clinical research detailing the biological role of proinflammatory molecules in PD and how motor rehabilitation can be used to

therapeutically modulate neuroinflammation, restore neural plasticity, and improve motor function in PD.

1. Introduction

PD is the second most common neurodegenerative disorder
generally affecting the population over 65. In fact, only 4%
of cases occur before the age of 50 [1]. The disease is induced
by the loss of nigrostriatal dopaminergic neurons, intracellu-
lar a-synuclein accumulation, and onset of motor symptoms
such as abnormal voluntary movements, tremor, rigidity,
slowness of movement, postural instability [2], and nonmo-
tor impairments including cognitive decline [3], depression,
and sleep disturbances [4].

However, recently, postmortem brain imaging and fluid
biomarker investigations identified neuroinflammation as a
crucial pathogenesis factor of PD [5-7]. Neuroinflammation
is marked by activated microglia and reactive astrocytes
within brain parenchyma and by the release of various
inflammatory mediators including cytokines, chemokines,
reactive oxygen species (ROS), and reactive nitrogen species
(RNS) [8]. These mediators can be secreted by microglia in
the central nervous system (CNS), peripheral immune cells,
and other cell types such as dysfunctional adipocytes [9,

10], sustaining the inflammatory reaction and maintaining
a self-reverberating cycle. For a long time, the blood-brain
barrier (BBB) was thought to be unaffected by neurodegener-
ative and neurological pathologies while nowadays, a grow-
ing body of evidence suggests that the BBB is pathologically
modulated, allowing the penetration of peripheral macro-
phages, leukocytes, and systemic proinflammatory media-
tors, such as monocyte chemotactic protein-1 (MCP-1),
tumor necrosis factor-a (TNF-«), interleukin-18 (IL-1p),
interleukin-8 (IL-8), and interferon-y (IFN-y) [11-15]. The
overproduction of proinflammatory mediators also reduces
the production of brain plasticity-related molecules, such as
brain-derived neurotrophic factor (BDNF) and glial cell
line-derived neurotrophic factor (GDNF), and the ability of
CNS to adapt in response to a variety of external stimuli
[16, 17]. In addition, in recent years, researchers have focused
their attention on the beneficial effect of physical exercise on
PD patients suggesting that exercise, through targeted train-
ing, can increase neuroplasticity and, in turn, improve
patients’ motor and cognitive performance [18]. Here, we
intend to explore (1) the role of proinflammatory cytokines
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and (2) the impact of traditional and not traditional forms of
physical exercise on neuroinflammation and neuroplasticity
in parkinsonian subjects undergoing motor rehabilitation.

To reach the aim of this study, publication search for lit-
erature review was conducted using the NCBI PubMed data-
base based on the following groups of keywords: (1)
Parkinson’s disease, pro-inflammatory cytokines; (2) Parkin-
son’s disease, IL-6, IL-13, IL-8, MCP-1, and TNF-a; (3) Par-
kinson’s disease, neuroinflammation, neuroplasticity; (4)
Parkinson’s disease, physical activity, neurorestoration, neu-
roplasticity; (5) Parkinson’s disease, exercise, neurotrophic
factors; (6) Parkinson’s disease, exercise, BDNF; (7) Parkin-
son’s disease, exercise, GDNF; (8) Pro-inflammatory cyto-
kines, exercise, PD patients; and (9) Not traditional physical
exercises, inflammatory state, PD patients. To be eligible for
inclusion in the review, studies must have been published
between 1990 and 2020.

2. Proinflammatory Cytokines in PD

Brain cytokine activity depends on several conditions such as
the cellular sources and the pathophysiological context all
contributing to the effects exerted on the brain. In fact, cyto-
kines can promote apoptosis of neurons, oligodendrocytes,
and astrocytes; cause damage to myelinated axons; but even
initiate neuroprotective effects, independently of their immu-
noregulatory properties [19]. Although to date there is no
evidence to support a specific role for any particular cytokine
as a direct cause of neurodegenerative conditions, cytokine-
driven neuroinflammation and neurotoxicity have been
shown to modify the disease progression.

Among cytokines, interleukin-6 (IL-6), IL-1p3, IL-8,
MCP-1, and TNF-a have been the most studied in PD.

2.1. IL-1f. IL-1f is a proinflammatory cytokine produced
mainly by macrophages and monocytes [20] and also by epi-
thelial cells [21] and endothelial cells [22], and it has a key
role in regulating inflammatory response to microbial stimuli
such as the lipopolysaccharide (LPS) and sterile insults (e.g.,
hypoxia, hyperosmolarity, thermal damage, and gamma
radiation) [23, 24].

It has been demonstrated that IL-1f3, a part of the IL-1
family, acts on the CNS because of the permeability of the
BBB [25], and it is also secreted into the CNS by microglial
cells [26-28], astrocytes [29], oligodendrocytes [30], and
neurons [31, 32]. Therefore, the presence of members of
the IL-1 family and in particular IL-1f and its receptor in
basal conditions in the CNS could suggest a normal physio-
logical role for IL-18. For instance, several studies demon-
strate that IL-1§ stimulates astrocytes and supports
neuronal survival via production of neurotrophic factors
[33, 34]. However, IL-1f contributes to and/or sustains the
pathological processes and results upregulated in several
neurodegenerative diseases. Increased IL-1f levels have been
detected in the cerebrospinal fluid (CSF) and the striatum of
postmortem PD patients [35] as compared to control sub-
jects. Moreover, studies based on adenoviral vectors reported
that sustained expression of IL-1f in the substantia nigra
(SN) causes irreversible and pronounced dopaminergic neu-
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ronal loss and motor symptoms [36, 37], while IL-1p increase
induced by acute administration of LPS in the SN was not
toxic [38, 39]. Overall, these data suggest that sustained but
not acute IL-1f expression has toxic effects on the SN. In
addition, loss of tyrosine hydroxylase- (TH-) positive neu-
rons was higher in animals that received both, a stimulus of
LPS in the SN and 6-OHDA injection into the striatum, com-
pared to those receiving just an acute stimulus of LPS [39].
Nonetheless, Saura and colleagues have demonstrated
that an acute infusion of a high dose (20 ng) of IL-1f in the
SN of rats 5 days before the injection of 6-hydroxy dopamine
(6-OHDA) in the striatal region protects dopaminergic cellu-
lar bodies from 6-OHDA, does not induce microglia activa-
tion, and prevents motor dysfunctions [40]. Therefore,
although most of the evidence reveals that an inflammatory
stimulus previous to a neurodegenerative treatment
increased neuronal cell death [36, 37, 39], under specific cir-
cumstances, protective effects cannot be ruled out.

2.2. IL-6. IL-6 is a member of the neuropoietic cytokine fam-
ily with a wide range of biological activities. It is involved in
the development, differentiation, degeneration, and regener-
ation of neurons in the central and peripheral nervous sys-
tems and can also stimulate glial cells [41, 42].
Dysregulation of IL-6 production and signalling has also
been reported in several neurodegenerative diseases, includ-
ing PD [43-45]. Interestingly, IL-6-mediated neuronal
degeneration in the CNS [46] and IL-6-mediated biological
activities [47, 48] depend, respectively, on the activation of
two different types of IL-6 pathways: the “ transsignalling
“and “classical signalling.” Classical signalling occurs when
the 80kD subunit of the IL-6 receptor, called IL-6r, binds
to the protein. The binding of IL-6 to IL-6r is followed by
homodimerization of the second receptor subunit, called
gp130, and by the activation of two distinct signalling path-
ways: (1) the Janus kinase- (JAK-) signal transducer and acti-
vator of transcription (STAT) pathway (JAK/STAT
signalling pathway) and (2) the mitogen-activated protein
kinase (MAPK)/extracellular signal-regulated kinase (ERK)
signalling pathway [49-51]. While IL-6r is only expressed
by hepatocytes, neutrophils, monocytes/macrophages, and
specific lymphocyte subpopulations [52], IL-6 affects many
more cell types. This is possible because of “transsignalling”
IL-6r exists in a soluble form, sIL-6r, which can bind to IL-6
and develop a circulating IL-6/sIL-6r complex which can
induce the dimerization of the gp130 even in cells that do
not possess IL-6r. Activation of the IL-6 pathway by IL-
6/sIL-6r is known as transsignalling [53, 54]. The two path-
ways lead to two different cellular responses [55]. The classi-
cal pathway mediates anti-inflammatory signals while the
transsignalling pathway mediates proinflammatory signals
(e.g., IL-6 mediates neurodegeneration [46], cancer inflam-
matory response in the colon [56], and inflammatory bowel
disease [57]). This emphasizes the importance of distinguish-
ing between the two pathways when prescribing drugs for the
treatment of neurological or neurodegenerative diseases [58].

In regard to the expression of IL-6 in PD, there are some
controversial results. Several studies observed an increase of
IL-6 in the nigrostriatal region of the postmortem brain
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and in CSF of PD patients [35, 43, 59, 60]. In some studies, no
difference in plasmatic levels of IL-6 was reported [60, 61],
while others found elevated levels in PD patients with severe
depression [62]. Still, one paper reported that IL-6 was at
higher plasmatic levels in patients with a rapidly progressing
disease compared to patients with usual progression [62].
Interestingly, it has been shown that Levodopa, in physiolog-
ical concentrations, elicits an immunomodulatory effect on
cells from both PD patients and controls and caused stimula-
tion of IL-6 production [44].

2.3. IL-8. IL-8 is a chemoattractant cytokine secreted by a
variety of cells (e.g., monocytes [63], macrophages [64],
endothelial cells [65], dermal fibroblasts [66], keratinocytes
[67], hepatoma cells [68], synovial cells [69], and chondro-
cytes [70]), and it is well known as an inflammatory factor
which induces a chemotactic response involving infiltration
of neutrophils through the BBB [71]. Moreover, activated
microglia is also a potent secretory source of IL-8 and
expresses CXCR2 receptor for the chemokine providing a
positive feedback mechanism for sustained amplification of
inflammatory response [72]. At present, few studies have
examined levels of IL-8 in the PD brain. In one study of
Koziorowski and collaborators, serum levels of the chemo-
kine were measured in individuals diagnosed with idiopathic
PD and in controls. The results showed that IL-8 concentra-
tions were doubled in the diseased brain compared with the
control; this difference in levels of the chemokine was signif-
icant [73]. However, a contrary finding has recently been
reported. Levels of IL-8 and cytokine TNF-a were found
reduced in serum from Indian PD patients relative to con-
trols [74]. Overall, despite the relevance of neuroinflamma-
tion in the pathophysiology of PD, data is lacking on the
roles of IL-8 and other chemotactic factors in the progression
of the disease.

2.4. MCP-1 (CCL2). MCP-1 (CCL2), one of the most highly
and transiently expressed chemokines during inflammation,
is a member of the CC subtype chemokines. MCP-1 exerts
its biological functions by binding to its high-affinity recep-
tor, CCR2, which is mainly expressed by microglia, astro-
cytes, and brain microvascular endothelial cells (BMECs) in
the brain [75, 76].

Several studies have demonstrated that MCP-1 is consti-
tutively present in the brain. The neuronal expression of
MCP-1 is mainly found in the cerebral cortex, globus palli-
dus, hippocampus, lateral hypothalamus, Purkinje cells, cer-
ebellum, astrocytes, perivascular microglia, infiltrating
leukocytes, cholinergic neurons of magnocellular preoptic,
and in dopaminergic neurons of the substantia nigra pars
compacta [77, 78]. The low expression in discrete neuroana-
tomical regions with classical neurotransmitters or neuro-
peptides suggests that MCP-1 may act as a modulator of
neuronal activity and neuroendocrine functions [79].

Additionally, MCP-1 may modulate the function of the
BBB components and thus affect the integrity of BBB. In
accordance with this hypothesis, the MCP-1 level has been
found to positively correlate with the permeability of the
BBB and progression of diseases [80, 81] while the lack of

MCP-1 or CCR2 prevents neuronal death, decreases BBB
permeability, and improves neuronal function in some disor-
ders, including hemorrhage and ischemia-reperfusion injury
(81, 82].

It has also been established that MCP-1 is an important
mediator in several neuroinflammatory and neurodegenera-
tive brain diseases characterized by neuronal degeneration
such as PD.

MCP-1 levels in the blood are heightened in PD subjects
compared to controls and correlate with PD progression
[83].

Furthermore, it has been shown that MCP-1 could be
implicated not only in disease progression but also in patho-
genesis. The Ccl2-2518A allele is associated with lower MCP-
1 production and reduced transcriptional activity following
IL-1f3 stimulation [84], and in genetic epidemiological stud-
ies, possession of this allele is associated with a delayed onset
of PD compared with patients expressing the Ccl2-2518G
allele [85].

2.5. TNF-a. TNF-a is a proinflammatory cytokine well
known for its role in chronic peripheral and central inflam-
mation. TNF-a functions are mediated by two receptors:
TNEF-R1 (TNF-RSFla) and TNF-R2 (TNFRSF1b). TNF-R1
is expressed in most tissues while TNF-R2 is found in limited
cell types including cells of the immune system, oligodendro-
cytes, and certain neuron subtypes [10]. Both types of recep-
tors are also expressed in the cortex, the subventricular zone
of the lateral ventricle, and the hippocampus [86]. In homeo-
static conditions, the TNF-«a gene expression is low but
increases dramatically in stressing conditions such as infec-
tion, trauma, and pathologies. In the CNS, TNF-« regulates
a wide range of cellular processes and exhibits pleiotropic
effects with positive or negative outcomes on the brain
depending on concentrations and physiological or patholog-
ical state [87, 88]. Among the positive effects of TNF-a, there
are increased neurogenesis and synaptic transmission [10,
89]. It has also been shown to be protective of hippocampal
neurons by suppressing the accumulation of ROS and main-
taining intracellular calcium levels [90]. Moreover, it modu-
lates  glutamatergic  transmission, supports neural
progenitor cell survival by mediating antiapoptotic signals
via TNF-R2, and has a role in cognitive impairment, con-
firmed by investigations in TNF-a knock-out mice that
showed reduced learning capabilities, than wild-type mice
[91-93]. However, as reported in numerous other studies,
TNF-« also has a dark face. It is notably involved in myelin
damages [94], in favouring glutamate excitotoxicity [95], in
the inhibition of long-term potentiation in the Cornu
Ammonis area 1 (CAl) and dentate gyrus of the rat hippo-
campus, and in decreasing neurogenesis [96-98]. Further-
more, elevated levels of TNF have been described in many
neurodegenerative situations such as in Alzheimer’s disease
(AD), multiple sclerosis (MS), amyotrophic lateral sclerosis
(ALS), and PD [99-104].

High levels of TNF-« are found in both CSF and post-
mortem brain of PD patients and in animal models of PD
[104-109] which may indicate that this cytokine acts as a
mediator of neuronal damage. To understand the role of



TNF-« in the neurodegenerative process, genetically modi-
fied mouse models were designed, such as knock-out mice
lacking TNF-a or TNFR.

Knock-out mice for the TNF-« gene showed a decrease in
dopamine content loss in the striatum after administration of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
toxin and no difference in TH-positive cells in the nervous
system suggesting a generally detrimental effect of TNF-«
on the metabolism of dopamine [110] which is TNFR-
independent [111].

However, TNF-a could also play a dual role in PD: neu-
roprotective during the early stages of the injury and neuro-
toxic during the chronic phase. In fact, Gemma and
colleagues found that if TNF-a was inhibited early, i.e.,
within one week after administration of 6-OHDA, the inhibi-
tion could be neurotoxic; if TNF-a was inhibited late, i.e., 7 to
15 days after administration of 6-OHDA, the inhibition was
neuroprotective [112].

Several in vivo reports [113-116] show detrimental
effects of TNF-« injection or overexpression on the SN, but
adverse results have also been reported, depending on the
type, dosage, and administration regimen of TNF-a. Acute
administration of TNF-« in the SN did not induce degenera-
tive effect [113]. In contrast, in another study in which a
much higher dose was administered, loss of dopaminergic
cells in the SN at 14 days post inoculation was observed
[114].

In experiments where TNF-« is expressed chronically,
toxic effects of TNF-«a were clearly observed. For instance,
rats in which this cytokine was chronically expressed by
intranigral injection of an adenoviral vector encoding TNF-
o had, 14 days after adenoviral inoculation, akinesia of the
forelimbs and a distinct inflammatory response in the brain
[115]. The subsequent study by Chertoff and coworkers con-
firms the discovery discussed above; in this experiment, the
chronic expression of TNF-« resulted in a progressive loss
of dopaminergic (DA) neurons and their terminals in the
nervous system and the recruitment of monocytes/macro-
phages [116].

Taken together, these results indicate that long-term
expression of proinflammatory levels of TNF-«, or acute
but very high expression of this cytokine, appears to be nec-
essary to induce toxic effects on the SN while lower levels
have been generating neuroprotection transient against 6-
OHDA toxicity in the SN and striatum [116].

3. Physical Exercise in the Rehabilitation of
Parkinsonian Subjects and Its
Role in Neuroplasticity

Specific rehabilitation programs, as a support to pharmaco-
logical therapies in the treatment of parkinsonian patients,
were proposed in 1956 [117]. However, in the beginning,
the approaches were based only on empirical experience
and there was no attempt to understand the underlying neu-
rological mechanisms. In recent years, the benefits of exercise
have been found to be linked to neuroplasticity [18]. To
investigate the mechanisms by which exercise induces neuro-
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plasticity in the mammalian brain, the loss of dopamine cells
is induced by targeted injections of MPTP (mouse and non-
human primate) or 6-OHDA in rats. In both models [118-
123], physical exercise improves motor performance, includ-
ing gait speed, step length, and balance.

Studies on the neuroprotective effects of physical exercise
introduced forced or voluntary exercise before, during, or
immediately after administration of the toxins (6-OHDA or
MPTP) and reported improved motor functions, along with
the preservation of dopaminergic neurons and the restora-
tion of dopaminergic terminals in the striatum. These
improvements have been mainly attributed to either an
increased level of neurotrophic factors such as BDNF or
GDNF [124-126] or exercise-induced downregulation of
the dopamine transporter (DAT) [119, 123]. Other factors
affect/modulate the neuroprotective effects of exercise,
among which the temporal interval between the lesion and
the beginning of the physical training (e.g., exercise started
1 week after toxin administration fails to protect against cell
loss [127]) and the extent of toxin-induced damage.

Neurorestoration is suggested as another exercise-
induced process for recovery of behavioural functions, and
it does not involve neuroprotection [123]. In fact, neurores-
torative effects of exercise are defined as the brain’s responses
to exercise after the completion of toxin-induced cell death.
Studies have shown that exercise increases dopamine release,
increases synaptic plasticity, and decreases dopamine clear-
ance by reducing DAT expression [119, 128, 129]. Further-
more, it has been shown that strenuous exercise, on a
treadmill, reverses the reduction of dopamine D2 receptors
in the dorsal striatum, which usually occurs after injury
[118]. Both the restoration of dopamine D2 receptors and
the increase in dopamine release are extremely important in
the advanced phase of motor learning when automaticity
develops [130]. Therefore, both phenomena could contribute
to the neuroplastic mechanisms involved in the improve-
ment of exercise-induced motor behaviour and restoration
of automaticity.

Physical exercise also modulates glutamatergic neuro-
transmission. Among the crucial aspects underlying motor
impairment in individuals with PD, there is the hyperexcit-
ability in the indirect pathway induced by dopamine deple-
tion in the striatum in response to alterations in glutamate
receptor expression and neurotransmitter release [131]. Van-
Leeuwen and colleagues have shown that strenuous exercise
can restore the expression of glutamate receptors, including
the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors, which are modified in many neurological
disease states and are considered a viable target for drug
treatment [132, 133]. In addition to the effects on glutamate
receptors, exercise can also alter the storage and release of
glutamate in presynaptic terminals, which may also improve
circuit function and reduce the increased inhibitory drive of
the dopamine-depleted striatum [134-136]. Thus, these find-
ings suggest that exercise, through its effects on neurotrans-
mitters and their receptors, could help restore the
neurophysiological properties of synapses within the dam-
aged striatum that are necessary for normal motor learning
and motor activity [18].
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In summary, exercise is generally accepted as an inter-
vention that could help both motor and nonmotor complica-
tions of PD, but it should be emphasized that not all types of
rehabilitation approaches could facilitate neuroplasticity and
behaviour in individuals with PD. Indeed, experience-
dependent neuroplasticity is largely dependent on the inten-
sity, repetition, specificity, difficulty, and complexity of the
practice, and it is very likely that patients with PD need more
time to achieve effective learning and automation. A prece-
dent study by Frazzitta and colleagues [137] demonstrated
that the rate of recurrence of physiotherapy sessions (2 daily
sessions, 5 days a week for 4 weeks) induces beneficial effects
that persist for a follow-up period of 12 months, with a
reduced need to increase the doses of Levodopa. This result
would suggest that the frequency of rehabilitation interven-
tion is a critical factor, which could influence the natural pro-
gression of motor impairment in PD.

The study of Tinazzi and colleagues (2019) based on a
four-week trunk-specific exercise program in PD patients
with pronounced forward trunk flexion has confirmed the
importance of intensive and specific physiotherapy. Rehabil-
itative protocols lasted 4 weeks (60 min/day, 5 days/week)
and have led to improved passive and active control of the
trunk that was maintained at one month post treatment
[138].

Similarly, Corcos and colleagues [139] reported that pro-
gressive resistance exercise improved motor subscale Unified
Parkinson’s Disease Rating Scale (UPDRS-III) scores in PD
patients with an effect lasting up to 2 years. Therefore, it
could be hypothesized that the association of periodic inten-
sive rehabilitation courses with pharmacological treatment
should be considered one of the best options for the treat-
ment of PD patients. To date, however, there is still a need
for a general consensus on which is the best treatment
modality (type-frequency-intensity) and on the most signifi-
cant outcome measures [140].

3.1. Effects of Exercise on Cytokines and Neurotrophin Levels.
Here, we intend to focus on the effects of exercise on altered
levels of proinflammatory cytokines and GDNF and BDNF.

Neurotrophins are a group of proteins having the ability
to stimulate survival, cell growth, and maintenance of the
functional capacities of specific neuronal populations [141].
Initially, neurotrophins are synthesized as precursor proteins
(proneurotrophins) and, because of the involvement of sev-
eral enzymes, are converted into their mature form and
released into the extracellular space [142]. Each of these
mature proteins forms a complex with a twin molecule form-
ing a dimeric structure that allows the activation of specific
receptors [143]. Neurotrophins act through two types of
receptors: tyrosine kinase receptors, with high affinity for
mature neurotrophins, and p75 receptors, with low affinity
for mature and high affinity for immature forms. Previous
studies have suggested that proneurotrophins, through the
P75 receptors, exert opposite biological effects with respect
to mature proteins, and therefore, the proteolytic cleavage
of proneurotrophins may represent a control mechanism
that orchestrates the activity of neurotrophins [144]. Further-
more, these proteins are able to self-regulate their production

as well as regulate the production of other members of this
group of proteins [145, 146].

The most studied neurotrophic factors in PD are GDNF
and BDNF.

GDNF is a neurotrophic factor purified for the first time
from a rat glioma cell line (B49) [147] and belongs together
with neurturin (NRTN), artemin (ARTN), and persephin
(PSPN) to the family of GDNF ligands (GFL) belonging in
turn to the superfamily of transforming growth factor S
(TGF-f) [148]. In recent years, both the GDNF and the
GFL ligands have been investigated due to their involvement
in the survival of dopaminergic and noradrenergic neurons.
However, GDNF besides acting on dopaminergic neurons
promotes the survival of many other neuronal populations
including motor and enteric neurons, noradrenergic and
serotonergic cell population, and peripheral sensory and
autonomic neurons. In addition, GDNF is expressed in brain
regions that receive catecholaminergic afferents [149], such
as the striatum and thalamus [150, 151].

Furthermore, studies performed on rat and mouse
models of PD showed the neurorestorative properties of
GDNEF [152, 153]. In nonhuman primate PD models, GDNF
augmented the sizes of nigral DA neurons that were 20%
larger, with an increased fiber density, and it improved par-
kinsonian symptoms such as bradykinesia, stiffness, balance,
and posture [154, 155].

Furthermore, the trophic effects of GDNF have been
described as TGF-B-dependent. Indeed, TGF-f acts as a
modulator of GDNF signalling and participates in the trans-
location of GDNF family receptor-a (GFR«) coreceptors in
the cell membrane. The association between ligand and cor-
eceptor forms the GDNF-GFRa complex that can interact
with the neural cell adhesion molecule (NCAM) receptors
or with a transmembrane tyrosine kinase (RET (REarranged
during Transfection)) dimer, inducing their homodimeriza-
tion and tyrosine autophosphorylation and initiating the
intracellular signalling process. Hence, a series of cascades
occur, including the activation of the nonreceptor tyrosine
kinase Fyn- (Fyn-) focal adhesion kinase- (FAK-) MAPK sig-
nalling pathway by the GDNF-GFRa-NCAM complex and
the activation of the rat sarcoma virus GTP-binding protein-
(RAS-) MAPK-phosphoinositide 3-kinase (PI3K) signalling
pathway by the GDNF-GFRa-RET complex [156, 157].
These cascades play a role in the control of neurite outgrowth
[158] and in neuronal growth and survival through the acti-
vation of the cAMP response element-binding protein
(CREB) and the protein kinase B (PKB), involved in cell pro-
liferation and transcription [156, 159]. Furthermore, GDNF
also appears to be able to modulate microglia activation
through GDNF family receptor al (GFRal). Thus, GDNF
triggers signalling cascades, which are responsible for inhibit-
ing microglia activation [160].

Because of these promising effects on PD, researchers
have investigated several means able to increase GDNF
levels.

The direct delivery of GDNF to the brain region affected
in PD seems to optimize the chances of obtaining therapeutic
efficacy. Using different viral vectors and different animal
models including adeno-associated viral vectors (AAV) in



rat models of PD [161], AAV in nonhuman primates [162],
and lentivirus [163] and adenovirus [164] in rats, the neuror-
estorative effects of GDNF were carefully demonstrated.
Although these findings are promising, the results from clin-
ical trials are not very encouraging. For example, a study
based on monthly intracerebroventricular injections of
GDNF reported no improvement and several side effects
[165]. However, another study where GDNF was adminis-
tered directly into the putamen showed an improvement in
motor function as well as an increase in dopamine uptake
measured by positron emission tomography (PET) without
any side effects [166].

So far, the clinical evaluations of GDNF treatments in
patients with PD have been inconsistent, potentially due to
insufficient distribution of GDNF throughout the nigrostria-
tal system [167-169]. In order to increase GDNF nigrostria-
tal distribution, we conducted a study using an implantable
and removable encapsulated cell system able to deliver tar-
geted and long-lasting de novo synthesized high levels of
human GDNF into the striatum of 6-OHDA-lesioned rats
and Goettingen miniature pig. GDNF was distributed
throughout the striatum, and this massive spreading of the
protein led to almost complete protection of dopaminergic
neurons in the damaged SN and preservation of TH-
positive fibers in the striatum. Furthermore, these same ani-
mals demonstrated a slow and steady improvement in motor
performance when evaluated on 3 separate neurological tests
(cylinder, placing, and stepping tests). Our data demon-
strated also that a part of the motor recovery is explained
by the germination or regeneration of residual dopaminergic
terminals postinjury [170]. Beneficial effects were observed
when the same therapeutic approach was investigated into
the hippocampus of pilocarpine-treated rats [171, 172].

Thus, long-term targeted release of GDNF over the
majority of the nigrostriatal system could represent an inter-
esting and attractive option for treatment of PD.

Another valuable ally for increasing GDNF release is
physical exercise [125]. A very recent study also highlighted
the ability of controlled exercise on a treadmill in mice to
increase the striatal content of GDNF as well as normalize
striatal levels of tyrosine hydroxylase and attenuate L-
DOPA-induced dyskinesia (LID [173]), thus providing the
first indication that the antidyskinetic effects of exercise
may lead to an increase in striatal GDNF levels [174].

The other most studied neurotrophic factor in PD is
BDNEF. BDNF supports the survival and the differentiation
of dopaminergic neurons and protects them from
neurotoxin-induced degeneration [175]. Many studies have
documented some evidence of a decreased expression of
BDNF in different neurodegenerative diseases [176, 177].
PD patients present lower concentrations of BDNF mRNA
and protein in the substantia nigra pars compacta than
healthy controls [178, 179]. On the contrary, some studies
reported an increase of BDNF levels in the serum of PD
patients, especially in moderate to severe stages of the disease
[180, 181]. This could happen because the CNS to counteract
neuronal loss would increase BDNF production resulting in
enhanced serum levels of the protein. However, there is no
direct evidence that supports this hypothesis. The onset and
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progression of PD are also associated with neuroinflamma-
tion. Sawada and coworkers have found a notable increase
of microglial cells in the hippocampus, amygdala, and ento-
rhinal cortex of PD patients, which was associated with a
decrease of BDNF mRNA expression and increased IL-6 in
those regions. Moreover, they have also shown increased
levels of IL-1p, interleukin-2 (IL-2), IL-6, and TNF-« in the
striatum of PD patients associated with decreased BDNF
protein levels in the same structure [182]. However, there is
no evidence on how changes in BDNF levels in the brain
affect the progression of PD, and further analysis of the inter-
action between proinflammatory cytokines and BDNF levels
is necessary.

A research field in continuous development focuses on
studying the effects of exercise on BDNF level changes in
healthy adult populations [183, 184] and in people affected
by neurodegenerative disease [185, 186].

Exercise-induced BDNF release seems to carry out a cru-
cial role in neuroplastic effects of rehabilitation interventions
in humans with neurodegenerative disease, particularly with
PD [183, 187-189], and it is believed that the physiologic
mechanisms underlying exercise-induced BDNF changes in
PD could include long-term potentiation (LTP) and long-
term depression (LTD) mechanisms [190, 191].

In fact, it seems that BDNF plays a complicated role in
both LTP and LTD and contributes in different ways to
short-term and long-term plasticity: initially, the pro-BDNF
binds to two postsynaptic receptors: the tyrosine kinase B
(TrkB) receptor and the p75 receptor. TrkB activation facili-
tates the induction of LTP [192] while p75 receptor stimula-
tion modulates the N-methyl-D-aspartate (NMDA) activity
that promotes the subsequent induction of LTD [193]. Thus,
although its action is particularly complex, BDNF is a major
player in synaptic plasticity.

In order to explore if the neuroprotection offered by exer-
cise is BDNF-dependent, Gerecke and colleagues (2010)
studied the effectiveness of voluntary physical training with
a running wheel in mice on a 90-day program. Mice were
divided into two groups: mice with heterozygous deletion of
the BDNF gene and wild-type mice. Only the second group
showed neuroprotection against exposure to the toxin induc-
ing dopamine cell loss [194]. Researchers also analysed vol-
untary training in PD mice after periods of 30, 60, or 90
days. The running training for 90 days best promoted a neu-
roprotective effect on dopaminergic cells showing only a 9%
loss of DA neurons while loss of DA neurons was more con-
sistent in animals that underwent 30 days or 60 days of vol-
untary training [194].

A different research team has demonstrated that physical
exercise reduces the 6-OHDA-induced damage acting on
BDNF receptors. In fact, blocking of BDNF receptors causes
enhanced postlesion nigrostriatal dopaminergic cell loss,
quantified as a reduction in the expression of TH [126, 191].

Finally, clinical data on the impact of physical exercise on
reducing PD-related proinflammatory cytokine levels
received increasing attention over recent years; in particular,
investigations focus on the modulation of inflammatory
markers as potential molecular mechanisms involved in the
beneficial effects of exercise on PD patients.
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Cadet and colleagues showed that cyclical exercise, per-
formed for months, leads to a significant increase in the
plasma level of anti-inflammatory signal molecules, such as
interleukin-10 (IL-10) and adrenocorticotropin, while
plasma levels of proinflammatory cytokines such as IL-1
and IL-6 were not affected. Additionally, this cyclic exercise
protocol has also been shown to improve fine motor skills.
These data suggest that cyclical exercise induces the forma-
tion of anti-inflammatory signalling molecules, which appear
to be associated with relieving of some clinical impairments
of PD [195].

Two more recent studies (years 2017 and 2018) also
showed that alternative and not traditional physical exercises
such as Qigong, an oriental mind-body exercise, or physical
exercise in water can improve the inflammatory state of PD.

In this study by Moon and colleagues, ten subjects with
PD were recruited and then randomly assigned to one of
the two groups who received six weeks of Qigong interven-
tion (experimental group) or sham Qigong (control group).
After the intervention, the serum level of TNF-« in the exper-
imental group was significantly reduced in all subjects, and
there is a stabilized sleep pattern suggesting that TNF-a can
potentially affect sleep quality in people with PD [196].

Pochmann and colleagues instead focused on exploring
the molecular mechanisms underlying the improvement of
motor symptoms and functional mobility in water-based
exercise interventions in patients with PD. The authors
reported higher levels of the proinflammatory cytokines IL-
1 and MCP-1 in patients with Parkinson’s compared to
the control group and a reduction in the levels of these pro-
inflammatory cytokines after an aquatic physiotherapy pro-
gram for 1 month, two times a week (60 min/session).
These data support the idea that the inflammatory state is
linked to PD and that proinflammatory cytokines could be
considered promising biomarkers for the diagnosis and pro-
gression of this condition [197].

4. Conclusion

In conclusion, both traditional and not traditional forms of
exercise have been shown to be important for improving
motor function, facilitating neuroplasticity, and reducing
neuroinflammation in PD. Further investigations are needed
to broaden our knowledge on the mechanisms through which
specific physical training induces neuroplasticity, eventually
leading to a deeper knowledge of its role in interfering with
the disease progression and to identify novel therapeutic tar-
gets to finally improve the effects of pharmacological
approaches of PD.
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