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5 Departamento de Ingenierı́a Informática y de Sistemas, Universidad de La Laguna, Santa Cruz de Tenerife,

Spain, 6 Gipuzkoa Primary Care-Integrated Health Organisation Research Unit, Osakidetza/Basque Health

Service, Debagoiena Integrated Health Organisation, Alto Deba Hospital, Arrasate-Mondragon, Spain,

7 Epidemiology and Public Health Area, Economic Evaluation of Chronic Diseases Research Group,

Biodonostia Health Research Institute, Donostia, Spain, 8 Kronikgune Institute for Health Services Research,

Bizkaia/Barakaldo, Spain, 9 Health Services Research on Chronic Patients Network (REDISSEC), Spain,

10 Preventive Medicine and Western Gipuzkoa Clinical Research Unit, Osakidetza/Basque Health Service,

Mendaro Hospital, Gipuzkoa, Spain, 11 Osakidetza/Basque Health Service, Research Unit, Galdakao

University Hospital, Bizkaia, Spain, 12 Pneumology Service, Osakidetza/Basque Health Service, Donostia

University Hospital, Gipuzkoa. Spain, 13 Thoracic Surgery Service, Osakidetza/Basque Health Service,

Donostia University Hospital, Gipuzkoa, Spain, 14 Epidemiological Surveillance Unit, Health Department,

Basque Government, Gipuzkoa, Spain, 15 Biochemistry Laboratory, Osakidetza/Basque Health Service,

Mendaro Hospital, Gipuzkoa, Spain

¶ Membership list can be listed in the Acknowledgments section.

* alberto.garciazamalloa@gmail.com

Abstract

Objective

To analyze the performance of adenosine deaminase in pleural fluid combined with other

parameters routinely measured in clinical practice and assisted by machine learning algo-

rithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to

identify effusions that are non-tuberculous and most likely malignant.

Patients and methods

We prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative

pleural effusion from March 2013 to June 2020. Diagnosis according to the composite refer-

ence standard was achieved in all cases. Pre-test probability of pleural tuberculosis was

3.8% throughout the study period. Parameters included were: levels of adenosine
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deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts

and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine

learning-based classifiers to categorize the patients. Two different classifications were per-

formed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other.

Results

Out of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed

with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagno-

ses. In the tuberculous/non-tuberculous classification, and taking into account the validation

predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of

97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other

classification, this type of classifier yielded an overall accuracy of 80%. With this three-class

classifier, the same sensitivity and specificity was achieved in the tuberculous/other classifi-

cation, but it also allowed the correct classification of 90% of malignant cases.

Conclusion

The level of adenosine deaminase in pleural fluid together with cell count, other routine bio-

chemical parameters and age, combined with a machine-learning approach, is suitable for

the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tubercu-

lous effusions that are suspected to be malignant may also be identified with adequate

accuracy.

Introduction

Tuberculosis remains a major global public health problem: in 2019, 10 million people devel-

oped tuberculosis and it caused 1.5 million deaths, with around 5.4% of the cases diagnosed in

the World Health Organization (WHO) European region and WHO region of the Americas

[1]. Extrapulmonary disease is the initial presentation in about 25% of patients, involving

lymph nodes and primarily the pleura [2]; as a result, tuberculosis is currently one of the most

frequent causes of exudative pleural effusion worldwide [3]. Tuberculous pleural effusion

(TPE) is a paucibacillary manifestation of tuberculosis, and bacteriological tests in pleural fluid

have historically given suboptimal results, leading to a search for biomarkers in pleural fluid

and the use of aggressive diagnostic techniques like pleural biopsy [4].

Adenosine deaminase (ADA) has proven to be the most useful and cost-effective biomarker

in pleural fluid, but based on the Bayesian interpretation of its diagnostic accuracy, it is cur-

rently only accepted as a rule-out test in low prevalence scenarios. The most accepted cut-off

value is 40 U/l [5–7]. In 2012, we reported a retrospective study in a local scenario of decreas-

ing incidence from 1998 to 2008, and showed that combining ADA>40 U/l and lymphocyte

percentage >50% in pleural fluid the diagnostic accuracy of the former increased substantially,

especially in low-to-intermediate incidence settings [8]. We decided to conduct a multicenter

prospective study with diagnosis according to the composite reference standard in all patients

included, in a low prevalence scenario and with 10-fold larger population.

Using the data collected in this study, we aimed to determine the most accurate machine

learning algorithm for the classification of patients (a) according to the presence of tuberculo-

sis and (b) into three categories: tuberculous, malignant or other. Machine Learning is the
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science of giving computers the ability to learn from data. A machine learning system is

trained rather than explicitly programmed. That is, such a system is presented with many

examples relevant to a task, and it finds a statistical structure in these examples that, eventually,

allows it to come up with rules for automating the task [9]. Machine learning algorithms con-

stitute a powerful tool which are becoming useful in clinical medicine for the integration of

multiple variables and subsequent estimation of the likelihood of a given diagnosis [10, 11].

Materials and methods

Data source

This prospective observational study was conducted in one tertiary hospital (Donostia Univer-

sity Hospital), three regional hospitals (Deba Behea Hospital, Goi Urola Hospital, Bidasoa

Hospital), and two private health clinics (Gipuzkoa Polyclinic and Asuncion Clinic), offering a

total of approximately 1,725 beds and all located in the province of Gipuzkoa, Basque Country,

Spain, with a population of 720,000.

The mean annual incidence rate of tuberculosis in Gipuzkoa from 2013 to 2020 was 14

cases per 100,000 population (and it remained under 20 cases per 100,000 throughout this

period) [12]. Data collection has been highly reliable in Gipuzkoa since 1995, and a Tuberculo-

sis Control Program was implemented across the entire region of the Basque Country in 2003

[13].

For the purpose of this study and following the approach of previous authors since the nine-

teen-nineties, the term “prevalence” was used to refer to the number of cases of a specific type

of pleural effusion divided by the total number of pleural effusions studied in a given clinical

setting: in other words, the “pre-test probability” [14, 15]. A prevalence of less than 10% is con-

sidered low [16]. Overall, 1,177 cases of pleural effusion were diagnosed in Gipuzkoa through-

out the period 2013–2020, and 45 of them were tuberculous; hence, the local prevalence of

TPE was 3.8%.

Due to the fact that virtually all cases of TPE become exudative and lymphocytic [17–19],

and given our limited funding and the high cost of some tests (e.g., the Xpert MTB/RIF poly-

merase chain reaction [PCR] test for Mycobacterium tuberculosis—MTB -, which was per-

formed in all cases), we decided to include only lymphocytic exudative pleural fluid samples in

this study. During the whole study period, the first pleural fluid sample was only exudative and

neutrophilic in 1 out of the 45 patients diagnosed with TPE; his case was included in the preva-

lence calculation, but his data were not included in the rest of the analysis.

We considered it appropriate to conduct this prospective study following a PIRTO strategy:

• P (Population): patients aged 16 years or older diagnosed with lymphocytic exudative pleural

effusion from March 2013 to June 2020 in a low prevalence setting like ours

• I (Index Test): ADA level in pleural fluid, combined with patients´ age and routine pleural

fluid parameters obtained from the first pleural fluid sample, and using machine learning

algorithms

• R (Reference test): diagnosis according to the composite reference standard for TPE, that is,

culture positive for MTB or Xpert MTB/RIF assay positive for MTB in pleural fluid, pleural

tissue or sputum; or granulomatous inflammation in pleural tissue

• T (Target condition): diagnostic accuracy of the aforementioned parameters for TPE in a

low prevalence setting
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• O (Outcome): results obtained, in terms of sensitivity, specificity, and area under the receiver

operating characteristic curve (AUC) from two different machine learning approaches:

tuberculous/other and tuberculous/malignant/other.

We report the above items by following the STARD guidelines [20]. Inclusion criteria in

the study were: 1) age over 16 years, 2) de novo diagnosis of pleural effusion that is both exuda-

tive (according to Light´s criteria [21]) and lymphocytic (defined as a lymphocytes accounting

for more than 50% of nucleated cells in pleural fluid [2]) in nature, and 3) etiology of the effu-

sion determined according to the composite reference standard. Patients were not included in

the study if they had a history of any disease that could explain the development of a pleural

effusion (e.g., patients previously diagnosed with lung cancer who developed pleural effusion).

Further, patients in whom no definitive diagnosis was reached were not included in the

study. When more than one thoracocentesis was performed, only the results (routine bio-

chemical parameters, cell count and ADA level) from the first pleural fluid sample were

included in the statistical analysis, but all samples were taken into account for obtaining the

gold standard diagnosis of every patient (e.g., positive culture or malignant cells in a subse-

quent sample).

Through the whole period of study all the clinical information and reference standard

results were available to all the members of the Consortium.

All patients gave written informed consent to their inclusion in the study before diagnostic

procedures were performed. Only one patient was a minor. She was seventeen years old and

her parents signed the informed consent. The protocol was evaluated and approved by the

Clinical Research Ethics Committee of Euskadi (Record number 11/12).

All included patients reported demographic data (age, sex and nationality) and underwent

the following types of testing:

• Pleural fluid tests including measurement of pH, glucose, protein, lactate dehydrogenase,

and ADA levels, total and differential red and white cell counts, cytology, aerobic and anaer-

obic cultures, Lowenstein-Jensen medium and BACTEC MGIT (BACTEC Mycobacteria

Growth Indicator Tube 960 System; BD Diagnostic Instrument Systems, Sparks, Maryland,

USA) cultures, and Xpert MTB/RIF assays for MTB, as well as assessment of serum glucose,

protein and LDH levels

• Aerobic, Lowenstein-Jensen medium and BACTEC MGIT cultures, along with cytology, of

any spontaneous or induced sputum, when it was possible to obtain such samples

• Chest computed tomography (CT)

• Screening for human immunodeficiency virus (HIV), in line with the Tuberculosis Control

Program for all patients diagnosed with tuberculosis implemented in the Basque Country

since 2003 [13]

• Fibrobronchoscopy, depending on the CT findings, samples taken being sent for histopatho-

logical examination, aerobic and anaerobic cultures, Lowenstein-Jensen and BACTEC

MGIT cultures, as well as Xpert MTB/RIF assays for MTB

• Pleural biopsy (either closed or thoracoscopic), when necessary to reach a diagnosis, samples

taken being sent for histopathological exam examination, aerobic and anaerobic cultures,

and Lowenstein-Jensen and BACTEC MGIT cultures, as well as Xpert MTB/RIF assays for

MTB.

Pleural fluid ADA level was measured using an automated ultraviolet kinetic assay (Roche

Diagnostics, Mannheim, Germany). White blood cell count was obtained with a automated
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hematology analyzer (Sysmex XN-1000, Roche Diagnostics), and a differential count was per-

formed manually, after Wright staining. Mycobacterial cultures were performed on Lowen-

stein-Jensen medium and also in MGIT 960 culture tubes.

Regarding diagnostic criteria, patients were classified as having 1) tuberculous pleural effu-

sion when cultures or Xpert MTB/RIF assays for MTB in pleural fluid, pleural biopsy or spu-

tum were positive, or when granulomatous inflammation was evident in pleural tissue; 2)

malignant pleural effusion (MPE) when malignant cells were found in pleural fluid or pleural

biopsy tissue, or paramalignant pleural effusion when cancer was diagnosed de novo, no other

cause of pleural effusion was identified and the pleural effusion and tumour were concurrent

and developed in parallel, but no malignant cells were demonstrated in the pleural fluid or tis-

sue [22, 23]; 3) parapneumonic effusion when there was any exudative pleural effusion associ-

ated with clinical and radiological pneumonia and complete clinical recovery and resolution of

abnormal findings with antibiotics as the only treatment; and 4) miscellaneous effusion when

they had any other type of pleural effusion with another aetiology and defined by well-estab-

lished clinical criteria.

Calculation of sample size was performed by using a statistical program (Epidat 3.1). For a

sensitivity of 95%, specificity of 90%, prevalence (pre-test probability) of 10%, significance

level of 5%, power of 80% and precision of 5%, the minimum sample size was 200 patients.

Since a 25% loss was estimated, final sample size was set to 250 patients.

Fig 1 shows a flowchart depicting the patient selection process.

Statistical analysis

With the data collected from the patients included, two different analyses were performed.

The main analysis used machine learning techniques to classify samples in two categories:

tuberculous and non-tuberculous. A secondary analysis used the same techniques to addition-

ally distinguish malignant cases, yielding three categories: tuberculous, malignant and “other”.

Both analyses split the data into a training set (80%) and test set (20%), to maintain the pro-

portion of the three classes in both sets (19.1% tuberculous, 53.9% malignant and 26.9%

other). The training and testing processes used the following features: age, ADA level and rou-

tine parameters from pleural fluid (pH, glucose, protein, and lactate dehydrogenase levels and

total and differential red and white cell counts). S1 Table shows an estimate of the relative

importance of these features in the classification process. We carried out a data standardization

process before training: for each feature in the training set, we first subtracted the mean value

(such that standardized values always had a zero mean), and then divided by the standard devi-

ation (such that the resulting distribution had unit variance). The mean value and standard

deviation calculated in the training set were also used in the standardization process of the test

set.

As we did not have a priori knowledge about what type of classifier would work best in the

proposed problem, six of the most widely used were trained and tested: multi layer perceptron,

logistic regression, support vector machine, decision tree, K-nearest neighbors and random

forest. We used the Python scikit-learn implementation of these classifiers [24]. A set of differ-

ent values was considered for each of the classifier parameters [25] in combination with a

5-fold cross validation [26], to determine the combination of parameters that optimized a

given metric. In the case of the classification between tuberculous and non-tuberculous, a

binary classification problem, we used accuracy, the AUC and the F1 score, which is the har-

monic mean of precision and recall [27]. The AUC led to the best parameterizations in this

case. In the classification between tuberculous, malignant and other effusions, this being a

multiclass classification problem, we used different metrics, namely, the weighted F1 score,
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balanced accuracy and the one-vs-rest AUC, the last of these yielding the best

parameterizations.

In the binary classification problem (tuberculous vs. non-tuberculous), the validation pre-

dictions were used to calculate receiver operating characteristic (ROC) [28] and precision-

recall (PR) [29] curves in order to obtain decision thresholds that maximized a given metric.

The Youden index [30] was used to select a good balance between sensitivity and specificity in

Fig 1. Patient selection process.

https://doi.org/10.1371/journal.pone.0259203.g001
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the ROC curves. The F1 score was used in the PR curves. It is worth mentioning that these pre-

dictions were “clean”, that is, they were obtained from the validation subset using a classifier

trained with the rest of subsets within each fold of cross validation. These clean predictions

were aggregated to calculate the validation results for each method.

In the three-class classification problem, the goal was to maximize the number of correct

classifications of tuberculosis and MPE. Misclassification of samples of the class “Other” was

considered a minor problem.

We applied two different approaches to accomplish this task. The first was a classification

pipeline that used the previously trained binary classifier in combination with another classi-

fier that distinguished between malignant effusions and the rest (Fig 2). Hence, a sample was

analyzed in the first classifier, and if that classifier predicted tuberculosis, that was the final

classification for that patient. Otherwise, the second classifier analyzed the sample to predict

whether it corresponded to a tumor or some other disease. This second classifier was trained

with the same training set as the first one, but not taking into consideration the samples corre-

sponding to tuberculosis.

This first approach had the advantage that the thresholds of the two classifiers could be

adjusted seeking to maximize the number of tuberculosis cases that were correctly predicted as

such in the first classifier, as well as the number of tumors correctly classified in the second

one.

The second approach to solve this problem was a multiclass classifier that distinguished at

the same time between tuberculous, malignant and other effusions. Using a single classifier

reduced the training effort but complicated the adjustment of the decision thresholds to make

it possible to prioritize the prediction of tuberculosis and tumors, over the class “Other”. In

addition to all the aforementioned analysis, and considering the dynamics in our previous ret-

rospective study, we also assessed the diagnostic accuracy of ADA level in this “lymphocytic

exudative” scenario in terms of sensitivity, specificity, positive predictive value (PPV) and neg-

ative predictive value (NPV). Thereafter, we did the same, incorporating all the variables

included in the machine learning algorithm. Our aim was to perform a Bayesian analysis of

both sets of diagnostic variables.

Results

Overall, 230 out of 1177 episodes of pleural effusion met all the criteria for being included in

the study (de novo, exudative, lymphocytic, diagnosis according to the composite reference

Fig 2. Classification pipeline. Classification pipeline.

https://doi.org/10.1371/journal.pone.0259203.g002
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standard, age over 16 years and written informed consent given). As shown in Table 1, the

male:female ratio was 135/95 (58%/42%) and median age 69 years (1st and 3rd quartiles, 55

and 80 years respectively). Further, 12 out of 44 cases of tuberculous pleural effusion were

diagnosed in non-Spanish patients (27%, p<0.001), all the clinical and laboratory parameters

except cell count and pH differed significantly across the three groups: tuberculous, malignant,

parapneumonic/other effusions (opting to merge these last two into a single group for subse-

quent analysis). Among all the samples, 44 patients were diagnosed with tuberculous pleural

effusion (19.1%) and 124 (53.9%) with MPE—77 having lung cancer, 22 non-lung cancer, 10

lymphoma and 15 mesothelioma-, while 28 had parapneumonic effusions (12.1%) and 34

(14.7%) were diagnosed with other non-malignant diseases. All these data are set out in the

Supporting Information section: S2 Table. Twenty-three of the 124 cases of MPE (18.5%) were

classified as paramalignant: 19 of these patients having lung cancer, 2 non-lung cancer and 2

lymphomatous cancer.

The diagnostic yield of MTB culture, Xpert MTB/RIF and citology/histopathology both in

pleural fluid as in pleural biopsy (closed or guided by thoracoscopy), along with the diagnostic

yield of sputum, bronchoalveolar lavage and bronchial biopsy are included in the Supporting

Information Section: S3 Table.

There were no cases of TPE with HIV infection in our series. Three patients previously

diagnosed with HIV infection developed pleural effusions, in all cases malignant.

Table 1. Characteristics of patients and pleural fluid samples by diagnosis.

Tuberculous Malignant Parapneumonic / Other effusions

N % N % N % p-value

Total 44 19.1 124 53.9 62 27

Sex 0.21

Male 31 70.4 70 56.4 34 54.8

Female 13 29.6 54 43.6 28 45.2

Nationality <0.001

Spanish 32 72.7 121 97.6 58 93.6

Other 12 27.3 3 2.4 4 6.4

Median P25 − P75 Median P25 − P75 Median P25 − P75

Age, yearsa 54.8 22.2 68.1 12.7 68.8 18.5 0.001

ADA, U/l 72 57.3–81 22 18–27.5 23 19–28 <0.001

pH 7.4 7.4–7.5 7.4 7.4–7.5 7.5 7.4–7.5 0.08

Glucose 84.5 66–96 101 84–120.5 110.5 92–128 <0.001

Cell no. 2315 1338.5–4126 1760.5 1140–2905 1715.5 618–3056 0.06

MNC 93 80–97.8 91.5 79.3–96 75 59–86 <0.001

PMNC 7 2.2–20 8.5 4.05–20.75 25.5 14–41 <0.001

RBC 3650 1805–10000 8000 2840–29300 6950 2700–40000 0.04

LDH, U/l 444.5 266.5–651.5 403 212–623 212.5 165–372 <0.001

Proteins 5 4.6–5.3 4.4 3.8–4.8 4.3 3.5–4.9 <0.001

LDH / ADA 6.1 4.2–10.7 15.5 9–28.4 10.1 7.3–15.9 <0.001

ADA: adenosine deaminase; Cell no: number of cells/mm3; MNC: percentage of mononuclear cells in pleural fluid; PMNC: percentage of polymorphonuclear cells in

pleural fluid; RBC: number of red blood cells/mm3. LDH: lactate dehydrogenase.
a Value shown as Mean and Standard deviation.

https://doi.org/10.1371/journal.pone.0259203.t001
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Classifying tuberculous vs. non-tuberculous effusions

Figs 3 and 4 show the ROC and PR curves for the binary classifier, respectively.

Table 2 lists performance scores for each method using three different thresholds: 0.5, the

one that maximizes the Youden index on the ROC curve and the one that maximizes the F1

score on the PR curve. KNN was the classifier with the lowest value for the AUC (0.94); Logit

and DT achieved an AUC of 0.97; whereas SVC, RF and MLP obtained 0.98.

The classifiers with the best set of parameters (S4 Table) and decision thresholds found

were trained with the complete training set (184 samples). These classifiers were then tested

using the 46 samples of the test set. Table 3 shows the scores for each method using the best

threshold found in the validation stage.

In the validation stage, as can be seen in Table 2, the SVC achieved the best results: accuracy

of 97%, AUC of 0.98, sensitivity of 91% and specificity of 98% (threshold of 0.35). In the testing

phase (Table 3), however, the best results were obtained with the logistic regression: accuracy

of 96%, AUC of 0.96, sensitivity of 100% and specificity of 95% (threshold of 0.28).

Fig 3. Receiver operating characteristic curves using validation predictions. The dots correspond to the points that

maximize the Youden index.

https://doi.org/10.1371/journal.pone.0259203.g003
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Classifying tuberculous vs. malignant vs. other effusions

The first approach to performing a three-fold classification used the previous binary classifier

for its first stage. The results obtained for the second stage of the pipeline are provided in the

Supporting information section: S1 and S2 Figs, S5 and S6 Tables. Considering the validation

results for each of the binary classifiers of the pipeline, we decided to use the SVC in both

stages.

The pipeline achieved an overall accuracy of 79% in the validation predictions and 80% in

the test set. To determine how the three-class classifier behaved in terms of sensitivity and

specificity in the two-class problem (Tuberculous and Other), we have combined the results of

the classes “Malignant” and “Other” into a single class. By doing this, the sensitivity and speci-

ficity would remain the same in the Tuberculous/Other classification, but this type of classifier

would also allow us to detect 90% of malignant cases.

The second approach to solve the multiclass classification problem was to train, from

scratch, a classifier that could distinguish between tuberculous, malignant and other effusions.

The scores obtained with these classifiers are reported in the Supporting Information section:

S7 and S8 Tables.

Fig 4. Precision-recall curves using validation predictions. Precision-recall curve for each method using the

validation predictions. The dots correspond to the points that maximize the F1 score.

https://doi.org/10.1371/journal.pone.0259203.g004
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None of these classifiers outperforms the combination of classifiers from the previous sec-

tion in the validation predictions. As can be seen in Table S6 Table, SVC and decision tree clas-

sifiers obtain the best results in terms of accuracy (76% and 74%, respectively). The decision

tree achieved a sensitivity of 91% and specificity of 94% in the Tuberculous/Other

classification.

As a result, in the validation predictions, we were able to classify correctly 32 out of 35 cases

of TPE and 89 out of 98 cases of MPE (sensitivity of 91.4% for TPE and 90.8% for MPE); con-

versely, a total of 3 additional cases were mistakenly classified as TPE out of 149 non-TPE

cases and 29 cases were mistakenly classified as MPE out of 86 non-MPE cases (specificity of

98.0% for TPE and 66.3% for MPE). Furthermore, all 3 cases of TPE misdiagnosed were classi-

fied as MPE, theoretically leading to additional diagnostic procedures, and only 6 out of the 98

Table 2. Accuracy (Acc), sensitivity (SEN), specificity (SPF) and F1 score (F1) of all the classifiers in the validation stage, using three different thresholds (T): 0.5,

the one that maximizes the Youden index on the receiver operating characteristic curve and the one that maximizes the F1 score on the precision-recall curve, and

their confidence intervals at 95% level.

Method T AUC Acc (95% CI) SEN (95% CI) SPF (95% CI) F1 (95% CI)

Threshold: 0.5

Logit 0.5 0.97 0.92 (0.87,0.95) 0.71 (0.54, 0.85) 0.97 (0.92,0.99) 0.77 (0.65, 0.87)

SVC 0.5 0.98 0.97 (0.93,0.99) 0.89 (0.73,0.97) 0.99 (0.95,1.00) 0.91 (0.83, 0.97)

DT 0.5 0.97 0.92 (0.88, 0.96) 0.83 (0.66,0.93) 0.95 (0.90,0.98) 0.81 (0.69, 0.90)

KNN 0.5 0.94 0.91 (0.86,0.95) 0.66 (0.48, 0.81) 0.97 (0.93,0.99) 0.74 (0.60, 0.86)

RF 0.5 0.98 0.94 (0.90,0.97) 0.83 (0.66,0.93) 0.97 (0.92,0.99) 0.84 (0.73, 0.92)

MLP 0.5 0.98 0.96 (0.92,0.98) 0.89 (0.73,0.97) 0.97 (0.93,0.99) 0.89 (0.80, 0.96)

Threshold: max Youden Index

Logit 0.26 0.97 0.93 (0.89, 0.97) 1.00 (0.90,1) 0.92 (0.86,0.96) 0.85 (0.76, 0.92)

SVC 0.29 0.98 0.96 (0.92, 0.98) 0.94 (0.81,0.99) 0.97 (0.92,0.99) 0.90 (0.82, 0.97)

DT 0.25 0.97 0.93 (0.89, 0.97) 0.94 (0.81,0.99) 0.93 (0.88,0.97) 0.85 (0.75, 0.92)

KNN 0.30 0.94 0.93 (0.89,0.97) 0.86 (0.70,0.95) 0.95 (0.91,0.98) 0.83 (0.72, 0.92)

RF 0.19 0.98 0.92 (0.88,0.96) 0.97 (0.85,1.00) 0.91 (0.86,0.95) 0.83 (0.73, 0.91)

MLP 0.17 0.98 0.96 (0.92,0.98) 0.94 (0.81,0.99) 0.97 (0.92,0.99) 0.90 (0.82, 0.97)

Threshold: max F1 score

Logit 0.28 0.97 0.95 (0.90,0.97) 0.97 (0.85,1.00) 0.94 (0.89,0.97) 0.87 (0.78, 0.94)

SVC 0.35 0.98 0.97 (0.93,0.99) 0.91 (0.77,0.98) 0.98 (0.94,1.00) 0.91 (0.84, 0.97)

DT 0.40 0.97 0.94 (0.90,0.97) 0.91 (0.77,0.98) 0.95 (0.90,0.98) 0.85 (0.76, 0.93)

KNN 0.30 0.94 0.93 (0.89,0.97) 0.86 (0.70,0.95) 0.95 (0.91,0.98) 0.83 (0.72, 0.92)

RF 0.43 0.98 0.95 (0.91,0.98) 0.91 (0.77, 0.98) 0.96 (0.91,0.99) 0.88 (0.78,0.95)

MLP 0.17 0.98 0.96 (0.92,0.98) 0.94 (0.81, 0.99) 0.97 (0.92,0.99) 0.90 (0.82, 0.97)

https://doi.org/10.1371/journal.pone.0259203.t002

Table 3. Threshold (T), area under the curve (AUC), accuracy (Acc), sensitivity (SEN), specificity(SPF) and F1 score (F1) of all the classifiers in the test stage, using

the best thresholds found in the validation stage with their confidence intervals at 95% level.

Method T AUC Acc (95% CI) SEN (95% CI) SPF (95% CI) F1 (95% CI)

Logit 0.28 0.98 0.96 (0.85,0.99) 1.00 (0.66,1.00) 0.95 (0.82,0.99) 0.90 (0.71,1.00)

SVC 0.35 0.96 0.93 (0.82,0.99) 0.89 (0.52,1.00) 0.95 (0.82,0.99) 0.84 (0.60,1.00)

DT 0.40 0.96 0.96 (0.85,0.99) 1.00 (0.66,1.00) 0.95 (0.82,0.99) 0.90 (0.71,1.00)

KNN 0.30 0.96 0.91 (0.79,0.98) 0.78 (0.40,0.97) 0.95 (0.82,0.99) 0.78 (0.48,0.96)

RF 0.43 0.98 0.93 (0.82,0.99) 0.89 (0.52,1.00) 0.95 (0.82,0.99) 0.84 (0.63,1.00)

MLP 0.17 0.98 0.93 (0.82,0.99) 0.89 (0.52,1.00) 0.95 (0.82,0.99) 0.84 (0.59,1.00)

https://doi.org/10.1371/journal.pone.0259203.t003
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cases of MPE were misdiagnosed as “Other”, that is, 93.9% of cases of MPE (92/98) were classi-

fied as MPE or TPE. The relatively low specificity of the classification for MPE was mainly due

to overdiagnosis of MPE amongst cases in the other diagnosis group. Indeed, we deliberately

implemented the classification into the three groups prioritizing the overdiagnosis of MPE

over its underdiagnosis.

In the test set, we were able to correctly classify 8 out of 9 cases of TPE and 24 out of 26

cases of MPE (sensitivity of 88.8% for TPE and 92.3% for MPE); conversely, a total of 2 addi-

tional cases were mistakenly classified as TPE out of 37 non-TPE cases and 6 cases were mis-

takenly classified as MPE out of 20 non-MPE cases (specificity of 94.5% for TPE and 70.0% for

MPE). Only 1 of the 26 cases of MPE was misdiagnosed as “Other”, that is, 96.1% of cases of

MPE (25/26) were classified as MPE or TPE.

Performance of the classifiers versus ADA alone

We compared the results of our machine-learning-based classifiers with those derived from

using ADA as the only diagnostic criteria. We obtained three thresholds for ADA: default

threshold (in this case 40 U/l), the threshold that maximized the Youden index in the ROC

curve, and the threshold that maximized the f1-score in the PR curve. It is interesting to note

that the threshold that maximized the Youden index with our samples was 40 U/l as well. The

threshold that maximized the f1 score in the PR curve was 43 U/l. With these thresholds two

set of metrics were extracted:

• Threshold = 40.00: Accuracy 0.93, Sensitivity 0.97 and Specificity 0.93

• Threshold = 43.00: Accuracy 0.95, Sensitivity 0.94 and Specificity 0.95

Our classifiers obtained better Sensitivity/Specificity values. For example, Logistic Regres-

sion obtained 0,97/0,94 (youden 0.91). SVC and MLP gets 0,94/0,97 (youden 0.91). Also, better

Accuracy is obtained with SVC (0,97) and MLP (0,96).

Regarding the Bayesian analysis of the diagnostic accuracy of two sets of diagnostic vari-

ables and with a pre-test probability of 3.8%:

• for ADA >40 U/l (plus lymphocyte percentage > 50%), sensitivity, specificity, PPV and

NPV were 97%, 93%, 35% and 100% respectively.

• for the whole set of variables included in the machine learning algorithms, sensitivity, speci-

ficity, PPV and NPV were 91%, 98%, 64% and 100% respectively.

Pre- and post-test probabilities of both diagnostic options are shown in Fig 5. Additionally,

Table 4 lists the aforementioned parameters with respect to the corresponding pre-test proba-

bility up to 50%. Notably, for a pre-test probability of 10% (the upper limit of low prevalence)

and using the full set of variables included in the machine learning algorithms, the PPV already

reaches 83.5% and NPV remains at 99%.

Discussion

Our study has prospectively analyzed the performance of non-invasive and straightforward

diagnostic methods combining ADA level with routine parameters in pleural fluid and age, in

the diagnosis of TPE using a machine learning approach, in a setting with a low-to-intermedi-

ate incidence of general TB (14 cases/100,000 population/year) and low prevalence scenario

for TPE (3.8%). Secondly, we have sought to distinguish among non-tuberculous effusions

those which are most likely to be malignant.
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The definitive diagnosis of TPE remains a challenge due to its paucibacillary nature, and

many attempts have been made to find an alternative method to the more invasive and hazard-

ous pleural biopsy. Biomarkers, rapid cultures and PCR-based techniques have been the main

focus of research over recent decades [31–33]. Measurement of pleural fluid ADA has shown a

uniformly high diagnostic performance for TPE in five major consecutive meta-analyses with

a mean sensitivity and specificity of 92–93% and 90–92% respectively for a diagnostic thresh-

old of>40 U/l [34–38].

Table 4. Comparative table of Bayesian probabilities of test parameters used: ADA> 40 U/l (plus lymphocyte

percentage> 50%) versus the whole set of variables included in the machine learning algorithms. PPV: positive

predictive value. NPV: negative predictive value.

ADA + LYM All

Sensitivity 98% 91%

Specificity 93% 98%

Pre-test probability PPV NPV PPV NPV

5% 42.4% 99.9% 70.5% 99.5%

10% 60.8% 99.7% 83.5% 99.0%

15% 71.2% 99.6% 88.9% 98.4%

20% 77.8% 99.4% 91.9% 97.8%

30% 85.7% 99.0% 95.1% 96.2%

40% 90.3% 98.4% 96.8% 94.2%

50% 93.3% 97.6% 97.8% 91.6%

https://doi.org/10.1371/journal.pone.0259203.t004

Fig 5. Post-test probability of TPE after positive (top) or negative (bottom) results of 1) ADA>40 U/l plus

implicit lymphocyte percentage>50% alone or 2) in addition to age and routine pleural fluid parameters

included in the machine learning algorithms; for different pre-test probabilities of disease.

https://doi.org/10.1371/journal.pone.0259203.g005
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Following the Bayesian interpretation of its diagnostic accuracy, this biomarker is optimal

as a rule-in test in high TB prevalence settings, and it is currently considered useful as a rule-

out test in low prevalence scenarios [5, 31, 32]. Many other biomarkers have also been exten-

sively studied for the same purpose, unstimulated interferon-gamma (best sensitivity of 89%

and specificity of 97%) [39, 40] and interleukin-27 (best sensitivity of 96% and specificity of

99%) [41–43] being the most accurate, but they lack the historical success, low cost, availability

and simplicity of ADA measurement [39, 44]. Furthermore, concerns regarding the accuracy

of ADA in immunocompromised patients have been extensively allayed: it retains a high utility

for the diagnosis of TPE in all HIV-infected patients, even those with low CD4 counts [45, 46]

and in renal transplant recipients [47].

The etiological spectrum of pleural effusions obviously depends on the population studied:

in developing countries, tuberculosis and bacterial infections are by far the commonest causes;

conversely, in developed countries, more than 90% of pleural effusions are caused by conges-

tive heart failure, malignancy, pneumonia and pulmonary embolism [42, 48]. In this sense, the

pre-test probability of a disease decisively affects the value of a given diagnostic tool, but the

combination of various tests or parameters could theoretically improve the post-test probabil-

ity of a given suspected disease, as has been found in our retrospective study and others [8, 49,

50]. Specifically, in 2012, we were able to demonstrate that the addition of lymphocyte percent-

age>50% to ADA>40 U/l in pleural fluid increased the specificity and the PPV of the latter,

mostly in low-to-intermediate incidence scenarios. Some other authors have reported their

experience with ADA subsequently in intermediate-low [51] and low [52–54] incidence set-

tings, with promising results.

In our current study, we expanded the number of parameters to be combined with ADA,

and we performed a statistical analysis through the classification of all cases by a machine

learning approach into three groups, our main goal being to correctly classify cases of TPE,

and in a second step, we sought to also do the same with cases of MPE, even if these would be

overdiagnosed. In relation to this, if we exclude parapneumonic effusions and acute inflamma-

tory exudates, which are usually neutrophilic (even cases of TPE in the first 24–96 hours),

most of the remaining types of pleural effusion are lymphocytic, suggesting non-acute disease,

and differential diagnosis between TPE and MPE remains one of the most pressing challenges

in this scenario [49, 55–60].

As a result, and in line with the data described above concerning the three-fold classifica-

tion pipeline, in the validation predictions, we were able to classify those cases of TPE with a

sensitivity and specificity of 91.4% and 98.0% respectively. In regard to MPE cases we obtained

a sensitivity of 90.8% and a specificity of 66.2% (due to prioritization of overdiagnosis).

Besides, the corresponding parameters were similar in the test set (sensitivity and specificity

88.8% and 94.5% for TPE; and 92.3% and 70.0% for MPE). We have been able to find three

reports regarding diagnosis of pleural tuberculosis by artificial intelligence based diagnostic

models [61–63]. All of them obtained a sensitivity and specificity over 90%, but some essential

differences should be pointed out when comparing with ours: first and foremost, they are per-

formed in very high prevalence scenarios (namely, China and Brazil, accounting for 96 out of

137, 73 out of 140 and 192 out of 443 patients diagnosed with TPE respectively); second,

patients with clinical diagnosis of tuberculosis and improvement with antituberculous treat-

ment are included, or even only microbiologically confirmed cases by culture are admitted in

one of the studies [62].

Furthermore and regarding the Bayesian analysis of the accuracy of any parameter and/or

diagnostic tool for the presumptive diagnosis of TPE, in this prospective study, we have been

able to achieve even better results than in our previous retrospective study [8] with the combi-

nation of the full set of parameters included in the machine learning algorithm, all of them
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easy to obtain in routine clinical practice: the addition of the routine parameters and age had

the benefit of improving the specificity and PPV with respect to using ADA (plus implicit lym-

phocytic percentage >50% in all pleural fluids), in a low prevalence scenario. Notably, for a

TPE prevalence of 3.8%, specificity and PPV increased from 93 to 98% and from 35% to 64%

respectively (Fig 5).

Some additional results deserve to be highlighted:

• Pleural fluid culture yielded MTB in 25 out of 44 first samples (56%), and additionally, in 3

subsequent samples (63%), probably due to the use of the BACTEC MGIT semi-automated

system, which is known to provide a higher and faster yield than solid media, with a reported

sensitivity of as high as 63% in pleural fluid samples in general [64] and even 79% in samples

from HIV-positive patients [65]. Pleural tissue sample culture yielded MTB from 7 out of 12

closed biopsies performed (58%) and 7 out of 9 thoracoscopic biopsies (77%).

• Regarding the performance of the Xpert MTB/RIF assay, in our study, it detected MTB

genome in 5 out of 44 pleural fluid samples (11%), 6 out of 12 closed pleural biopsy speci-

mens (50%) and 6 out of 9 pleural thoracoscopic biopsy specimens (66%) (combined sensi-

tivity in pleural tissue samples of 57%). The specificity reached 100% and no cases of

rifampin resistance were identified. The difference in terms of sensitivity between pleural

fluid and pleural tissue samples is evident. Overall, the sensitivity of molecular analysis of

pleural fluid remains insufficient. In a recent Cochrane analysis on the diagnostic accuracy

of the Xpert MTB/RIF assay for extrapulmonary tuberculosis, only five studies were found

including pleural fluid and the composite reference standard, these reporting a sensitivity of

13–29% and specificity of 97–100% [66]. This low sensitivity might be due to small numbers

of bacilli or even related to local intrinsic inhibitors or intracellular sequestration of myco-

bacteria [31].

The novel next-generation Xpert MTB/RIF Ultra lowers the detection limit from 112.6

CFUs/mL to 15.6 CFUs/mL and shows promising results: in a recent multicenter study, it

showed a sensitivity of 44% and specificity of 98% in pleural fluid compared to the composite

reference standard, [67]. Data regarding the performance of this assay in pleural tissue sam-

ples and against the composite reference standard is scarce: the aforementioned Cochrane

analysis only found a single study on this topic including 55 patients, 14 out of them with

tuberculous effusions, and with surprising and disappointing results (sensitivity of 0%, speci-

ficity of 98%) [66]. Subsequently, three additional studies of 73, 113 and 27 patients diag-

nosed with TPE and who underwent thoracoscopic pleural biopsy reported a sensitivity of

the Xpert MTB/RIF assay of 45%, 69% and 85%, respectively in pleural tissue samples against

the composite reference standard [68–70]. Our study showed a five-fold higher sensitivity of

the Xpert MTB/RIF assay in pleural tissue compared to pleural fluid (57% versus 11%), and

close to that obtained with culture of pleural fluid (56%) or closed biopsy pleural specimens

(58%). Despite showing low sensitivity, PCR-based techniques in pleural fluid are currently

considered useful because they are not invasive and their specificity is universally optimum;

additionally, the Xpert MTB/RIF assay detects rifampicin resistance with sensitivity and

specificity of 95% and 98.8% respectively [32]. On the other hand, the performance of the

Xpert MTB/RIF assay in pleural tissue samples is close to that of MTB culture, making it, in

our opinion, a diagnostic tool that should be considered.

Our study does have some limitations: only patients with lymphocytic exudative pleural

effusions were included in this prospective study. This decision was influenced by financial

limitations and guided by the fact that virtually all tuberculous pleural effusions become lym-

phocytic [17–19], and that the differential diagnosis between TPE and MPE remains a great
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concern in just this scenario. As noted above, only one additional patient diagnosed with TPE

showed a first pleural fluid sample that was neutrophilic, and this underlines the value of our

results. The relatively limited number of patients is mainly due to the low prevalence of the

tuberculous disease in our clinical setting; nevertheless, statistical power is guaranteed and

enough as we expressed in the Material and Methods section. On the other hand, the main

strengths of our study lie in its prospective and multicenter nature, along with the certainty of

the diagnosis in all patients included; in this regard, the homogeneity of well differentiated

populations makes the use of Machine Learning feasible with fewer patients.

Conclusion

In conclusion, ADA combined with age and routine pleural fluid parameters in a machine

learning approach is suitable for the diagnosis of tuberculous pleural effusion in a low preva-

lence area. Secondly, discrimination (at the expense of overdiagnosis) of cases of malignant

pleural effusion is an added benefit in this scenario.
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negative class is other. All training samples have been used except the ones identified as

Tuberculous. The dots correspond to the points that maximize the Youden index.

(TIF)

S2 Fig. Precision-recall curve for each method using the validation predictions of the

binary classification problem where the positive class is malignant and the negative class is

other. All training samples have been used except the ones identified as Tuberculous. The dots

correspond to the points that maximize the F1 score.

(TIF)

S1 Table. Relative importance of features in the classification process. The Random Forest

classifier allows estimating the relative importance of each variable in the classification process.

In view of the results, and in accordance with all the previously reported studies, in this classifi-

cation process, “ADA” is the most important variable, followed by “age”. The rest of the vari-

ables are less useful, but we decided not to remove any of them a priori, but rather let each

Machine Learning method assign a relative importance to each of them.
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S5 Table. Validation results of the binary classification problem where the positive class is

malignant and the negative class is other. All training samples have been used except the

ones identified as Tuberculous. Area under the curve (AUC), accuracy (Acc), sensitivity

(SEN), specificity (SPF) and F1 score (F1) of all the classifiers using three different thresholds:

PLOS ONE Adenosine deaminase and diagnosis of pleural tuberculosis in a low prevalence setting

PLOS ONE | https://doi.org/10.1371/journal.pone.0259203 November 4, 2021 16 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259203.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259203.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259203.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259203.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259203.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259203.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0259203.s007
https://doi.org/10.1371/journal.pone.0259203


0.5, the one that maximizes the Youden index in the receiver operating characteristic curve
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nant and the negative class is other. All test samples have been used except the ones identified

as Tuberculous. Threshold (T), area under the curve (AUC), accuracy (Acc), sensitivity (SEN),

specificity(SPF) and F1 score (F1) of all the classifiers, using the best thresholds found in the
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Visualization: Nekane Múgica, Ladislao Aldama, Borja Aguinagalde, Montserrat Jimenez.

Writing – original draft: Alberto Garcia-Zamalloa, Rafael Arnay.

PLOS ONE Adenosine deaminase and diagnosis of pleural tuberculosis in a low prevalence setting

PLOS ONE | https://doi.org/10.1371/journal.pone.0259203 November 4, 2021 18 / 22

https://doi.org/10.1371/journal.pone.0259203


Writing – review & editing: Alberto Garcia-Zamalloa, Rafael Arnay.

References
1. Global tuberculosis report 2019. Geneva: World Health Organization; 2020. https://www.who.int/tb/

publications/global_report/en/.

2. Cohen LA, Light RW. Tuberculous pleural effusion. Turkish thoracic journal. 2015; 16(1):1. https://doi.

org/10.5152/ttd.2014.001 PMID: 29404070

3. Shaw JA, Irusen EM, Diacon AH, Koegelenberg CF. Pleural tuberculosis: a concise clinical review. The

clinical respiratory journal. 2018; 12(5):1779–1786. https://doi.org/10.1111/crj.12900 PMID: 29660258

4. Porcel JM. Advances in the diagnosis of tuberculous pleuritis. Annals of translational medicine. 2016; 4

(15):282–288. https://doi.org/10.21037/atm.2016.07.23 PMID: 27570776

5. Porcel JM. Biomarkers in the diagnosis of pleural diseases: a 2018 update. Therapeutic advances in

respiratory disease. 2018; 12:1–11. https://doi.org/10.1177/1753466618808660

6. Skouras VS, Magkouta SF, Psallidas I, Tsilioni I, Maragozidis P, Gourgoulianis KI, et al. Interleukin-27

improves the ability of adenosine deaminase to rule out tuberculous pleural effusion regardless of pleu-

ral tuberculosis prevalence. Infectious Diseases. 2015; 47(7):477–483. https://doi.org/10.3109/

23744235.2015.1019919 PMID: 25753767

7. Skouras VS, Kalomenidis I. Pleural fluid tests to diagnose tuberculous pleuritis. Current Opinion in Pul-

monary Medicine. 2016; 22(4):367–377. https://doi.org/10.1097/MCP.0000000000000277 PMID:

27064428

8. Garcia-Zamalloa A, Taboada-Gomez J. Diagnostic accuracy of adenosine deaminase and lymphocyte

proportion in pleural fluid for tuberculous pleurisy in different prevalence scenarios. PloS one. 2012; 7

(6):e38729. https://doi.org/10.1371/journal.pone.0038729 PMID: 22723878

9. Chollet F. Deep Learning with Python. Manning Publications Co.; 2017.

10. Bishop CM. Pattern recognition and machine learning. springer; 2006.
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