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Background. Aberrant lipid metabolism is an alteration common to many types of cancer. Dysregulation of lipid metabolism is
considered a major risk factor for bladder cancer. Accordingly, we focused on genes related to lipid metabolism and screened
novel markers for predicting the prognosis of bladder cancer. Methods. RNA-seq data for bladder cancer were obtained from
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The nonnegative matrix factorization
(NMF) algorithm was used to classify the molecular subtypes. Weighted correlation network analysis (WGCNA) was applied
to identify coexpressed genes, and least absolute shrinkage and selection operator (LASSO) multivariate Cox analysis was used
to construct a prognostic risk model. External validation data and in vitro experiments were used to verify the results from in
silico analysis. Results. Bladder cancer samples were grouped into two clusters based on the NMF algorithm. A total of 1467
genes involved in coexpression modules were identified in WGCNA. We finally established a 5-gene signature (TM4SF1,
KCNK5, FASN, IMPDH1, and KCNJ15) that exhibited good stability across different datasets and was also an independent
risk factor for prognosis. Furthermore, the predictive efficacy of our model was generally higher than the predictive efficacy of
other published models. Distinct risk groups of patients also showed significantly different immune infiltration cell patterns
and associations with clinical variables. Moreover, the 5 signature genes were verified in clinical samples by quantitative real-
time polymerase chain reaction (qRT-PCR) and immunohistochemistry, which were in agreement with the in silico analysis.
For in vitro experiments, knockdown of IMPDH1 markedly inhibited cell proliferation in bladder cancer. Conclusion. We
established a 5-gene prognosis signature based on lipid metabolism in bladder cancer, which could be an effective prognostic
indicator.

1. Introduction

As one of the most common genitourinary malignancies,
bladder cancer (BC) has become a global health problem.
The development and progression of BC are a multistage
sophisticated process that includes genetic characteristics
and environmental factors [1]. Epidemiological studies have
demonstrated that modification in dietary intake is associ-

ated with the risk of BC [2, 3]. A positive association
between red and processed meat and the risk of BC has been
reported [4]. Lipids are a ubiquitous class of structurally
complex molecules composed of different fatty acids
involved in various biological processes. Lipids play an inte-
gral role in homeostasis, cell membrane structure, and cell
signaling [5]. Abnormal synthesis, degradation, digestion,
and absorption of lipid substances in lipid metabolism
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contribute to excessive lipids in various tissues as well as
tumorigenesis [6, 7].

Metabolic reprogramming is an important hallmark of
cancer cells. Increased nutrient requirements are necessary
to achieve rapid tumor growth and satisfy the metabolic
needs of a tumor, and tumor cells have been observed to
undergo metabolic reprogramming [8]. Tumor cells will
choose the appropriate metabolic reprogramming method
for metabolism so that they can better adapt to changing
conditions. In tumorigenesis, fat is an important source of
energy. In particular, researchers have found that lipid met-
abolic reprogramming exists in a variety of tumors, provid-
ing energy storage and intermediates of various metabolic
activities for tumor proliferation, metastasis, and progres-
sion and even serving as a major intracellular metabolic type
for cellular energy supply [9].

Recently, alterations in lipid metabolism have been rec-
ognized as a sign of many malignancies. Cheng et al. inves-
tigated whether fatty acid metabolism was activated in BC
tissues, and inhibition of fatty acid oxidation showed a great
impact on BC [10]. Previous studies have shown that general
patterns and mechanisms of lipid metabolism participate in
the development of BC, particularly blocking fatty acid syn-
thesis to suppress the malignant phenotype of BC [11]. Fur-
thermore, lipids mediate intercellular communication in the
tumor-immune microenvironment. Lipid metabolism pro-
motes the generation of M2-like tumor-associated macro-
phages (TAMs) and is crucial for TAM activity [12]. In
tumor progression, cancer-stroma interactions are exacer-
bated, and fatty acids secreted in the microenvironment
can influence the function and phenotype of infiltrating
immune cells [13].

In this study, the expression of genes related to lipid
metabolism in BC was investigated to screen hub genes that
could predict patient prognosis. We developed and verified a
5-gene prognostic signature to effectively predict BC patient
prognosis, as well as the relationship with immune infiltra-
tion cell patterns. This prognostic signature has the potential
for clinical application in BC.

2. Methods

2.1. Data Preparation. Human lipid metabolism pathways
were obtained from the Molecular Signature Database
(MSigDB) [14], and 776 genes involved in lipid metabolism
(Supplementary Table S1) were collated from 6 lipid
metabolism pathways (Table 1). RNA-seq data were
obtained from TCGA database for 433BC samples,
including 414 cancer samples and 19 normal samples, and
corresponding clinicopathological information. RNA-seq
data of 165 BC samples (GSE13507) and corresponding
clinical information were downloaded from the GEO
database.

2.2. Identification of Molecular Subtypes. First, we extracted
776 genes related to lipid metabolism from TCGA dataset;
24 genes were not identified, and 752 genes were included
in subsequent analyses. Then, genes with significant differ-
ential expression were selected, and BC samples were clus-

tered using a nonnegative matrix factorization (NMF)
clustering algorithm with 50 iterations of the standard “bru-
net” [15]. The number of clusters k was set from 2 to 10, and
the average contour width of the common member matrix
was determined through the R package “NMF.” The optimal
number of clusters was determined according to cophenetic,
dispersion, and silhouette index.

2.3. Weighted Correlation Network Analysis (WGCNA). The
WGCNA algorithm was applied to screen coexpressed cod-
ing genes and modules according to the expression profile
of protein-coding genes [16]. The soft threshold for network
construction was determined by the criterion of approxi-
mate scale-free topology. After transformation of an adja-
cency matrix into a topological overlap matrix (TOM),
genes were clustered with average linkage hierarchical
clustering.

2.4. Gene Set Enrichment Analysis (GSEA). To investigate the
molecular mechanism, GSEA was applied [17]. The gene
sets “c5.go.v7.4.symbols” and “c2.cp.kegg.v7.4.symbols”
were obtained from the MSigDB database. An adjusted p
value less than 0.05 was considered statistically significant.
The R package “clusterProfiler” was used to carry out
enrichment analyses.

2.5. Comprehensive Analysis of Immune Characteristics and
Gene Mutations in Different Risk Groups. Kaplan-Meier sur-
vival curves were applied to compare prognoses between the
two risk subgroups. To further investigate the gene muta-
tions between different risk subgroups, we obtained infor-
mation on genetic alterations from the cBioPortal database,
and different gene mutations in the two risk subgroups were
analyzed using the “Maftools” R package. To determine the
immune profile of BC samples, their expression data were
imported into CIBERSORT and iterated 1000 times to esti-
mate the relative proportions of 22 types of immune cells.
We then compared the relative proportions of immune cells
and clinicopathological factors between different risk sub-
groups, and the results are presented as a landscape map.

2.6. Construction of the Nomogram. A nomogram is a visual
model used to evaluate the prognosis of cancer. We therefore
constructed a nomogram to predict the prognosis of patients
with BC. Moreover, a calibration plot was constructed to
estimate the accuracy and consistency of the prognostic
model.

2.7. Analysis of DCA. Decision curve analysis (DCA) repre-
sents a novel method for evaluating clinical usefulness.
DCA can determine the clinical utility based on the predic-
tive nomogram, and the best model has a higher net benefit
than the others.

2.8. Clinical Patients and Bladder Specimens. Fifty paired
normal and tumor tissues were collected from BC patients
who underwent radical cystectomy at Shanghai Tenth Peo-
ple’s Hospital (Shanghai, China). Patients had diagnostic cri-
teria in accordance with the World Health Organization
(WHO) classification and did not receive any preoperative
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treatment. All patients provided informed consent prior to
inclusion in the study, and ethical approval was obtained
from the Ethics Committee of Shanghai Tenth People’s Hos-
pital. Detailed information is shown in Supplementary
Table S2.

2.9. Cell Culture and Transfection. The immortalized human
normal bladder epithelial cell line (SV-HUC-1) and bladder
cancer T24, 5637, and UMUC3 cell lines were obtained from
the Chinese Academy of Sciences (Shanghai, China). The
UMUC3, T24, and 5637 cell lines were cultured in Roswell
Park Memorial Institute- (RPMI-) 1640 medium (Gibco,
USA), and the SV-HUC-1 cell line was maintained in
F12K medium (Gibco). All cells were grown at 37°C in 5%
CO2. The IMPDH1 siRNA (ATGGCTCTGATGGGAG
GTATT), FASN siRNA (TGGCAAATTCGACCTTTCTCA
GA), and TM4SF1siRNA (CGGCTAATATTTTGCTTTA
CTTT) were synthesized by Sangon Biotech (Shanghai,
China). Lipofectamine 3000 (Invitrogen, USA) was used as
a transfection reagent. T24 and UMUC3 cell lines were
transfected with siRNA based on the protocol.

2.10. RNA Extraction and Quantitative Real-Time
Polymerase Chain Reaction (qRT-PCR). For the qRT-PCR
assay, TRIzol (Invitrogen, USA) was used to extract the total
RNA. Next, SYBR-Green Mix (Vazyme, Nanjing, China)
with different primers (Sangon Biotech, China) was used
according to the manufacturer’s protocol. GAPDH was used
as an internal control. Fold changes were calculated by the 2-
ΔΔCt method. Primer information is shown in Supplemen-
tary Table S3.

2.11. Cell Proliferation Assay. A total of 1 × 103 cells were
grown in each well of a 96-well plate. Cell viability was cal-
culated with the cell counting kit-8 (CCK-8) system. The
optical density (OD) value per well was measured at
450nm (BioTek, USA).

2.12. Cell Colony Formation Assay. A total of 500 cells were
grown in each well of 6-well plates for approximately 2
weeks until colony formation was evident. Then, the cells
were fixed, stained, and photographed.

2.13. Western Blot. Western blot was carried out based on
standard protocol. Briefly, cells were washed with chilled
PBS and lysed with lysis solution. Total protein extracts were

separated on a 10% SDS-PAGE gel and transferred onto
PVDF membrane. After blocking with 5% nonfat dry milk,
the PVDF membrane was incubated with primary antibody
overnight at 4°C.

2.14. Immunohistochemistry (IHC). Tissue samples were
fixed and cut into 4μm slices. During dewaxing, rehydra-
tion, and antigen retrieval, sections were incubated with pri-
mary antibodies against TM4SF1, KCNK5, FASN, IMPDH1,
and KCNJ15 (Thermo Fisher Scientific). Images were
obtained with a microscope.

2.15. Statistical Analysis. Bioinformatics analyses were con-
ducted using R version 4.1.1. GraphPad Prism 8 (GraphPad
Software, Inc.) was used for statistical analysis. Student’s t
test or the Wilcoxon test was used to compare continuous
data. The chi-square test and Fisher test were used to com-
pare clinical and pathological parameters. Survival rates
were assessed using Kaplan-Meier (K-M) curves and the
log-rank test, and univariate and multivariate Cox regression
was used to analyze the independent parameters associated
with the overall survival. Pearson coefficient of correlation
was calculated to measure the correlation between two vari-
ables. LASSO regression was carried out by using the
“glmnet” R package to build a prognostic model. R software
package “WGCNA” was used to construct a weighted coex-
pressed network. The correction between the risk signature
and immune cells was analyzed by Spearman correlation
analysis. The results of multivariate Cox regression analysis
were visualized by the nomogram. C-index, time-
dependent ROC curves, and calibration curves were used
to evaluate the nomogram. All statistical p values were
two-sided, and p < 0:05 was considered statistically
significant.

3. Results

3.1. Molecular Subtypes Were Classified by the NMF
Algorithm. Figure S1 presents the flow diagram of the
current study. First, we selected six gene sets associated
with lipid metabolism from MSigDB. To investigate gene
expression in BC, RNA-seq data from TCGA bladder
cancer cohort (TCGA-BLCA) were downloaded. The
“limma” R package was used to screen the genes with
differential expression. A total of 76 differentially expressed

Table 1: Six pathways involved in lipid metabolism.

Pathway Database Gene count

Peroxisome proliferator-activated receptor alpha Reactome 119

Metabolism of lipids Reactome 738

Transcriptional regulation of white adipocyte differentiation Reactome 84

Sphingolipid metabolism Reactome 89

Glycerophospholipid metabolism KEGG 77

Fatty acid metabolism Reactome 177

Total: 1284

Unique: 776
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Figure 1: Cluster subtypes classified by the NMF algorithm. (a) Heatmap showing the differentially expressed lipid metabolism-related
genes in TCGA. Red: upregulation; blue: downregulation. (b) NMF clustering consensus map. (c) NMF distributions when rank = 2-10.
(d) Overall survival analysis of the two molecular subtypes. (e) Progression-free survival analysis of the two molecular subtypes.
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lipid metabolism-related genes on BC were obtained
(p < 0:05, Figure 1(a)). Next, BC samples were clustered
using the NMF method with 50 iterations by the “brunet”
selection criterion. The optimal number of clusters chosen
based on cophenetic, dispersion, and silhouette is k = 2.
(Figures 1(b) and 1(c)). The prognostic relationship
between Cluster 1 (C1) and Cluster 2 (C2) with overall
survival (OS) (Figure 1(d), log rank p < 0:001) and
progression-free survival (Figure 1(e), log rank p = 0:006)
showed that subgroup C1 exhibited better prognosis than
subgroup C2.

3.2. Identification of Functional Modules by WGCNA. The
WGCNA algorithm was used to identify coexpressed coding
genes and modules according to the expression profile of
protein-coding genes. Hierarchical clustering analysis
showed no outlier samples, and a soft threshold of 3 was
chosen (Figure 2(a)). Genes were clustered using average
linkage hierarchy clustering to obtain 13 modules with
height = 0:25,deepSplit = 2, and minModuleSize = 30
(Figures 2(b) and 2(c)). Correlations of the modules with
gender, age, clinical stage, N stage, T stage, C1, and C2 were
further analyzed, in which modules significantly correlated
with C1 and C2 were turquoise and brown modules. The
turquoise module contained 907 genes, and the brown mod-
ule contained 560 genes (Supplementary Table S4). These
1467 genes were used to establish the prognostic risk
model. Analysis of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment in the two module genes was performed using
the R package “cluster profiler.” The top 10 GO terms
(Figures S2A and S2B) and KEGG pathways (Figures 2(d)
and 2(e)) in the turquoise and brown modules were
obtained.

3.3. Establishment of the Prognostic Risk Model. BC samples
were divided randomly into a training cohort and testing
cohort in a 6 : 4 ratio. The detailed information of the patient
cohorts is summarized in Table 2. Univariate Cox propor-
tional hazard analysis was performed to screen prognosis-
related significant genes in the training set. Based on a
threshold p value less than 0.01, 46 genes were identified
with significant prognostic differences (Supplementary
Table S5). To further narrow the range of genes and
construct a highly accurate prognostic model, LASSO Cox
regression and multivariate Cox analysis were used to
select the hub genes (Figures S3A and S3B). Combining
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Figure 2: Identification of modules and construction of the model. (a) Cluster analysis and soft-thresholding powers. (b) WGCNA module
colors. (c) Correlations of thirteen modules with clinical variables and clusters. (d, e) KEGG enrichment in the turquoise and brown
modules. (f) ROC curve of the model in TCGA training cohort. (g) Survival curves of the groups in TCGA training cohort. (h) ROC
curve of the model in TCGA testing cohort. (i) Survival curves of the groups in TCGA testing cohort. (j) ROC curve of the model in the
entire TCGA cohort. (k) Survival curves of the groups in the entire TCGA cohort. (l) ROC curve of the model in the GSE13507 cohort.
(m) Survival curves of the groups in the GSE13507 cohort.

Table 2: Clinical characteristics of bladder cancer patients from
TCGA and GSE13507 datasets.

Clinical
characteristics

TCGA
cohort

(n = 412)

TCGA
train

(n = 243)

TCGA
test

(n = 160)

GSE13507
cohort

(n = 165)
Age at
diagnosis
(year)

≤65 162 95 65 74

>65 250 148 95 91

Gender

Male 304 177 121 135

Female 108 66 39 30

Grade

Low grade 21 10 10 105

High grade 388 233 147 60

Stage

I/II 133 77 53 135

III/IV 277 166 105 30
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Figure 3: Continued.
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the analysis, 5 target genes were selected. The 5-gene
signature formula was as follows: risk score = expression
level of TM4SF1 ∗ ð0:197Þ + expression level of KCNK5 ∗ ð−
0:373Þ + expression level of FASN ∗ ð0:408Þ + expression
level of IMPDH1 ∗ ð0:342Þ + expression level of KCNJ15 ∗ ð
−0:171Þ. Then, we analyzed the predictive classification
efficiencies of the model, and the area under the curve
(AUC) values for 1, 3, and 5 years were 0.771, 0.755, and
0.793, respectively, indicating good predictive performance
(Figure 2(f)). Moreover, we divided the risk score into two
risk subgroups, plotted the K-M curve as shown in
Figure 2(g), and found a significant difference between
them (p < 0:001). To further determine the robustness of

this model, we used the same coefficients in the internal
testing cohort, all TCGA cohorts, and the independent
validation cohort GSE13507. In the testing cohort, the
AUC values for 1, 3, and 5 years were 0.755, 0.641, and
0.604, respectively (Figure 2(h)); in all TCGA cohorts, the
AUC values for 1, 3, and 5 years were 0.708, 0.711, and
0.723, respectively (Figure 2(i)). In the GSE13507 cohort,
the AUC values for 1, 3, and 5 years were 0.699, 0.666, and
0.614, respectively (Figure 2(l)). Similar results were
obtained in these cohorts, and significant differences were
observed between the two risk subgroups (Figures 2(i),
2(k), and 2(m)). These results showed that the constructed
risk signature has good robustness and could be used to
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Figure 3: Molecular characteristics of the two risk subgroups and correlation between the risk model and immunity. GSEA for high-risk
patients (a) and low-risk patients (b). (c) The relative proportions of 22 kinds of immune cells in the two risk subgroups. (d)
Clinicopathological characteristics of two risk subgroups with the immune landscape.

Table 3: Univariate and multivariate cox analysis.

Clinical variables
Univariable analysis Multivariable analysis

HR 95% CI p value HR 95% CI p value

Age 1.040 1.021-1.059 2.75E-05 1.042 1.023-1.062 1.48E-05

Gender 1.110 0.761-1.620 0.5860 1.192 0.812-1.750 0.3679

Stage 1.951 1.524-2.497 1.10E-07 1.279 0.827-1.978 0.2669

T 1.658 1.275-2.154 0.0001 1.395 1.021-1.908 0.0365

N 1.592 1.334-1.901 2.58E-07 1.214 0.893-1.650 0.2154

Risk score 1.371 1.238-1.517 1.24E-09 1.337 1.195-1.496 3.66E-07
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predict the prognostic risk of BC patients in different
cohorts.

3.4. Molecular Characteristics between Different Risk
Subgroups. Mutation analysis in TCGA-BLCA samples
revealed that 3%, 2.4%, 6%, 3%, and 2.2% of patients had
mutations in TM4SF1, KCNK5, FASN, KCNJ15, and
IMPDH1, respectively (Figure S4A). Missense variations,
nonsense variations, and frameshift deletions were the
common mutation types between the subgroups. The
mutation rates of TTN, TP53, ARID1A, MUC16, KDM6A,
and KMT2D were more than 20% in the two subgroups
(Figures S4B and S4C). GSEA was used to identify the
gene sets enriched in different risk subgroups. Gene sets
from samples with high-risk score samples were enriched
in pathways related to the cell cycle, chemokine signaling
pathway, cytokine-cytokine receptor, pathways in cancer,
and regulation of actin cytoskeleton, while the gene sets of
low-risk score samples were enriched in metabolism
pathways (Figures 3(a) and 3(b)).

3.5. Prognostic Analysis of Risk and Clinical Characteristics.
We further compared the risk score between patients with
different clinical characteristics. Correlation analysis of the
risk score and clinical characteristics such as age, pathologi-
cal grade, clinical stage, N stage, T stage, and M stage
revealed a statistically significant association (Figure S5).
We further performed survival analysis of the clinical
subgroup with the risk score. As shown in Figure S6, the
5-gene signature can clearly distinguish patients by age,
gender, T stage, and N stage. These results suggested that
our risk model retained strong power in predicting
different clinical variables. Furthermore, univariate and
multivariate Cox regression analyses were used to
investigate the independence of the risk (Table 3). The
proportional hazards assumption was tested using the

Schoenfeld residual test (Figure S7). Univariate Cox
regression analysis showed that age, stage, T stage, N stage,
and risk were closely related to survival. Based on
multivariate analysis, only age (HR = 1:042, 95%CI = ½1:023
− 1:062�, p = 1:48E − 05), T stage (HR = 1:395, 95%CI = ½
1:021 − 1:908�, p = 0:0365), and risk score (HR = 1:337, 95
%CI = ½1:195 − 1:496�, p = 3:66E − 07) were significantly
associated with survival. This finding indicated that this 5-
gene signature was an independent risk factor for
predicting prognosis.

3.6. Correlation between the Risk Model and Immunity. To
explore the indicative roles of this risk model on the tumor
microenvironment (TME), CIBERSORT was adopted to
evaluate the relative proportion of 22 kinds of immune cells
[18]. The results showed that the high-risk subgroup was
significantly associated with natural killer (NK) resting cells
and M0 macrophages, while the low-risk subgroup was sig-
nificantly associated with regulatory T cells (Tregs), NK acti-
vated cell, and monocytes (Figure 3(c)). The correlations
between the clinicopathological characteristics of different
risk subgroups and the immune landscape are displayed in
Figure 3(d). The results showed that our risk model could
potentially reflect the status of the TME.

Furthermore, we explored whether the risk model had
the potential to predict treatment response to immune
checkpoint inhibitors (ICIs). We found that the expression
of PD-1, PD-L1, LAG3, and CTLA4 was markedly higher
in the high-risk subgroup, indicating a positive correlation
with risk (Figures S8B–S8E). Moreover, the enrichment
scores of immune-related pathways were quantified.
Interestingly, most of the functions associated with antigen
presentation, such as T cell costimulation and MHC and
APC coinhibition, showed a bias toward the high-risk
group (Figure S8A).
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Figure 4: Comparison with other signatures and construction of the nomogram. (a) ROC and survival curves of the Cao signature. (b) ROC
and survival curves of the Wang signature. (c) ROC and survival curves of the Yang signature. (d) ROC and survival curves of the Zhang
signature. (e) C-index between the five signatures. (f) RMS result of the five signatures. (g) A nomogram to predict overall survival. (h)
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3.7. Comparison of the Risk Model with Other Signatures.
Four prognostic risk signatures, the 4-gene, 5-gene, 7-gene,
and 9-gene signatures, were chosen for comparison with this
risk signature. We also used the same method to calculate
every risk score in TCGA dataset according to the corre-
sponding genes in the four risk signatures. Survival differ-
ences in the low- and high-risk subgroups were also
detected with these risk signatures (Figures 4(a)–4(d), log
rank p < 0:05). To further validate prognostic prediction
performance among them, the R package “rms” was used
to calculate the concordance index (C-index). The results
showed that our model had the highest C-index, highlight-
ing a better performance (Figures 4(e) and 4(f)).

3.8. Construction of the Nomogram with Risk Score. To eval-
uate the potential clinical practicality of the prognostic
model, we combined the clinicopathological features and

risk to construct a nomogram. As shown in Figure 4(g), a
prognostic nomogram with risk score and clinical variables
was constructed. The 1-, 3-, and 5-year calibration plots
demonstrated the performance of the nomogram
(Figure 4(h)). Finally, DCA indicated that the nomogram
had a higher overall net benefit for clinical utility
(Figure 4(i)).

3.9. Clinical and In Vitro Validation of 5 Gene Expressions.
To further confirm the above results, 50 cases of BC tissue
specimens were included. Immunohistochemistry results
showed that TM4SF1, FASN, and IMPDH1 were signifi-
cantly highly expressed in cancer tissues, and KCNK5 and
KCNJ15 were highly expressed in normal tissues
(Figures 5(a)–5(j)). The results were basically consistent with
the in silico analysis. The findings also showed that the
mRNA expression levels of TM4SF1, FASN, and IMPDH1
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Figure 5: Immunohistochemistry and qRT-PCR results of the 5 genes in tissue samples. The protein expression of TM4SF1 (a), KCNK5 (b),
FASN (c), IMPDH1 (d), and KCNJ15 (e) in clinical samples. (f–j) Percentage of positive cells of the 5 genes. (k–o) qRT-PCR analysis of
TM4SF1, FASN, IMPDH1, KCNJ15, and KCNK5 mRNA levels in tissue samples. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ns p > 0:05.
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were higher in cancer tissues (Figures 5(k), 5(m), and 5(n)),
whereas the mRNA expression of KCNJ15 was higher in
normal tissues (Figure 5(o)). Moreover, the current study
findings showed that the levels of TM4SF1, FASN, and
IMPDH1 were significantly increased in BC cell lines
(UMUC-3 and T24) compared with SV-HUC-1
(Figures 6(a)–6(f)). The qRT-PCR and western blotting val-
idation findings confirmed the important roles of the signa-
ture genes in BC. Next, we analyzed the potential function of
IMPDH1 in BC. Silencing IMPDH1 inhibited the prolifera-
tion and colony formation of bladder cancer cells in vitro
(Figures 6(g)–6(i)). The results indicated that IMPDH1
may act as an oncogene in BC. Similar results were also
observed after silencing FASN or TM4SF1 in bladder cancer
cells (Figure S9). We further investigated the influence of
IMPDH1 on lipid metabolism-related pathways; the
expressions of two key enzymes in the fatty acid synthesis
pathway were measured in IMPDH1 knockdown and
control bladder cancer cells. As shown in Figure 6(j),
downregulation of IMPDH1 decreased the protein levels of
SREBP-1 and ACLY in T24 and UMUC3 cells. Thus, we

suggest that IMPDH1 plays an important role in regulating
lipid metabolism on BC.

4. Discussion

BC is a common malignant tumor worldwide and has high
rates of progression and recurrence. Despite advances in sur-
gery and comprehensive treatment regimens, effective tar-
geted therapies and prognostic markers are still lacking in
patients with BC [19]. In the process of transforming normal
cells into malignant cells, one of the key steps is metabolic
reprogramming, including glycolysis and glutamine and
fatty acid metabolism [20]. There is growing evidence that
certain specific changes in lipid metabolism have an impact
on the synthesis and degradation of tumor cell membranes,
thus maintaining the energy balance in the body [21, 22].

In the present study, we identified two subtypes of BC by
using the NMF algorithm based on genes related to lipid
metabolism. Next, WGCNA was applied to screen modules
of coexpressed genes, and 1467 genes were obtained. Then,
LASSO and multivariate Cox analyses were performed to
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Figure 6: In vitro validation of the expression of 5 genes. (a–e) qRT-PCR analysis of TM4SF1, FASN, IMPDH1, KCNJ15, and KCNK5
mRNA levels in cell lines. (f) The protein expression levels of the identified genes (TM4SF1, FASN, and IMPDH1) in cell lines by
western blot. (g–i) CCK-8 and colony formation assays showed that silencing IMPDH1 suppressed cell proliferation. (j) Downregulation
of IMPDH1 decreased the protein levels of SREBP-1 and ACLY in T24 and UMUC3 cells. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ns p >
0:05.
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construct a 5-gene prognostic risk model. Our findings
showed that this risk model had stable performance in the
prognosis of BC patients and was implicated in clinical char-
acteristics and immune infiltration cells.

This risk signature was constructed with TM4SF1,
KCNK5, FASN, IMPDH1, and KCNJ15. According to our
study results, TM4SF1, FASN, and IMPDH1 were signifi-
cantly and highly expressed in BC tissues, while KCNK5
and KCNJ15 were poorly expressed. In accordance with
the corresponding coefficients of these five genes, the risk
score was calculated, and samples were grouped with differ-
ent risks. Survival analysis exhibited significant discrepancies
between different risk subgroups. We also confirmed that
the risk score was an independent prognostic factor for sur-
vival. Stratified survival analysis also indicated the good fea-
sibility of this model. Furthermore, CIBERSORT showed
that patients in the high-risk subgroup had higher propor-
tions of M0 macrophages and NK resting cells, while Tregs
and NK-activated cells were upregulated in the low-risk
group, indicating a differential infiltration pattern between
the subgroups [23]. GSEA indicated that the cell cycle, regu-
lation of actin cytoskeleton, pathways in cancer, cytokine-
cytokine receptor interaction, and chemokine signaling
pathway increased with risk score, suggesting that risk was
closely related to tumor development and immune activity
[24, 25]. Immune checkpoints could be regarded as potential
therapeutic targets of tumor treatment, and the inhibitors
have exhibited superior anticancer efficacy [26]. We found
that the high-risk subgroup was associated with immune
checkpoints such as PD-1, PD-L1, LAG3, and CTLA-4,
implying that patients with different risks respond differ-
ently to immunotherapy.

TM4SF1 acts as an integral membrane glycoprotein that
transmits signals from the extracellular space to the cyto-
plasm. Previous studies have shown that TM4SF1 is overex-
pressed in various cancers and is strongly upregulated in BC
tissues [27]. FASN is a key enzyme in fatty acid synthesis.
FASN levels have been reported to be closely associated with
cell proliferation and apoptosis. Research on the relationship
between FASN and BC has proven that FASN is associated
with the progression of BC [28]. IMPDH1 is a key regulator
of GTP synthesis and is required for signal transduction.
IMPDH1 has been indicated to be positively associated with
renal cancer metastasis [29]. KCNK5 is a member of the
KCNK family, which can regulate membrane potential and
excitability. The expression of KCNK5 is associated with
the maintenance of hearing [30]. KCNJ15 is a member of
the inwardly rectifying potassium channel family. Liu et al.
demonstrated that KCNJ15 inhibits renal cell prolifera-
tion [31].

Next, we further validated the expression of these five
genes in tissue specimens and cell lines. The immunohisto-
chemistry results suggested that the expression of TM4SF1,
FASN, and IMPDH1 was significantly elevated in tumor tis-
sue specimens, while the expression of KCNK5 and KCNJ15
was downregulated. The mRNA expression levels detected in
the tissue specimens were also generally consistent with the
above results. In an in vitro experiment, we demonstrated
that TM4SF1, FASN, and IMPDH1 were elevated in some

bladder cancer cell lines. These results are in accordance
with the bioinformatics analysis. Finally, we focused on the
function of IMPDH1 in BC and found that cell proliferation
and colony formation were significantly inhibited after
knocking down IMPDH1, implying that IMPDH1 has a
tumor-promoting effect.

Previous studies have also developed cancer biomarkers
associated with BC prognosis. Cao et al. constructed a 7-
gene signature related to EMT for predicting the outcome
of BC patients [32], while a 9-gene signature related to fer-
roptosis was established by Yang et al. [33]. Zhang et al.
identified a glycolysis-based 4-mRNA signature to promote
therapeutic options in BC [34]. Wang et al. used univariate
and robust methods to establish a 5-gene risk model in BC
[35]. To further examine the advantages of our signature,
we compared these risk models simultaneously. The results
demonstrated that our model had the highest C-index, exhi-
biting good application value compared with the others. Our
risk signature obtained a more stable and effective prediction
with fewer genes, which is better suited for clinical applica-
tions. Although the results were derived from multiomics
data with a large sample, some limitations also need to be
improved. Despite the rigorous bioinformatics analysis in
the current study, further verification is still needed.

Aberrant activities of lipid metabolism have unique
functional roles in cancer progression, and their imbalanced
status has been a topic for screening therapeutic targets.
Therefore, we attempted to fill the knowledge gap between
lipid gene status and prognosis prediction in BC. Based on
this study, we think these five genes may be implicated in
lipid metabolism processes, and this risk signature may serve
as a prognostic biomarker for BC treatment.

In conclusion, we established and validated a 5-gene sig-
nature associated with lipid metabolism, which was an inde-
pendent prognostic factor in different datasets. The risk
signature exhibited superior predictive performance com-
pared to other published models. This 5-gene signature
could be recognized as a prognostic marker to reflect the
survival of BC.
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