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SVM-SulfoSite: A support vector 
machine based predictor for 
sulfenylation sites
Hussam J. AL-barakati1, Evan W. McConnell2, Leslie M. Hicks2, Leslie B. Poole3, 
Robert H. Newman4 & Dukka B. KC1

Protein S-sulfenylation, which results from oxidation of free thiols on cysteine residues, has recently 
emerged as an important post-translational modification that regulates the structure and function 
of proteins involved in a variety of physiological and pathological processes. By altering the size and 
physiochemical properties of modified cysteine residues, sulfenylation can impact the cellular function 
of proteins in several different ways. Thus, the ability to rapidly and accurately identify putative 
sulfenylation sites in proteins will provide important insights into redox-dependent regulation of 
protein function in a variety of cellular contexts. Though bottom-up proteomic approaches, such 
as tandem mass spectrometry (MS/MS), provide a wealth of information about global changes in 
the sulfenylation state of proteins, MS/MS-based experiments are often labor-intensive, costly and 
technically challenging. Therefore, to complement existing proteomic approaches, researchers 
have developed a series of computational tools to identify putative sulfenylation sites on proteins. 
However, existing methods often suffer from low accuracy, specificity, and/or sensitivity. In this 
study, we developed SVM-SulfoSite, a novel sulfenylation prediction tool that uses support vector 
machines (SVM) to identify key determinants of sulfenylation among five feature classes: binary 
code, physiochemical properties, k-space amino acid pairs, amino acid composition and high-quality 
physiochemical indices. Using 10-fold cross-validation, SVM-SulfoSite achieved 95% sensitivity and 
83% specificity, with an overall accuracy of 89% and Matthew’s correlation coefficient (MCC) of 0.79. 
Likewise, using an independent test set of experimentally identified sulfenylation sites, our method 
achieved scores of 74%, 62%, 80% and 0.42 for accuracy, sensitivity, specificity and MCC, with an area 
under the receiver operator characteristic (ROC) curve of 0.81. Moreover, in side-by-side comparisons, 
SVM-SulfoSite performed as well as or better than existing sulfenylation prediction tools. Together, 
these results suggest that our method represents a robust and complementary technique for advanced 
exploration of protein S-sulfenylation.

Redox-dependent signalling plays a critical role in physiological processes such as aging and the immune 
response, as well as in a number of pervasive diseases, including cancer, Alzheimer’s disease, cardiovascular dis-
ease and diabetes1–3. For instance, protein S-sulfenylation (Fig. 1), which typically occurs in the cell via H2O2–
dependent conversion of free thiols (-SH) on cysteine residues to sulfenic acid (-SOH), has emerged as a key 
post-translation modification (PTM) that can regulate the function of target proteins4,5. For example, sulfeny-
lation can modulate the enzymatic activity, binding affinity, stability and/or subcellular localization of cellular 
proteins2,5–8. While sulfenylation is readily reversible (either by reduction back to the free thiol or via disulfide 
formation followed by reduction by cellular enzymes, such as glutaredoxin and thioredoxin), further oxidation 
by various peroxides (ROOH) or H2O2 can convert sulfenic acid to sulfinic and sulfonic acid moieties that are 
largely irreversible inside the cell9.

To identify sulfenylation sites on proteins, several chemo-proteomic methods have been developed10–16. 
For instance, Yang et al. recently used selective labelling for cysteine sulfenic acid together with tandem mass 
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spectrometry (MS/MS)-based detection to identify more than 1,000 sulfenylation sites in ~700 cellular proteins4.
Though such chemo-proteomic methods provide a wealth of information about the redox regulation of cellular 
proteins in situ, these methods are time-consuming, expensive and require a high level of technical expertise. 
Moreover, though MS-based methods provide significant depth of coverage of the ‘sulfenylome’, they can be 
biased towards abundant proteins. Finally, other redox reactions that occur following lysis, such as adventitious 
oxidation by ambient oxygen, can generate SOH sites that do not necessarily occur under physiological condi-
tions. Therefore, to complement global proteomic analysis of sulfenylation site identification, several computa-
tional approaches have been developed to predict sulfenylation sites in silico17–22. The first method, developed 
by Bui and colleagues in 2015, uses maximal dependence decomposition (MDD) and support vector machines 
(SVM) to identify sulfenylation motifs based on amino acid composition and solvent accessibility. Using 5-fold 
cross-validation, the resulting method, known as MDD-SOH, achieved efficiency scores of 68%, 70%, 70%, and 
0.27 for accuracy (ACC), sensitivity (SN), specificity (SP), and Matthew’s correlation coefficient (MCC), respec-
tively17. Subsequently, Xu et al. used SVM to identify key parameters for sulfenylation from among 14 types 
of physicochemical properties18. The resulting sulfenylation site prediction tool, termed iSulf-Cys, performed 
similarly to MDD-SOH based on 10-fold cross-validation, with a slight increase in MCC18. Similarly, other pre-
diction tools based on strategies including position specific scoring matrices (PSSM) and SVM have offered 
modest improvements in performance19–21. For instance, Sakka et al. developed the PRotEin S-sulfenylation 
server (PRESS), which uses SVM to identify structural features that correlate with sulfenylation20. Using 10-fold 
cross-validation, PRESS achieved ACC, SN and SP scores of 77%, 80% and 74%, respectively. Most recently, 
two prediction tools, S-SulfPred and SulCysSite, were reported that also show significant improvements in one 
or more performance metric22,23. For instance, Hasan et al. developed a predictor named SulCysSite that uses a 
random forest-based strategy to identify key parameters related to sulfenylation from among four features. Using 
this approach, the authors observed SN, SP and MCC scores of 62%, 81%, and 0.45, respectively, upon 10-fold 
cross-validation23. Likewise, Jia and Zuo developed a method named S-SulfPred, which combines a synthetic 
minority oversampling technique (SMOTE) and an under-sampling strategy with an SVM implementation to 
predict sulfenylation sites based on three feature types22. Upon 10-fold cross-validation, S-SulfPred achieved 
impressive scores of 88%, 78%, 91% and 0.64 in terms of ACC, SN, SP and MCC, respectively.

Despite the significant progress that has been made over the past two years, there is still room for improvement 
in the performance of existing sulfenylation site prediction tools. For instance, many of the existing sulfenylation 
site prediction tools exhibit relatively low MCC scores compared to prediction tools for other posttranslational 
modifications, such as phosphorylation24, hydroxylation25 and glycosylation26. While this is likely a function 
of the size of datasets available for training and/or the mode of modification (i.e., enzyme-mediated modifica-
tion for phosphorylation, hydroxylation and glycosylation versus predominantly non-enzymatic modification 
for sulfenylation), it is also likely that other factors contribute to the relatively low MCC scores. Moreover, in 
addition to the primary amino acid sequence, some methods, such as PRESS, require structural data about the 
protein-of-interest. As a consequence, the number of proteins that can be analysed is greatly reduced. Here, we 
describe the development and evaluation of SVM-SulfoSite, a novel sulfenylation site prediction tool designed to 
identify putative sulfenylation sites using only the primary amino acid sequence as input. SVM-SulfoSite com-
bines multiple features, including physiochemical properties, amino acid composition and high-quality indices, 
with novel classifier algorithms and an SVM-based machine learning strategy to predict sulfenylation sites in 
proteins. Based on evaluation using both 10-fold cross-validation and an independent dataset, SVM-SulfoSite 
compares favourably to existing sulfenylation site prediction tools with regard to accuracy, sensitivity, specificity 

Figure 1.  In the presence of an oxidizing agent (ROOH), the thiolate anion of a redox-sensitive Cys (Cys-S−) is 
reversibly oxidized to form a sulfenic acid (SOH). When in close proximity to another reactive Cys (SH), either 
in the same protein molecule or in another protein, SOH leads to disulfide bond (S-S) formation. In addition to 
Cys residues in proteins, SOH can also react with the cellular antioxidant, glutathione (g-Glu-Cys-Gly; GSH) to 
form a mixed S-S bond (PSSG). Aside from altering the chemical properties of the Cys residue and the tertiary 
structure of the protein, S-S bonds are also believed to prevent terminal oxidation to sulfinic (SO2H) and 
sulfonic (SO3H) acid. Disulfide bonds can be reduced back to the thiol by cellular antioxidant enzymes, such as 
glutaredoxin (Grx) or thioredoxin (Trx).
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and MCC. Therefore, SVM-SulfoSite represents a robust, accessible sulfenylation prediction tool that promises to 
provide additional insights into the regulation and biological consequences of protein S-sulfenylation.

Results and Discussion
Model development.  To develop a robust sulfenylation site prediction tool that is able to identify putative 
sulfenylation sites using only the primary amino acid sequence as input, we first compiled training and independ-
ent test sets similar to those described by Xu et al.18. After discarding sequences that exhibited ≥40% identity, 
1,045 positive sites and 7,126 negative sites on 778 human proteins remained. All sites had been experimentally 
verified previously4. We then randomly selected 145 positive sites and 268 negative sites for the independent test 
set and used the remaining sites for model training and development. The training set consisted of 900 positive 
sites and 6,858 negative sites. Each 21-residue fragment contained a central cysteine (either sulfenylated or not 
sulfenylated) flanked by 10 residues on either side. Due to the disproportionate number of negative sites, the 
positive and negative sets were imbalanced. Therefore, we used oversampling to balance the positive and negative 
classes27. This approach, which randomly selects data points from the minority class until it is equivalent to the 
majority class, has been used for bioinformatics analysis in several biological contexts28,29. After balancing the 
positive and negative training sets, all fragment sequences were converted into vectors for analysis. To this end, 
we selected five features—binary encoding (BE), 14 types of physicochemical amino acid properties (AAindex), 
k-spaced amino acid pairs (KSAAP), amino acid composition (AAC) and high-quality indices (HQI)—and gen-
erated a unique vector for each feature. Finally, to build our predictor, a SVM-based machine learning strat-
egy was employed to identify those parameters that correlated with sulfenylation in the training set. After each 
round of parameter optimization, the resulting model was assessed using 10-fold cross-validation until no further 
improvement in model performance was observed. The resulting model, which we termed SVM-SulfoSite, exhib-
ited robust performance with respect to several standard scoring metrics, as described below.

Model evaluation.  To assess the performance of SVM-SulfoSite, we first used 10-fold cross-validation30–33. 
To this end, the training set was partitioned into 10 subsets. We then used 9 of the subsets to train the model 
and the remaining subset for testing. We repeated this technique ten times, with the final result representing the 
average performance of 10 models. As can be seen in Table 1, SVM-SulfoSite exhibited high efficiency scores for 
ACC, SN and SP, leading to a strong MCC score of 0.79. Though the scores were relatively high across all met-
rics, SVM-SulfoSite performed particularly well with respect to SN (95%) and ACC (89%). Likewise, the area 
under the ROC curve was a robust 0.97 (Fig. 2). To gain further insights into the relative impact of each feature 
on the overall performance of our method, we also conducted 10-fold cross-validation using only one feature at 
a time (Table 1 and Fig. 2). While each of the individual features contributed substantially to the overall score 
for most metrics, KSAAP appears to have the largest impact on model performance across all metrics except SP. 
Interestingly, while BE and AAC both appear to have a relatively strong effect on sensitivity, AAC does not impact 
specificity to the same extent as the other features. Together, these data suggest that both the frequency (AAC) 
and the relative spacing of amino acids around the modified cysteine residue (KSAAP) may play an important 
role in correctly identifying positive sites of sulfenylation (i.e., SN) while the former is less important for correctly 
predicting negative sites (i.e., SP).

In addition to 10-fold cross-validation, we also evaluated the performance of our method using an independ-
ent test set that had been kept hidden from the model during training. Though the efficiency scores were not as 
high as those observed using 10-fold cross-validation, SVM-SulfoSite still performed quite well using the inde-
pendent test set (Table 2). Interestingly, while very little difference was observed between the SP scores obtained 
using the independent set and 10-fold cross-validation (80% and 83%,respectively), we noticed a marked decrease 
in SN using the independent set (62% for the independent test set versus 95% for 10-fold cross-validation). 
Likewise, there was a modest decrease in ACC between the two evaluation methods (74% for the independent 
set and 89% for 10-fold cross-validation). Together, these changes decreased the MCC score from 0.79 to 0.42. 
Likewise, the AUC dropped from 0.97 to 0.81. The observed differences between the performance metrics using 
10-fold cross-validation and our independent set may be a consequence of the oversampling strategy used to bal-
ance the positive and negative datasets during training. Among the individual features, KSAAP scores decreased 
most dramatically when SVM-SulfoSite was evaluated using the independent test set, followed by BE. On the 
other hand, AAindex and HQI exhibited very similar scores regardless of the evaluation method used. It is inter-
esting to note that both of these features rely on physiochemical properties of amino acids. This is consistent with 
the notion that sulfenylation is typically a non-enzymatic PTM that may be particularly sensitive to the surround-
ing physiochemical environment of the modified cysteine7.

Features

Performance (%)

ACC SN SP MCC

BE 74 81 69 0.49

AAindex 70 73 66 0.39

KSAAP 76 85 67 0.53

AAC 65 76 55 0.31

HQI 70 73 66 0.39

All Features 89 95 83 0.79

Table 1.  Results of 10-fold cross-validation using individual and cumulative features.
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Comparison with existing methods.  Next, we compared the performance of SVM-SulfoSite with that of 
other recently developed sulfenylation site predictors using both 10-fold cross-validation and independent test 
sets. Based on 10-fold cross-validation, SVM-SulfoSite performed as well or better than all existing methods in 
each category (with the exception of SP, where SVM-SulfoSite was outperformed by S-SulfPred) (Table 3). The 
largest improvements were observed for MCC, where SVM-SulfoSite scored ~2.1-fold higher than the average 
MCC across all methods (ranging from a 23% improvement versus S-SulfPred to a 2.9-fold improvement over 
MDD-SOH). This was followed by SN, where SVM-SulfoSite exhibited an average increase of 36% (ranging from 
19 to 61% over PRESS and SOHPRED, respectively) and ACC (average improvement of 19%, ranging from 1 to 
35% improvement over S-SulfPred and iSulf-Cys, respectively). Finally, the smallest gains were observed for SP, 
where SVM-SulfoSite exhibited an average improvement of 11% (ranging from a 9% decrease versus S-SulfPred 
to a 30% increase compared to iSulf-Cys).

Interestingly, SP was one of the categories where we observed the greatest gains when the methods were com-
pared using an independent test set (Table 4). In fact, the average increase in SP observed for SVM-SulfoSite using 
the independent dataset (18%) was ~65% greater than that observed using 10-fold cross-validation (11%). The 
gains in SP ranged from a 13% increase (which was observed for several methods, including S-SulfPred) to a 21% 
increase over iSulf-Cys. Similarly, SVM-SulfoSite outperformed all existing methods with respect to ACC using 

Features

Performance (%)

ACC SN SP MCC

BE 68 66 69 0.34

AAindex 65 68 63 0.30

KSAAP 65 72 62 0.32

AAC 61 74 53 0.26

HQI 68 71 66 0.35

All Features 74 62 80 0.42

Table 2.  Independent test result using individual and cumulative features.

Predictor

Performance (%)

ACC SN SP MCC

iSulf-Cys 66 67 64 0.31

MDD-SOH 70 68 70 0.27

SOHSite 74 74 74 0.33

SOHPRED — 59 — 0.28

PRESS 77 80 74 —

SulCysSite — 62 81 0.45

S-SulPred 88 78 91 0.64

SVM-SulfoSite 89 95 83 0.79

Table 3.  Comparison of sulfenylation site predictors using 10-fold cross-validation.

Figure 2.  Receiver operator characteristic (ROC) curves for each of five features used to develop our method as 
well as that for the final method utilizing all features (SVM-SulfoSite) for the 10-fold cross-validation. The area 
under the curve (AUC) for each feature is given in parentheses.
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the independent set. Indeed, the average improvement in ACC was 6%, ranging from 3 to 10% versus S-SulfPred 
and iSulf-Cys, respectively. In contrast, SVM-SulfoSite exhibited lower SN scores than the other methods, with 
an average decrease of 14% (ranging from 10% versus iSulf-Cys to 18% compared to SulCysSite). Nonetheless, 
the improvements observed in the other areas led to an average increase in MCC of 33% for SVM-SulfoSite 
when assessed using the independent test set (ranging from a 2% decrease versus S-SulfPred to a 56% increase 
versus PRESS). Together, these data suggest that SVM-SulfoSite is able to distinguish between sulfenylated and 
non-sulfenylated cysteine residues in an efficient manner. Importantly, our predictor performs as well as or better 
than existing methods in all performance metrics except SN, where it exhibits modest decreases in performance 
when using an independent dataset. In particular, SVM-SulfoSite performs very well with respect to SP, where it 
outperforms existing methods in side-by-side comparisons using an independent dataset. These data suggest that 
SVM-SulfoSite is able to distinguish between true negative and false positive sites more efficiently than existing 
tools.

Conclusion
Reversible sulfenylation of proteins is an important PTM involved in the regulation of a number cellular processes 
that contribute to health and disease, yet experimental identification of sulfenylation sites remains challenging. 
This is due to several factors, including the highly reactive nature of the sulfenic acid moiety and the fact that 
sulfenylation is generally believed to be a non-enzymatic process7. Therefore, several computational methods have 
recently been developed to predict putative sulfenylation sites in silico. Despite these strides, there is still room for 
improvement - particularly with respect to overall predictor performance. Here, we developed a novel sulfenyl-
ation prediction tool, termed SVM-SulfoSite, that uses a SVM-based strategy to identify parameters that corre-
late with sulfenylation among five distinct feature sets. Based on analysis using both 10-fold cross-validation and 
an independent dataset, SVM-SulfoSite performed as well or better than existing methods with respect to MCC 
(Tables 3 and 4), which is often viewed as a surrogate for overall performance since it integrates information about 
the true positive, false positive, true negative and false negative rates34,35. For all previously developed sulfenylation 
prediction methods, the MCC is <0.65 based on 10-fold cross-validation (Table 3). In contrast, SVM-SulfoSite 
achieved an MCC of 0.79 when assessed using 10-fold cross-validation. Similarly, when performance was assessed 
using an independent test set, only S-SulfPred and SVM-SulfoSite achieved an MCC >0.42 (Table 4).

In particular, SVM-SulfoSite consistently ranked among the best methods (i.e., either first or second) with 
respect to ACC, SP and MCC regardless of the evaluation method employed. Interestingly, though SVM-SulfoSite 
exhibited the highest SN score when assessed by 10-fold cross-validation (95%), its performance in this area 
decreased substantially when evaluated using an independent test set (62%). This may be a consequence of the 
oversampling strategy that we employed to account for incongruities between the number of positive and nega-
tive sites in the training set. Indeed, due to the sub-stoichiometric nature of many PTMs inside the cell, a major 
challenge in PTM predictor development is how to handle imbalanced datasets. Whereas under-sampling is 
often used to balance training sets during the development of prediction tools for well-studied PTMs such as 
phosphorylation sites24,36, due to the relatively small number of experimentally-verified sulfenylation sites avail-
able for analysis, we chose instead to resolve this issue using an oversampling strategy so that no information 
about negative sites was lost during balancing. On the other hand, this strategy likely improved the performance 
of SVM-SulfoSite with respect to SP. Indeed, since negative sites were retained during training, our method is 
able to identify negative sites more efficiently than other methods, as reflected in the highest SP scores using 
both 10-fold cross-validation and an independent test set. Similarly, the ability to better distinguish between 
positive and negative sites may have also contributed to the improved fidelity of our method, which is supported 
by increased scores for ACC and MCC. In conclusion, we have developed and evaluated a novel and robust 
sulfenylation site prediction tool, termed SVM-SulfoSite, that is able to efficiently identify sulfenylation sites in 
proteins using only the primary amino acid sequence as input. As a complementary approach to experimental 
strategies, such as chemo-proteomic and biochemical analyses, SVM-SulfoSite has the potential to provide new 
insights into the characteristics and functional consequences of protein sulfenylation. To facilitate its use by the 
biomedical research community, the method has been posted on GitHub (https://github.com/HussamAlbarakati/
SVM-Sulfosite) and we are currently developing a webserver that will allow biological researchers to use this 
method to predict putative sulfenylation sites in proteins-of-interest.

Predictor

Performance (%)

ACC SN SP MCC

iSulf-Cys 64 69 66 0.33

MDD-SOH 71 71 71 0.30

SOHSite 69 72 69 0.28

SOHPRED — 73 71 0.32

PRESS — 68 69 0.27

SulCysSite — 76 71 0.34

S-SulPred 72 75 71 0.43

SVM-SulfoSite 74 62 80 0.42

Table 4.  Comparison of sulfenylation site predictors using an independent test set.

https://github.com/HussamAlbarakati/SVM-Sulfosite
https://github.com/HussamAlbarakati/SVM-Sulfosite
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Materials and Methods
Our method was developed using a four-step procedure (Fig. 3). In the first step, data were collected and 
pre-processed to remove overlapping sequences. Next, sequences containing a central cysteine residue were iden-
tified and features (defined below) were extracted using binary encoding (BE), 14 types of physiochemical amino 
acid properties (AAindex), k-space amino acid pairs (KSAAP), amino acid composition (AAC) and high-quality 
indices (HQI). Following feature extraction, oversampling techniques were used to balance the training dataset. 
Finally, the model was evaluated using both 10-fold cross-validation and an independent dataset.

Binary encoding (BE).  To convert each amino acid in a sequence into a unique numerical vector, we used 
an orthogonal binary scheme. According to this strategy, 21 dimensional vectors were used to represent each of 
the 20 canonical amino acid plus a 21st position, corresponding to non-existent residues at the extreme N- or 
C-terminus of a protein (denoted as X). For example, alanine (A) was encoded as “100000000000000000000”, 
while cysteine (C) was encoded as “010000000000000000000” and so on. “Non-existent” X residues were encoded 
as “000000000000000000001”. In all windows evaluated, the central residue was cysteine (C), which was removed 
from window sites. Therefore, the total BE feature vector was 420.

Amino acid index (AAindex) property.  Each amino acid has several specific physicochemical and bio-
logical properties that directly or indirectly influence protein properties. Dissimilar mixtures of those properties 
have different impacts to the construction and function of proteins. AAindex37 is a database that holds numerous 
physicochemical and biological properties of amino acids. Several mixtures of physicochemical properties have 
been employed that effectively convert sequences of peptides into mathematical expressions18,38–40. In this study, 
we used 14 physicochemical properties: hydrophobicity, solvent accessibility, polarity, polarizability, accessibility, 
PK-N, PK-C, melting point, molecular weight, optical rotation, net charge index of side chains, entropy of for-
mation, heat capacity and absolute entropy. In each case, the feature properties for non-existent residues, X, were 
represented as 0. Likewise, as above, the central residue was always Cys, which was not considered for window 
sites. Therefore, the total AAindex feature vector was 280.

K-space amino acid pairs (KSAAP).  Each KSAAP can be denoted as fr{k}fs(r, s = 1, 2, …, 20), where fr 
and fs represent any two residues from among the 20 canonical amino acids. If k = 0, fr{k}fs positions for a dipep-
tide and total feature vector is 40041. In this study, we also considered X, which represents non-existent residues 
such that fr{k}fs(r, s = 1, 2, …, 21). Since we defined kmax = 3, the total KSAAP feature vector was thus 21 * 21 * 
3 = 1,323.

Amino acid composition (AAC).  AAC represents the frequency of each amino acid in a protein fragment. 
The fraction of 20 canonical amino acids can be calculated according to equation 1:

F R
R (1)a

a=

where Ra is the number of a given amino acid in a fragment and R denotes the length of the fragment42. The total 
AAC feature vector was 20.

High quality indices (HQI).  High quality physicochemical indices were similar to those used to develop the 
hydroxylation site prediction tools, predHydroxy and RF-Hydroxysite25,36. Briefly, 8 indices describing various 

Figure 3.  Schematic showing the workflow used to develop our method. KSAAP: k-space amino 
acid pairs; HQI: high-quality indices; BE: Binary encoding; AAC: Amino acid composition; AAindex: 
physiochemical amino acid properties; SVM: support vector machines; NCBI: National Center for 
Biotechnology Information.
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physicochemical properties corresponding to 8 groups were generated by grouping 544 associated amino acid 
properties in the AAIndex database using fuzzy clustering43. The 8 indices are (BLAM930101)44, (BIOV880101)45, 
(MAXF760101)46, (TSAJ990101)47, (NAKH920108)48, (CEDJ970104)49, (LIFS790101)50 and (MIYS990104)51. We 
extracted HQIs for each amino acid residue neighbouring the cysteine residue (regardless of whether it was mod-
ified or unmodified). The central residue was always C, which was not considered for window sites. Thus, the total 
HQI feature vector was 160.

Oversampling to balance training data.  Class imbalance, which happens when the sample sizes 
in the data classes are unequally dispersed52, has been identified as one of the most difficult issues in the 
machine-learning field53. Previous studies have described various approaches to address data imbalance27–29. A 
popular approach is random under-sampling, which decreases the number of sample points from the majority 
class such that the majority class is balanced with the minority class. However, the disadvantage of using this 
method is that it can dispose of conceivably valuable data that could be essential for classifiers27. Therefore, in this 
study, we utilized an alternative oversampling approach that randomly replicates data points from the minority 
class to balance with the majority class. The primary benefit of using this strategy is that there is no loss of infor-
mation, as is seen when using an under-sampling approach28,29.

Model learning and testing.  To train our algorithm, we utilized a SVM-based machine learning strategy. 
SVMs are supervised machine learning algorithms used for many classification problems. SVM has been widely 
used in many bioinformatics problems, such as SUMOylation site prediction54 and protein fold recognition55. 
Briefly, SVM constructs a hyperplane in a high dimension space that separates two classes of attribute vectors 
using the largest distance margin. In this study, we used a radial basis function (RBF) kernel, which facilitates 
the classification of data that is not linearly separable56. This approach was initially performed on the training 
dataset using 2,203 features. The fidelity of the model parameters was assessed after each round of analysis based 
on 10-fold cross-validation and optimized in an iterative manner until no further improvement in model perfor-
mance was observed. Two parameters, penalty (C = 0.1) and kernel width (kw = 0.005), were chosen based on the 
best predictive performance of our method.

To evaluate the performance of our method, we assessed four commonly used metrics: accuracy (ACC), sensi-
tivity (SN), specificity (SP) and the Matthew’s correlation coefficient (MCC). These metrics, which have been used 
in previous studies to evaluate performance of other predictors24,25, are defined below:

=
+

+ + +
×ACC TP TN

TP TN FP FN
100

(2)

SN TP
TP FN

100
(3)

=
+

×

=
+

×SP TN
TN FP

100
(4)

MCC (TP)(TN) (FP)(FN)
(TP FP)(TP FN)(TN FP)(TN FN) (5)

=
−

√ + + + +

True positives (TP) indicate the number of correctly classified sulfenylation sites, true negatives (TN) rep-
resent the number of correctly classified negative sites, false positives (FP) denote the number of negative sites 
incorrectly classified as sulfenylation sites and false negatives (FN) indicate the number of actual sulfenylation 
sites incorrectly classified as negative sites. In addition, we also assessed the area under the receiver-operator 
characteristic (ROC) curve as an indicator of model performance. The ROC curve, which illustrates the trade-off 
between specificity and sensitivity57, yields a solitary execution measure called the area under curve (AUC) score, 
where the AUC for an arbitrary classifier is 0.5 and an AUC of 1.0 represents a perfect classifier58.

Data availability.  The data, the source code, and other materials for the work are available in the GitHub 
repository, @[https://github.com/HussamAlbarakati/SVM-Sulfosite].
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