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Abstract

Network inference deals with the reconstruction of biological networks from experimental data. A variety of different
reverse engineering techniques are available; they differ in the underlying assumptions and mathematical models used. One
common problem for all approaches stems from the complexity of the task, due to the combinatorial explosion of different
network topologies for increasing network size. To handle this problem, constraints are frequently used, for example on the
node degree, number of edges, or constraints on regulation functions between network components. We propose to
exploit topological considerations in the inference of gene regulatory networks. Such systems are often controlled by a
small number of hub genes, while most other genes have only limited influence on the network’s dynamic. We model gene
regulation using a Bayesian network with discrete, Boolean nodes. A hierarchical prior is employed to identify hub genes.
The first layer of the prior is used to regularize weights on edges emanating from one specific node. A second prior on
hyperparameters controls the magnitude of the former regularization for different nodes. The net effect is that central
nodes tend to form in reconstructed networks. Network reconstruction is then performed by maximization of or sampling
from the posterior distribution. We evaluate our approach on simulated and real experimental data, indicating that we can
reconstruct main regulatory interactions from the data. We furthermore compare our approach to other state-of-the art
methods, showing superior performance in identifying hubs. Using a large publicly available dataset of over 800 cell cycle
regulated genes, we are able to identify several main hub genes. Our method may thus provide a valuable tool to identify
interesting candidate genes for further study. Furthermore, the approach presented may stimulate further developments in
regularization methods for network reconstruction from data.
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Introduction

With the development of large scale experimental platforms for

the acquisition of genome-wide data, massive amounts of

experimental data describing complex cellular processes are

becoming widely available. The extraction of knowledge and

development of models from such data remains a major challenge.

Manual model development is constrained to small models

involving a few dozen components, and requires extensive prior

biological knowledge. The alternative is to use automated machine

learning approaches to infer models directly from data, as

reviewed by Kaderali and Radde [1].

For small models involving only a few dozen genes, detailed

quantitative network inference approaches using nonlinear differential

equations can be employed [2]. Such approaches fail for larger

networks due to computational limitations and practical non-

identifiability of model parameters. Boolean network models have been

proposed as an alternative, neglecting the quantitative detail and

assuming genes to be in only one of two states, active or inactive

[3,4]. Updates of the states are then done using logical rules, either

synchronously for all genes or using asynchronous update rules

[5]. Further extensions are based on fuzzy logic [6] or probabilistic

Boolean networks, which basically use alternative sets of Boolean

update rules that are stochastically employed [7].

Bayesian networks on the other hand are stochastic models that use

conditional probabilities to describe dependencies between genes

in a network [8–11]. These conditional distributions can be

discrete or continuous, and are used to compute the likelihood of

given data. Using Bayes’ theorem, this is then used to compute the

posterior distribution over alternative models given the data.

For large scale network inference involving thousands of genes,

relevance network approaches are often used. They consider the

similarity or dissimilarity between pairs of genes in a network, for

example using pairwise correlation or mutual information, and use

the ‘‘guilt by association’’ principle to reconstruct the underlying

network. ARACNE is a representative approach of this type, it

uses Gaussian kernel estimators to compute the mutual informa-

tion between two genes, and then filters the resulting networks

using different criteria [12].
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Main challenges in automated network reconstruction arise

from (1) The exponential growth of possible model topologies for

increasing network size, (2) the high level of biological and

experimental variability in measured data with often low signal to

noise ratios, and (3) the frequently large number of different

components that are measured, combined with an – in compar-

ison – small number of different observations under changing

conditions, e.g. number of time points or perturbations of the

biological system. Together these problems lead to non-identifia-

bility and overfitting of models. Regularization methods are

therefore widely employed to penalize overly complex models.

The most commonly used regularization assumption in gene

regulatory network reconstruction is that the inferred models

should be sparse: There are typically only a low number of

regulators acting on each gene [13–16]. Some studies furthermore

indicate that the degree distribution in biological networks often

follows a power law distribution, with only few highly-connected

genes, and most genes having only a low number of interaction

partners [17]. While there is ongoing debate about the statistical

support of this claim [18,19], it is widely believed that central hubs

do exist in gene regulatory networks. This is usually incorporated

into network inference approaches only indirectly, by limiting the

number of regulators in the network [20,21].

We here propose to use Bayesian networks with a Boolean state

space to reconstruct transcriptional networks from gene expression

time series data. We furthermore introduce a hierarchical prior

distribution on the edge-weights in the network, which not only

leads to sparse networks, but explicitly aims for the identification of

central hub genes in the network, and centers the network

reconstruction around these hubs.

We show results with the proposed approach on simulated as

well as real experimental data sets of different sizes. Specifically,

we present inference results on the genetic regulatory network

controlling progression through the yeast cell cycle, based on three

published genome-wide microarray studies. A first interesting

result of our study indicates that large-scale network inference on

this dataset is a very difficult problem, where none of the published

methods we employed was able to significantly outperform

random guessing. However, using the hierarchical prior presented

in this work, key regulators could correctly be identified. Focusing

our analysis on a smaller sub-network, we were able to reconstruct

a core network regulating progression through the cell cycle. Our

findings confirm that MCM1/SFF, CLB5/6 and CLN3 are key

regulators in the yeast cell cycle network.

Methods

Network Model
We describe the activity of genes in a transcriptional network of

n genes using discrete variables xi[f+1g, i~1,:::,n, where

xi(t)~1 means that gene i is active at time t, and xi(t)~{1
means the gene is inactive. We furthermore assume discrete time

t~0,1,:::,T , and model the time-invariant probability for each

gene xi(t) to be active at time t, conditional on the states of all

genes at the previous time point, x(t{1)~ x1(t{1),ð
x2(t{1),:::,xn(t{1)Þ using the probability distribution

p xi(t)Dx(t{1),Wð Þ~ 1

1ze
{xi (t)

Pn
j~1

Wj,ixj (t{1)
: ð1Þ

W[Rn|n is a weight matrix and describes the strength of

regulation between all genes. In case of an activation of gene i

by gene j, Wj,iw0, in case of an inhibition, Wj,iv0, and Wj,i~0 if

there is no effect of gene j on gene i.

Equation (1) describes a sigmoid function over the weighted sum

of incoming regulations on a given gene xi. If the sumPn
j~1 Wj,ixj(t{1) is positive, the probability that xi(t)~1 will

be larger than the probability that xi(t)~{1, if the sum is

negative, gene i will more likely be inactive than active.

Summarizing the logarithm of the likelihood (1) over all genes

and all time points, the log-likelihood of given data D can be

written as

ln p(DDW)~
XT

t~1

Xn

i~1

ln p(xi(t)Dx(t{1),W), ð2Þ

where D~fx(0),:::,x(T)g is the data, and x(t)[f{1,z1gn
is the

state vector of the system at time t.

We have previously used a similar model to reconstruct small

signaling networks from RNAi perturbation data, see [22]. We are

here extending this model for gene expression data, and use a

hierarchical prior distribution to enable the hub-centered recon-

struction of large-scale gene regulatory networks.

Prior Distribution
For this purpose, we employ a hierarchical prior distribution on

the regulation strengths W to regularize the network reconstruc-

tion. As first level prior, independent normal distributions with

variance s2
j are used as prior on the weights Wj,i, where the same

variance s2
j is used for all prior distributions over weights

emanating from the same node j:

p(WDs)~ P
n

i,j~1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

j

q e

{1
2

W2
j,i

s2
j : ð3Þ

The variance serves as hyperparameter, and determines the

strength of the regulatory effect a given node j can have on all

other nodes.

We furthermore use a second-level prior on the hyperparameter

s. Since a standard deviation needs to be positive by definition,

and should neither become too large nor too small, we use a

gamma distribution on the sj , thus

p(sDa,r)~ P
n

j~1

arsr{1
j

C(r)
e{asj , ð4Þ

with positive shape and rate parameters r and a, respectively, and

gamma function C(r).

Importantly now, the same value of sj is used for all regulations

exhibited by the same gene , i.e., for all outgoing edges for gene j.
Incoming edges for a particular gene can have different values of s.

The combined effect of these two priors is that genes that receive a

large weight also get a larger variance hyperparameter, and are

more likely to attract further large edges in future inference steps,

making the gene a hub. Correspondingly, genes with small weights

get a small variance parameter s, and it becomes increasingly

difficult for these genes to attract large edges. Such a hub

formation can not be achieved with ordinary sparseness priors

such as L1 regression.

The shape and rate parameters r and a of the second-level prior

ultimately control how large the weights of edges emanating from

a particular node in the network can become. The choice of

Hub-Centered Gene Network Reconstruction
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gamma distribution implies that most genes in the network have

small variance hyperparameter s. Only few genes receive large

values of s, and hence, larger values for the weights on their

outgoing edges. Pruning edges with small values would then

directly lead to sparse networks, where edges are concentrated

around central hub genes.

If we would allow different values of s for each edge (i.e., s is a

property of the edge, not of the gene), we would still obtain sparse

networks where most edges have small values and only few edges

receive large values, but the large edges would not center around

hub genes anymore, but would be evenly distributed over the

network.

We note that a similar automatic relevance determination

(ARD) model has successfully been used in pattern recognition

using neural networks by Neal [23], but the approach has not been

used so far for genetic regulatory network reconstruction. Other

related ARD approaches include Bayesian principal component

analysis [24] and ARD-nonnegative matrix factorization [25].

The proper choice of prior hyperparameters (the shape and rate

parameters a and r) is critical to obtain optimal performance of the

method. The values of a and r indirectly control how many hub

genes there are. The regularization through the prior distribution

should be sufficiently strong to learn hub genes and avoid

overfitting, but regularization should not be too strong to

completely dominate the learning from the data. ‘‘Good’’ values

for a and r hence depend not only on the size of the network, but

also the amount of experimental data available, the expected

number of hubs in the data, and the level of noise in the data. The

choice of parameters is hence a difficult issue, that – as with other

Bayesian approaches and regularization parameters in general –

requires a lot of experience and skill. We discuss this issue further

at the end of the results section.

Optimization of the Posterior Distribution
Given s, we can write the log-posterior distribution over W

using Bayes’ theorem as

ln p(WDs,D)~ ln P(DDW)z ln P(WDs){C1, ð5Þ

where C1~ ln p(DDs) is independent of W and can be neglected.

Similarly, given W, again using Bayes’ rule, we can write the log-

posterior distribution over s as

ln p(sDW,D)~ ln p(WDs)z ln p(sDa,r){C2, ð6Þ

where again C2~ ln p(W) is independent of s and can be

neglected.

We now iteratively optimize equation (5) with respect to W and

equation (6) with respect to s, until the optimization converges.

The idea here is that the optimization with respect to W serves to

reconstruct the network, whereas the optimization with respect to

s controls the magnitudes of the outgoing edge weights any given

node j can have. If a node j receives an outgoing weight with large

value Wj,i, its hyperparameter sj will increase in the next iteration,

thus increasing the likelihood that other edges emanating from j
will also receive larger weights, making j a hub gene. We note that

the shape and rate parameters r and a of the second level prior (4)

indirectly control the expected number of hub genes.

The choice of starting point for optimization algorithms such as

gradient descent is an important issue, depending on which

different local or global optima can be identified in the

optimization. We expect resulting networks to be sparse, and

therefore, most of the weights W should be close to zero. We

therefore suggest to start the gradient descent with respect to

equation (5) at or in the vicinity of the origin, with a fairly large

starting value of s to initially avoid a strongly peaked prior

distribution P(WDs).

The major disadvantage of gradient based optimization is that

only a single maximum a posteriori estimate of W and s is

returned. However, multiple different networks might explain

given data, corresponding to different modes of the posterior

distribution. Although we expect the resulting network to be

sparse, starting the gradient descent at the origin for W may results

in getting stuck in a suboptimal local optimum. As an alternative

for small networks, we therefore sample from the posterior

distribution using the Hybrid Monte Carlo algorithm, a Markov

chain Monte Carlo sampler that was originally proposed by

Duane [26], see also Neal [23] and Kaderali [27]. The basic idea

for our application is in each step of the Markov chain to

randomly decide whether to sample from equation (5) or from

equation (6) using hybrid Monte Carlo. These results can not only

be used to validate the gradient based computations, but

furthermore allow it to study the full posterior distribution over

networks and model parameters, given the data. This is of

particular value in case of multimodal distributions, when several

different network topologies or sets of model parameters are

consistent with the observed data.

Evaluation of Networks
We use Receiver Operator Characteristic and Precision-Recall

analysis to evaluate results of the network reconstruction. In our

model, the sj provide information on the importance of individual

genes in the network, the W describe the inferred network

topology. To assess the quality of reconstructed networks, we

evaluated precision (fraction of true positives in all predicted

regulations), sensitivity ( = recall, fraction of true positives in all

actual positives) and specificity (fraction of true negatives in all

actual negatives) of our approach. For this purpose, a variable

threshold c on the absolute value of the weights W is introduced,

edges with weights below the threshold are pruned from the

network, and precision, sensitivity and specificity of edge

recognition are then computed. Receiver Operator Characteristic

(ROC) and Precision to Recall (PR) curves can then be plotted by

varying the threshold c and plotting the resulting sensitivity over

specificity, or precision over sensitivity (recall), respectively. Each

value of c results in a specific point in these plots, the ROC and

PR curves arise by varying c continuously and connecting the

resulting points. ROC graphs nicely describe the overall relation-

ship of positive to negative instances in the predicted model, and

have the advantage to be insensitive to changes in the class

distribution. On the other hand, precision to recall curves consider

only the correctly inferred positive instances amongst all predicted

links, and are therefore particularly useful for sparse networks. PR

and ROC curves are then summarized further using the area

under the curve (AUC), which is a value between 0 and 1. The

closer this value is to one, the better is the reconstructed network.

We compute the AUC for both ROC and PR curves.

We note here that the computation of sensitivity, specificity and

precision usually requires two-class problems. In our context, three

classes are possible for each edge – a positive regulation, an

inhibition, or no regulation between two given genes. The

assignment of predicted links to the four possible outcomes true

positive (TP), false positive (FP), true negative (TN) and false negative (FN)

used for the computation of sensitivity, specificity and precision is

shown in Table 1. Importantly, the three classes imply that

guessing a network will on average not result in an AUC value of

0.5 anymore, but values smaller than 0.5, depending on the

Hub-Centered Gene Network Reconstruction
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number of activations, inhibitions and nonexistent edges in the

true network. For a technical proof, see Mazur et al. [2].

We performed a statistical test to assess the significance of the

difference of the obtained AUC values from AUCs for randomly

generated Networks. The null hypothesis is that the AUC of the

ROC curve is not different from the AUC for guessing. Since our

ROC curves are based on a three-class problem, we can not apply

out of the box solutions for the calculation of the p-value.

Therefore, we extended the methods of the R package pROC

developed by Xavier et al. [28], which employs the method by

DeLong et al. [29]. Briefly, the method of DeLong employs the

mathematical equivalence of the AUC to the Mann-Whitney U-

statistic. ROC curves can then be compared by evaluating the

difference of the AUCs, which is asymptotically normal. To

compare two AUC values, the method uses the covariance matrix

for each of the ROC curves and finally does a two-sided t-test on

the score of this comparison. To be be able to apply DeLong’s

method, we extended the Mann-Whitney kernel implementation

of the pROC package as follows:

h(x,y,z)~

1 if z~1 and yvx

1=2 if z~1 and y~x

0 if z~1 and ywx

1 if z~{1 and ywx

1=2 if z~{1 and y~x

0 if z~{1 and yvx

0
BBBBBBBBBBB@

ð7Þ

with x being the cases or TN, y being the controls or TP and z

being the signs of the edges in the gold standard, either 1 or 21.

A further problem in the evaluation of reconstruction perfor-

mance on real data arises due to the lack of a ‘‘gold standard’’

network. Hence, to evaluate the hub gene identification on real

data, we extracted protein networks from the STRING database

[30]. STRING calculates for each interaction a score based on the

evidence from various sources like experiments, interaction

databases or abstract text mining. It is clear that the PPI network

reflects only a part of the gene regulatory processes but still,

observations at this level can provide insight into the performance

of the methods. STRING is also considering pairs derived from

co-expression analysis and might therefore be more suitable than

other PPI databases. We then computed the degree di of each gene

i in the STRING network, and assessed correlations between di

and the network inference hyperparameter si. We then again used

receiver operator characteristic analysis to study the predictive

strength of s to identify hub genes, by varying a threshold on s for

a fixed threshold on the degree d, and computing sensitivity and

specificity. ROC curves were summarized using the AUC, and

AUC was plotted for continuously varied d.

Results

We implemented our method in C++, using the gnu gcc

compiler under the Linux operating system. All computations

reported were carried out on a 3 GHz 64 bit Intel processor using

a single processor core (no parallel processing). For a systematic

evaluation of the approach, we used different simulated datasets,

as well as real, publicly available microarray data.

Simulated data has the advantage that the real network

underlying the data is known, and can be used to evaluate the

performance of the network reconstruction and hub identification.

We therefore discuss simulated data first. More specifically, we

start by showing results using data that was simulated with the

Boolean model used also in the inference method, using three

different network sizes (11 genes, 100 genes, and 1000 genes), and

using different dataset sizes generated from these networks for the

inference task (20, 40 and 200 time points). This simulated dataset

allows it to study the effect of network size and dataset size on

performance of the network inference. To evaluate, whether the

choice of prior introduces artifical hubs even on random networks

where no hubs are present, we furthermore simulated data for a

1000 gene Erdös-Rényi [31] random network, again with different

numbers of time points (20, 40 and 200 time points).

We next proceed by using a further simulated dataset, that was

simulated with a realistic kinetic model for gene regulation,

implemented in the GeneNetWeaver (GNW) package [32]. GNW

uses systems of differential equations for simulation, data hence

need to be discretized before they can be used in the network

inference. GNW allows the simulation of time course data using a

realistic model of noise for microarray data, this dataset hence

allows it to study the effect of noise on the network reconstruction.

We finally applied our network inference method to three

different publicly available microarray gene expression data sets

regarding the yeast cell cycle, published by Spellman [33], Cho

[34] and Pramila [35]. These three datasets were pooled, and

network inference done on the ensemble dataset. We start by

showing results on a small subset of the genes in this pooled

dataset, representing a core network of 11 genes known to be

involved in the yeast cell cycle. Thereafter, we present results on

the reconstruction of a relatively large yeast transcriptional

network comprising almost 800 genes. On this dataset, we

compare results of our approach with results obtained using the

relevance-network approaches ARACNE [12] and MRNet [36],

as well as the Bayesian approach implemented in Banjo [37].

All analyses done and results achieved on simulated and real

data are summarized in Tables 2 and 3.

Evaluation on Simulated Data
Simulation with Boolean Model. To systematically evalu-

ate our network reconstruction approach, we simulated data for

three different network topologies, with different numbers of

genes. The smallest network contained 11 genes, and is the yeast

cell cycle core network described by Li and coauthors [38], as

shown in Figure 1. We furthermore used the CenturySF network

topology comprising 100 genes, and the JumboSF network topology

comprising 1000 genes, proposed by Mendes [39]. These

topologies include desired properties such as regulatory loops,

hub genes, and are sparse.

Table 1. Evaluation of Predicted Networks.

Predicted Regulation

Activation Inhibition No Regulation

Actual Regulation

Activation TP FP FN

Inhibition FP TP FN

No Regulation FP FP TN

Classifications of predicted links as true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN). The assignment given here is used in
the three-class classification problem to compute sensitivity, specificity and
precision.
doi:10.1371/journal.pone.0035077.t001
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Weights for given topology were uniformly randomly generated

between {2 and z2, a starting state was randomly chosen, and

time courses were simulated with 20, 40 and 200 time points, using

the stochastic model described by equation (1). Weights in this

range correspond to a moderate level of noise in the experimental

data, due to the probabilistic model employed to simulate the data.

We then took the simulated data, and used our gradient descent

and Markov chain approaches to reconstruct the underlying

networks from the data alone. Shape and rate parameters of the

gamma prior (4) were set to r~4:8 and a~0:4 for these

computations.

Results with Gradient Descent. Iterative gradient descent

on the equations (5) and (6) was carried out as described in

Methods, until convergence was reached. For the 11 gene

network, computation finished in a few seconds. For 100 genes,

computation time varied between 17 s for 20 time points, up to

4.1 min for 200 time points. On the 1000 gene network, gradient

descent required 12.3 min for 20 time points, 90.5 min for the 40

time point data set, and 447.33 min or roughly 7 1/2 hours on the

200 time point data set.

Figure 2 shows ROC and PR curves for the networks

reconstructed from the data, in dependence of network size and

number of time points available. As expected, for small network

sizes (11 genes) and many (200) time points, the network

reconstruction performs very well, and performance decreases

with increasing network size and decreasing number of time

points. Corresponding AUC values together with p-vales to assess

the significance of the results (H0: AUC values are not superior to

guessing, see methods for details) are shown in Table 2. To put

these results further into perspective, we generated 1000 random

‘‘reconstructed’’ networks with 11, 100 and 1000 genes each, by

drawing weights from a standard normal distribution, and

computed the AUC for these networks. For the 11, 100 and

1000 gene networks this yields an average AUC
guess
ROC of 0.34, 0.38

and 0.39, respectively, and an average AUC
guess
PR of 0.14, 0.009

Table 2. Overview of analyses on network inference.

Simulated Data

Network Nodes Edges TP Gradient Descent MCMC

ROC p-val PR ROC p-val PR

Boolean Model

Yeast Cell Cycle (CC) 11 34 20 0.74 0.0035 0.37 0.68 0.024 0.37

Core (Simulated) 40 0.76 0.0029 0.48 0.74 0.0045 0.48

200 0.93 7.78e-08 0.67 0.91 6.4e-08 0.77

Mendes CenturySF 100 200 20 0.64 v1e-8 0.13 0.43 0.0007 0.005

40 0.75 v1e-8 0.3 0.52 v1e-8 0.04

200 0.90 v1e-8 0.66 0.67 v1e-8 0.19

Mendes JumboSF 1000 999 20 0.68 v1e-8 0.05

40 0.77 v1e-8 0.26

200 0.88 v1e-8 0.62

Random Network 1000 5000 20 0.42 - 0.003

40 0.62 - 0.09

200 0.79 - 0.4

GeneNetWeaver -

No noise 100 532 25 0.53 - 0.053

250 1317 25 0.50 - 0.020

500 2150 25 0.50 - 0.008

With noise 100 532 25 0.51 - 0.054

250 1317 25 0.50 - 0.021

500 2150 25 0.50 - 0.009

Real Data

Network Nodes Edges TP Gradient Descent MCMC

ROC p-val PR ROC p-val PR

Li et al. Yeast CC Core 11 34 98 0.56 - 0.27 0.59 - 0.26

Large Yeast CC Network 781 unk. 98 0.52 - 0.01

Overview of all results on the simulated and biological datasets, using the approach presented in this manuscript. See the main text for comparison with other methods.
Shown are results for the full network reconstruction task; table 3 shows corresponding results for hub identification. Each row in the table corresponds to one dataset.
Nodes, edges and TP gives the number of genes, regulations and time points in the respective dataset. ROC and PR are the area under the curve values (AUC) of the
Receiver Operator Characteristic (ROC) and Precision-Recall (PR) analysis, respectively. P-values were computed to test the null hypothesis of a significant deviation from
random guessing for the AUC ROC values. Due to runtime limitations, MCMC results were calculated only for small networks, and p-values only for the synthetic
networks with AUC valuesw0.5. unk.: True number of edges for Yeast CC Network is unknown.
doi:10.1371/journal.pone.0035077.t002
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and 0.0005. This reconfirms that results are significantly better

than random.

Results with MCMC. We next repeated the computation

using the Markov chain Monte Carlo sampling approach. Due to

the high running time, an evaluation was done only for the 11 and

100 gene networks, by iteratively sampling from the distributions

(5) and (6). 1 million sampling steps were done for the 11 gene

network. Due to runtime constraints, only 800.000 steps were

done on the 100 gene network. Running times for 20, 40 and 200

time points were 116, 207 and 929 minutes for the 11 gene

network, and 10, 20 and 80 days for the 100 gene network,

respectively. We note that computations were done using a single

processor thread, and significant speed-ups can clearly be expected

from parallelization of the sampler.

To simplify analysis of the reconstructed networks, we

summarized the different values sampled for each parameter by

the mean. This clearly is a crude intervention, and disregards

much of the additional information contained in the distribution,

for example, in case of a bimodal distribution. More sophisticated

methods such as cluster analysis, and the consideration of higher

order moments, can be used here. In spite of this simplification,

results for the 11 gene network were completely equivalent to

results for the gradient descent method (see Table 2), indicating

that in this simulated example, only one set of parameters

corresponding to one network topology is consistent with the

experimental data, and is recovered using both gradient descent

and Markov chain. Results of the 100 Gene Network obtained

using the MCMC sampler were still significantly better than

guessing, but inferior to results obtained from gradient descent,

compare Table 2. This is likely due to multiple local optima of the

posterior distribution. In this situation, averaging over multiple

modes leads to an average result with low posterior probability,

and thus suboptimal results. Furthermore, the number of sampling

steps carried out (800.000) may not be sufficient to achieve

adequate sampling from the stationary distribution, but this was a

limiting factor due to runtime.

Results on a Non-Hub Network. To test our approach for

biases towards inferring a scale-free structure also if no such

structure is present in the gold standard network, we tested the

gradient descent method on a random (Erdös-Rényi) 1000 gene

network (generated with igraph [40]) with 5000 interactions. The

data set size is the same as for the scale free networks, we simulated

each of 20, 40 and 200 time points as described above. Network

reconstruction was then done using the same settings as above,

with conjugate gradient descent.

Table 3. Overview of analyses on hub identification.

Simulated Data

Network Nodes Edges TP AUC Hub

Top 10 Hubs Overall

GeneNetWeaver

No noise 100 532 25 0.76 0.77

250 1317 25 0.31 0.56

500 2150 25 0.74 0.85

With noise 100 532 25 0.29 0.45

250 1317 25 0.83 0.83

500 2150 25 0.92 0.92

Real World Data

Network Nodes Edges TP AUC Hub

Top 10 Hubs Overall

Large Yeast CC Network 781 unk. 98 0.94 0.97

Overview of all hub identification results on the simulated and biological datasets. Hub AUCs were only calculated for the large networks since they are only of little
relevance for small networks. Each row in the table corresponds to one dataset. Nodes, edges and TP gives the number of genes, regulations and time points in the
respective dataset. AUC Hub is the AUC value computed for hub identification, shown are AUC values for the top 10 hub genes and maximum overall AUC values. A
value of 0.5 corresponds to random guessing, values between 0.5 and 1 measure the hub identification performance. unk.: True number of edges for Yeast CC Network
is unknown.
doi:10.1371/journal.pone.0035077.t003

Figure 1. Yeast Cell Cycle Core Network. Core yeast cell cycle
network, as derived by [33] from literature. There is one external
checkpoint, cell size, which initiates progression through the cell cycle.
Activations are shown in green, inhibitions in red, and self-regulations
in yellow.
doi:10.1371/journal.pone.0035077.g001
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Figure 2. ROC and PR results, simulated data. The Figure shows receiver operator characteristic (ROC) and precision to recall curves (PR) for
network reconstruction on simulated data, for different network sizes and different numbers of time points. A, B: ROC and PR curves for the network
with 11 genes, C,D: ROC and PR curves for network with 100 genes, E.F: ROC and PR curves, respectively, for network with 1000 genes. Black: 20 time
points used for network reconstruction, red: 40 time points, blue: 200 time points. It can clearly be seen how performance deteriorates with
increasing network size and decreasing number of different time points. We note that, due to the three-class classification problem underlying the
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We focused our analysis of the results on the question if the

network inference learns artificial hubs from the data, although

none are present. Correspondingly, we evaluated the degree

distribution of the reconstructed networks. Figure 3 shows the

resulting degree distribution, for the 1000 gene scale free network

above (JumboSF, Figure 3 left plot), as well as the Erdös-Rényi

random network (Figure 3, right plot). The results clearly show

that the approach does not identify artificial hubs, provided

sufficient amounts of experimental data are available. In case of

the data set with 20 time points, a distortion of the random

network result can be seen. This data set is too sparse and the

method cannot infer the right topology from it. In this situation the

prior starts dominating the obtained results.

Simulation with GeneNetWeaver. As a further test of the

method, we next simulated data using a realistic kinetic model,

implemented in the GeneNetWeaver (GNW) package [32]. We

subsampled networks of size 100, 250 and 500 from the Yeast

transcriptional network implemented in GNW, and generated 25

time points using the ordinary differential equation model, with

settings as for the DREAM challenge (see GeneNetWeaver

documentation). Data were simulated without noise and with

noise using the DREAM microarray noise model implemented in

GNW. Data were discretized to Boolean states using a threshold of

50% on the maximum of the simulated gene activity levels. We

then used the gradient descent approach with the hierarchical

ARD prior presented, as well as a standard L1 sparseness prior to

reconstruct the underlying networks from the data. Results of the

network reconstruction were summarized by computing the area

under the ROC curve for the reconstructed edges, as well as the

area under the ROC curve for the hub identification.

Due to the low number of time points simulated, overall

performance of the network reconstruction was not significantly

superior to guessing in all runs. However, both the L1 prior as well

as the hierarchical prior led to a successful identification of hub

genes, and in all but one case superior performance of the

hierarchical ARD prior. Results are summarized in Table 4.

Interestingly, in case of the smallest network simulated, the

addition of noise was so detrimental that no successful hub

identification was feasible using either method. This probably

reflects the situation that when more genes and hence more edges

are present in a network, the influence of noise on the hub

identification is less severe simply due to more edges contributing

information on an individual hub gene. Overall, the results

indicate that in the simulated data, information content seems not

sufficient to reconstruct the full network, but it is still possible to

identify key regulatory genes. Together, these observation

motivate the use of hub-centered methods in particular on larger

networks, where full reconstruction of a network is very difficult or

even fails completely, but still some information on hubs can be

extracted.

Results using Microarray Data
Core Network of the Yeast Cell Cycle. We next evaluated

our reverse engineering approach using publicly available

microarray data regarding the yeast cell cycle. Data were pooled

from the studies by Spellman [33], Cho [34] and Pramila [35]. We

discarded the CDC15-synchronized data from the Spellman data

set, due to previous reports of quality problems [41]. Experimental

measurements were interpolated using smoothing splines, and

binarized using the median of each gene as threshold. Missing

values were interpolated with the mean of the preceding and the

following time point. This discretization of the data into binary

(Boolean) states can lead to several consecutive time points without

any changes in all genes, such time points were then collapsed into

a single time point, i.e. repetitive states after the binarization were

removed. Network inference was performed using all time series

simultaneously.

As reference network to evaluate the performance of our

reconstruction, we used the 11 gene yeast cell cycle model

proposed by Li et al. [38], see Figure 1. This network was carefully

constructed from the literature, and we constrained our further

analysis on reconstructing the interaction network between the 11

genes contained in this core network.

Network reconstruction was done using gradient descent, with

shape parameter r~4:6 and rate parameter a~0:2. Precision,

sensitivity and specificity for reconstructed networks were com-

puted as described in methods, and used to plot receiver operator

characteristic and precision to recall curves. The area under the

curve was then calculated, resulting in AUCROC~0:56 and

AUCPR~0:27. As it has been done for the synthetic networks, we

generated 100 random networks and computed the AUC for these

networks. This yields an average AUC
guess
ROC of 0.35 and an average

AUC
guess
PR of 0.13, indicating that our approach performs

significantly better than guessing.

To furthermore study the effect of the choice of starting point

for the gradient descent, we performed computations with

different starting values, results are summarized in Figure 4.

These results support the choice of the origin as starting point for

the gradient descent, which seems to give good results. The

rationale here is that we expect sparse networks, hence most edges

should have weights equal to or close to zero. Apparently, if largely

distinct values are chosen, the optimization tends to get stuck in

local optima corresponding to overly complex, non-sparse

networks.

We next repeated the network reconstruction using the Monte

Carlo sampler, using 800.000 iterations and a burn-in phase of

50.000 steps. Computation time was 264 minutes, or 4 hours and

24 minutes. To check for convergence of the Markov Chains,

several chains were run with different starting points, length, and

random seed, and results were compared, indicating good

convergence of the chains to the stationary distribution. We

summarized values sampled for each model parameter by the

mean, and used this to evaluate the reconstruction performance.

Results overall were very similar to the ones obtained using

gradient descent, with AUCMCMC
ROC ~0:59 and AUCMCMC

PR ~0:26,

again significantly outperforming guessing.

Interestingly, obtained values for the hyperparameter s were

very similar for all genes, both for the Markov chain Monte Carlo

and the gradient descent approach. This probably reflects the fact

that on such small networks, consisting of only 11 genes, the

definition of hub genes is not or only marginally useful, and does

not significantly influence network reconstruction. Still, largest

hyperparameter values were attained by MCM1/SFF, CLB5/6,

SBF and CLN3 which are key genes in the cell cycle network. For

example, CLN3 initiates the cell cycle, or the transcription factor

MCM1/SFF controls downstream genes like CLB2, CDC20 and

SWI5.

It is clear that an analysis based on the mean of all values

sampled for each parameter is a major simplification, and will

actually yield inferior results in case of multimodal distributions.

graphs, random guessing of network topologies would not yield a diagonal line in the ROC plots, but a significantly lower line with an area under the
curve of approximately 0.33.
doi:10.1371/journal.pone.0035077.g002
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We have sampled 750.000 different values for each edge from the

posterior distribution over model parameters, given the data, and

clearly, this data can not only be used to provide confidence

intervals on parameter estimates, but might also point to

alternative topologies consistent with the data. To gain a better

picture of the landscape of different modes and thus possible

alternative topologies, we used the Dip test of unimodality on the

Markov chains. This test, suggested by Hartigan and Hartigan

(1985) [42], measures the departure of an empirical distribution

from the best fitting unimodal distribution. The smaller this Dip-

score statistic becomes, the more likely the distribution is

unimodal. Due to the large sample size used in our Markov

chains, the Dip test would reject the null hypothesis of unimodality

for all edges in our network. We hence directly use the Dip value

as a measure of the ‘‘deviation from unimodal’’. Figure 5 shows

the average Dip values for three prior settings (a~0:2 and r~4:6,

a~1:6 and r~1:6, a~4:6 and r~0:2), indicating that several of

the edges show clear multimodal distributions. These edges could

now be characterized further experimentally, to assess the true

underlying network.

Hub Genes in Yeast Transcriptional Regulation
The previous example on the core cell cycle network regards a

relatively small network. For such small networks, the definition of

hub genes is not so useful, and accordingly, the parameters si

describing the importance of individual genes in the network were

all similar, and essentially peaked at the mode of the prior

distribution (4). To evaluate hub genes in larger networks, we took

the set of 800 cell cycle regulated genes reported by Spellman et al.

[33], and intersected this gene set with the genes in the Pramila

data set [35], resulting in a set of 781 genes. Data were

preprocessed as described above, network reconstruction was

carried out using gradient descent. Shape and rate parameters of

the prior were set to r~3 and a~7:5, posterior optimization took

145 minutes. Computation with the Markov chain sampler is not

feasible for this large network due to excessive running time. We

furthermore used ARACNE, MRNet and Banjo for comparison,

and furthermore repeated the computation with the model (2)

using a standard L1 sparseness prior. ARACNE and MRNet

results were computed using the R package minet [36]. ARACNE

results were computed using default parameters in the minet

implementation. Since minet uses additive tolerance instead of

Figure 3. Inferred degree density distribution on scale-free and random networks. To test whether artificial hubs are generated in network
inference due to their used prior distribution, we performed a comparative analysis on two different 1000 gene networks. The first network is the
JumboSF network, a large scale-free network with central hub genes. The second network is a random Erdös-Rényi network, which does not contain
any hubs. Network inference was performed using identical parameter values for the hyperparameters on both data sets. The figure shows the
degree distribution of the inferred networks, in dependence of the number of time points used for network inference (left: JumboSF, right: random
network). The plot shows that, provided sufficient data is available, the prior distribution does not lead to artificial hubs. On the other hand, if only
little data is used for network inference, the prior starts dominating the results, as one would expect.
doi:10.1371/journal.pone.0035077.g003

Table 4. AUC results for network reconstruction and hub
identification on simulated data.

Network Size (Genes) no noise noise

L1 ARD L1 ARD

Network Reconstruction

100 0.508 0.527 0.510 0.511

250 0.499 0.499 0.504 0.504

500 0.504 0.497 0.499 0.496

Hub Identification

100 0.526 0.767 0.449 0.453

250 0.789 0.563 0.755 0.827

500 0.698 0.849 0.859 0.924

Data was simulated using the GeneNetWeaver package, subsampling networks
of size 100, 250 and 500 from the yeast transcriptional network. Simulation was
done using an ordinary differential equation model, with and without
experimental noise added to the data. Network reconstruction was carried out
using the model described, using an L1 and a hierarchical automatic relevance
determination (ARD) prior, respectively. Shown are the area under the ROC
curve values for the correct identification of edges (top) and hub identification
(bottom). A value of 0.5 is equivalent to guessing, a value of 1 corresponds to
perfect identification of hub genes.
doi:10.1371/journal.pone.0035077.t004
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multiplicative tolerance, we furthermore used parmigene [43] to

compute ARACNE results, and applied DPI thresholding at three

different thresholds from 0.01, 0.05 and 0.15. MRNet results were

computed using the Spearman estimator, the number of bins was

set to
ffiffiffiffiffi
N
p

with N being the number of samples, as suggested in the

documentation. Banjo was run with default parameters.

Since our simulation study indicates that at least 200 time points

are required to successfully reconstruct a network of the given size,

it is clear that individual edges predicted in our inferred network

must be interpreted with great caution and need further

experimental validation. In fact, we directly evaluated the

reconstructed networks by comparison with the String database,

using only experimentally verified or all interactions. We

computed sensitivity/specificity and precision/recall of the recon-

structed networks, and plotted ROC and precision-recall curves.

None of the methods was able to perform better than guessing on

this pooled dataset (Area under the curve for ROC [PR] analysis:

Hierarchical Prior 0.515 [0.0106], L1-Prior 0.49744 [0.059], L2-

Prior 0.496 [0.058], ARACNE 0.4993 [0.0099], Banjo 0.500

[0.06], MRNET 0.498 [0.059]).

We will therefore concentrate our analysis of this large

reconstructed network on the identification of central hubs

predicted. Figure 6 shows a histogram of the reconstructed

regulation strengths for the 7812~609,961 possible regulations

between all pairs of the 781 genes. Negative weights correspond to

inhibitions, positive weights to activations, and weights in the

vicinity of zero indicate no regulation between two genes. The

inset in the figure shows the distribution of hyperparameters s for

the 781 genes, providing a direct measure of the importance of

individual genes. A large value of si for a gene i indicates that the

gene has strong (positive or negative) effects on other genes. For

example, 114 genes (14:5%) have a hyperparameter of siw2 and

209 genes (26:7%) have siw1, predicting that these genes play

important roles in the yeast gene regulatory network.

Since predicted regulation strengths are continuous, we pruned

all weights with absolute value v0:75 from the network. This

yields a network with average out-degree 2.65. A plot of the

correlation between the number of other genes regulated by a gene

and s shows a good linear correlation (Pearson r~0:699, plot not

shown), reconfirming that s appropriately summarizes the genes

importance in the reconstructed network. 114 genes have a

hyperparameter value siw2, they on average are predicted to

regulate 16.8 other genes, whereas an average gene in the full

network regulates only 2.65 other genes.

We next evaluated in more detail genes identified as ‘‘hubs’’ in

the transcriptional network. We retrieved interactions between the

781 genes in our dataset from the STRING database, using all

interaction types. We then computed the degree di of each gene i

in the STRING network, and assessed correlations between di and

the network inference hyperparameter si.

Pearson correlation between si and di was only weak

(r~0:0497), probably due to the large number of non-hub genes

contributing significant noise to the correlation coefficient, and

possibly also influenced by false positives in the database network.

Accordingly, correlation improves to r~0:127 if the top 25%,

r~0:334 if the top 5%, and r~0:711 if only the top 1% predicted

hub genes are used.

We then used receiver operator characteristic analysis to study

the predictive strength of s to identify hub genes, by varying a

threshold on s for a fixed threshold on the degree d , and

computing sensitivity and specificity. ROC curves were summa-

rized using the AUC, and AUC was plotted over different

thresholds on the degree d, as shown in Figure 7. To compare

results obtained using our approach with other methods, we

reconstructed networks using ARACNE [12], MRNet [36] and

Banjo [37], using the same input data. Importance values si were

then computed for each gene from the reconstructed edge weights

as described above, and we then computed ROC and AUC

Figure 4. Effect of Starting Point on obtained AUC values. Shown are the distribution of AUC values (left: ROC, right: PR) of 1000 gradient
descent runs, for randomly chosen starting values for W, on the yeast core network. For the parameter vector W, randomly chosen values within
ranges of ½{1,1�, ½{3,3� and ½{5,5� were used as a starting points for the calculations with CG. This was done for each of the suggested ranges 1000
times, and AUC ROC and AUC PR values were computed. The boxplots show the comparison between the different AUC values for these calculations.
It can be clearly seen, that randomly sampled start values close to zero allow the approach to obtain better results for the optimal values of w. If the
range of initial values for W is too large, the optimization ends in suboptimal local optima corresponding to overly complex networks with many
non-zero edges.
doi:10.1371/journal.pone.0035077.g004
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values. We furthermore compared these results with a reconstruc-

tion using equation (2) with a normal and a L1 prior distribution,

to study the effect of the hierarchical prior distribution used.

Figure 7 summarizes the AUC values obtained with these

different approaches, in dependence of the STRING degree of the

underlying genes. The dashed grey line in Figure 7 corresponds to

the expected AUC for random guessing, the solid red curve shows

the AUC for our ARD approach using the full posterior

distribution. The dotted brown curve shows results using a L1

sparsity prior, the dotted black curve was obtained using a Normal

distribution as prior. In comparison, the green and the pink dot-

dashed curves were obtained using the relevance network

approaches ARACNE and MRNet, respectively, whereas the

dashed blue line shows results of the Bayesian method Banjo.

While the Bayesian ARD approach performs only slightly better

than guessing for low-degree genes (AUC&0:55), it makes

excellent predictions for highly connected genes, which it identifies

as hub-genes with high area under the ROC curve, and thus with

high sensitivity and specificity. A comparison with the same model

using an L1 and a normal prior shows clearly how the prior

distribution used helps identify hub genes. Interestingly, at least on

this dataset, the relevance network approaches ARACNE and

MRNet performed worst, and actually make hub predictions that

are inferior to guessing.

Choice of Prior Hyperparameters
A critical issue is the choice of hyperparameter values a and r

for the ARD prior. Optimal values for a and r depend on the size

of the network, the number of experimental data points, level of

noise in the data, and expected number of hub genes. Some

theoretical insight on the effect of changing a and r can be gained

from a marginalization of the prior over s:

Figure 5. Multimodal Distributions in the Yeast Cell Cycle Core Network. Shown are Dip scores for the distribution of sampled edge weigths
from the Markov chain. The Dip value measures the departure of an empirical distribution from the best fitting unimodal distribution. Large scores
indicate a stronger deviation from unimodality. Rows in the diagram represent source (regulating) genes for edges, columns the target (regulated)
genes. Colors have been used to indicate the magnitude of the deviation from unimodality.
doi:10.1371/journal.pone.0035077.g005
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p(wDa,r)~

ð?
0

p(wDs)p(sDa,r)ds, ð8Þ

which can be solved and analyzed numerically. By plotting

p(wDa,r) over w for different values of a and r, one can see that

choosing smaller values of r corresponds to a more ‘‘peaked’’ prior,

i.e. a stronger ‘‘sparsity’’ of the inferred networks, whereas smaller

values of a cause the overall importance of the prior to decrease.

Hence, for larger networks and in case of small amounts of data,

smaller values of r and larger values of a should be preferred,

whereas in case of excellent and large amounts of data and small

networks, r should be chosen larger and a smaller, to decrease the

influence of the prior distribution.

Due to the difficulty in manually choosing these parameters, we

performed a sensitivity analysis to assess the sensitivity of results

with respect to choices for a and r. On the simulated data

(synthetic 11 gene, 100 gene and 1000 gene data sets), we modified

parameters a and r in the range from 0:2 to 4:8, performed the

network inference for each combination using gradient descent

using 20 and 200 time points from the data, and computed

resulting AUCROC values. Results are shown in the heatmaps in

Figure 8. The plots show that results are relatively insensitive over

a large range of parameters. Smaller values of the hyperparameter

r correspond to a more peaked prior distribution, resulting in

‘‘sparser’’ networks. Correspondingly, the figure shows that

smaller values of r should be chosen for larger networks. In

comparison, the correct choice of a seems less important.

On the experimental data regarding the hub genes in the yeast

cell cycle, we also performed a similar analysis. We note that

parameters chosen for this analysis (a~7:5, r~3) result in a

significantly narrower distribution of s than the hyperparameter

values used on the synthetic data, corresponding to much stronger

regularization – in line with expected larger levels of noise in the

data. We modified both parameters individually and together by

up to +50%, reran the network inference, and computed average

AUC values for the reconstructed networks. Figure 9 shows the

resulting AUC values, and clearly shows that in spite of

considerable variation of the hyperparameter values over a wide

range, performance is again only marginally affected.

Discussion

In this paper, we present a novel approach to reconstruct gene

regulatory networks from microarray gene expression time series

data, which employs the concept of hub genes for regularization.

Our evaluation on the simulated data shows that the method

precisely retrieves the original network from the data, provided

sufficient time points are available. Furthermore, the approach can

help identify hub genes in regulatory networks, and we have

shown an application to a large biological dataset regarding yeast,

where we successfully identified several important hub genes.

While a considerable number of approaches to reconstruct

networks from data have been published to date, to our

knowledge, this is the first method that simultaneously identifies

hubs in the regulatory network and centers the network

Figure 6. Hub Genes in the Yeast Cell Cycle. Histogram of reconstructed regulation strength for the full yeast cell cycle dataset. Negative
weights correspond to inhibitions, positive weights to activations. Weights in the vicinity of zero indicate no regulation between two genes. The plot
shows the distribution of regulation strengths between any two genes, showing clearly that only few genes exhibit strong regulations. The inset
shows a histogram of the corresponding hyperparameters s (equation 6), controlling the magnitude of the regulations exhibited by a particular gene.
As can clearly be seen, most genes have only small importance corresponding to low values of s, and only few genes are assigned large values of s
and correspondingly large weights on their outgoing connections.
doi:10.1371/journal.pone.0035077.g006
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reconstruction around these hub genes, by using a hierarchical

Bayesian prior distribution on the edge weights. While clearly

other network reconstruction approaches can also be used to

identify hubs in retrospect, our approach specifically centers the

reconstruction of the network around central hub genes. In

particular on large, noisy datasets, this may be a major advantage

over other approaches that may only identify clusters of correlated

genes, but not necessarily induce a hierarchical structure. This is

shown on the yeast cell cycle network, where ARACNE, Banjo

and MRNet all failed to correctly identify the highest-degree hubs

in the network. We therefore believe our approach to have high

potential for the identification of hubs in unknown regulatory

networks, around which further experimental effort should be

centered in elucidating the respective network. Ultimately, this

could be highly useful for an iterative procedure of network

reconstruction, experiment design, further biological experiments,

and feeding the results back into network reconstruction, of

particular interest for large networks. Indeed, if certain hubs in a

network are already known, this can even be integrated into the

network inference by choosing a different prior over s for the

known hub genes.

We have shown two different approaches to evaluate the

posterior distribution over models given the data. On the one

hand, we used a Markov chain Monte Carlo approach to sample

from the posterior distribution. The advantage of this is that full

distributions are evaluated, hinting to possible different, alternative

network topologies, yielding additional information on confidence

in results. The disadvantage of this method is the computational

burden involved, making it infeasible for networks involving more

than a few dozen genes, at least without further parallelization of

the sampler. On the other hand, we use gradient based

optimization to maximize the posterior, yielding a single optimal

network topology. This can be computed considerably faster and is

feasible for networks with several hundred to thousands of genes,

but does not provide any information on alternative, high-

probability networks, and no confidence intervals are available

on model parameters.

We showed results on simulated data, indicating that even with

only moderate noise, for a network of approximately 1000 genes,

at least 200 time points are needed for reliable network

reconstruction. Hence, while the size of the used yeast data set

clearly is not sufficient for a precise reconstruction of the whole

network structure, we could identify important hubs in the

regulatory network, which were validated using the STRING

database. An interesting result from our point of view is that all

published approaches that we tried, including our own, failed to

reconstruct a yeast transcriptional network from the microarray

data, at least in comparison to the gold standard network from the

STRING database. This may be due to low quality of the

experimental data and the lack of targeted interventions, but these

results are in line with findings in recent results of the DREAM

competition, where also even the best submitted methods showed

surprisingly weak performance, and most methods did not perform

better than guessing [44,45]. Under conditions of high noise and

limited amounts of experimental data, for large scale network

reconstruction, a method that centers on hubs may therefore be of

value to concentrate further experimental efforts and network

reconstruction attempts around these hub genes.

Figure 7. Receiver Operator Characteristic Analysis for the Prediction of Hub Genes in the Yeast Cell Cycle. Genes were split in two
groups ‘‘hub’’ and ‘‘non-hub’’ based on a threshold h on the degree of the gene in the literature derived network, and ROC curves were computed by
then varying the threshold on s. ROC curves were summarized for each h using the area under the curve. The plot shows AUC(h) over h. The red
curve shows results for the inferred network using the method presented, the black dotted line shows results using the method with a Normal prior,
the brown dashed line using a L1 ‘‘sparseness’’ prior distribution. The dashed blue line was obtained using Banjo, the dot-dashed green lines shows
results of ARACNE, the dot-dashed pink line represents results of MRNet. The grey dashed line corresponds to the expected value for randomly
guessing a network. Larger AUC values indicates better performance.
doi:10.1371/journal.pone.0035077.g007
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Figure 8. Sensitivity Analysis for the Network Inference performance on synthetic data with respect to parameters a and r. Plots
comparing distributions of AUC values for ROC graphs for different a and r settings (x- and y-axis), for the synthetic networks of sizes 11, 100 and
1000, using data sets with 20 and 200 time points, respectively. The plots show that results are relatively insensitive over a large range of parameters.
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Interestingly, the HUB prediction for the yeast dataset shows

good performance with high AUC values if a fairly strict definition

of hub genes is enforced, by requiring a hub to have a large

number (w50) of interaction partners in the STRING network. If

this threshold is relaxed, AUC values drop rapidly. We offer two

explanations for this behavior: On the one hand, genes with low

connectivity in the network probably contribute significant noise to

the network reconstruction, simply due to their large number. On

the other hand, false positives in the STRING dataset will affect

genes with few interaction partners more than genes with a large

number of partners, since a gene with say 100 interaction partners

would still be considered a hub, even if 20 of the interactions are

false. It is somewhat surprising that the transition occurs so rapidly

around a value of 50 interaction partners, one would expect a

more smooth transition where AUC gradually increases with

increasing degree. To study this further and exclude the possibility

that this is an artifact of the method employed, we additionally

performed the same computation on the 500 gene simulated

network with noise from GeneNetWeaver, where indeed a smooth

increase of the AUC values is observed. We therefore speculate

that the rapid transition in the Yeast dataset is not due to the

method we used, but rather an artifact of the data set.

A difficulty in using our approach, that all Bayesian methods

share, is the need to select parameters for the prior distributions. In

some cases, these can significantly influence results, and the choice

of parameters a and r in our method is not straightforward.

Optimal values depend on the size of the network, the amount of

available experimental data, the level of noise in the data, and the

expected number of hub genes. Importantly, our sensitivity

analysis of the yeast cell cycle network reconstruction with respect

to parameters a and r shows that results are relatively insensitive

over a wide range of parameter choices. Still, considerable

experience is required in tuning these parameters. Methods to

assist finding sensible choices, such as empirical Bayes approaches

or careful cross-validation, could be used to address these issues.

Smaller values of the hyperparameter r correspond to a more peaked prior distribution, resulting in ‘‘sparser’’ networks. Correspondingly, the figure
shows that smaller values of r should be chosen for larger networks. Although the effect of changing a seems not as pronounced, larger values of a
correspond to a narrower prior distribution, and should therefore be used if fewer data are available to avoid overfitting.
doi:10.1371/journal.pone.0035077.g008

Figure 9. Sensitivity Analysis for the Prediction of Hub Genes in the Yeast Cell Cycle with respect to parameters a and r. To assess the
effect of changes of model parameters a and r, both parameters were varied individually and together by up to +50 percent. Network reconstruction
was restarted for each combination of values for a and r, and average AUC values were computed for the reconstructed networks in comparison to
the STRING network. The figure shows the resulting AUC values over a,r, indicating that results are relatively insensitive over a wide range of
parameter values.
doi:10.1371/journal.pone.0035077.g009
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The main assumption we make in our model is the binarization

of state space – each gene is assumed to be either active or

inactive. This implies a loss of detailed expression levels, but allows

us to tremendously reduce model complexity and computation

time, and hence, to explore biological networks of a much larger

scale. This discretization of the data may furthermore have

advantages in case of microarray data as used in this study, in

particular if the data is more of a qualitative than of a quantitative

nature due to inherent noise, or if data from different platforms or

different studies shall be integrated. Furthermore, in contrast to

co-expression based approaches, the underlying Boolean model

allows causative inferences, hence edges between genes are

directed and can be interpreted not only as correlation or co-

expression, but causality.

A difficulty associated with the use of a Boolean model is the

requirement to discretize the experimental data. We have used

smoothing cubic splines in this work to smooth out smaller

fluctuations in the experimental data, and thus take care of some

of the noise in the data. Data were then discretized for each gene

separately by using the median of the respective gene as threshold.

For the small 11 gene network, we have manually checked the

resulting data, and the discretized values were compared with the

raw data to assure that the interpolation and discretization has

produced reasonable results. However, this is clearly not feasible

for large scale network inference with hundreds to thousands of

genes, and discretization can then become a difficult issue, in

particular since it will clearly have a considerable effect on results

of the network inference. Already using the mean instead of the

median as discretization threshold can lead to a completely

different data set, if the time course for a particular gene has a

single large outlier.

The spline interpolation itself requires the choice of a smoothing

factor, and clearly, also other interpolation functions could be

employed (for example linear, polynomial, etc.). We have

previously proposed an iterative procedure between spline

interpolation and network inference for a model using ordinary

differential equations [2]. In this work, model predictions are fed

back into the interpolation, to adaptively choose parameters for

the interpolation. It is not immediately evident how such a

procedure can be used with a Boolean model, but this might be an

interesting question for future work.

Overall, our results show that the approach presented may be a

valuable tool for large-scale network reconstruction, and may

guide experimental efforts to characterize identified hubs in more

detail. The Boolean discretization used in principle allows the

reconstruction of larger networks and may in fact be an advantage

in case of noisy data, but our results also clearly indicate that an

accurate reconstruction of a large network is not feasible with

present limited data sets containing at most a few dozen time

points or different conditions. In addition to larger experimental

data sets, a key to overcome these challenges will be the integration

of as much biological knowledge as is available. Our method

contributes to this aim by providing a general framework for

reconstructing sparse networks with small world properties.
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