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ABSTRACT Plant disease threatens the environmental and financial sustainability of
crop production, causing $220 billion in annual losses. The dire threat disease poses
to modern agriculture demands tools for better detection and monitoring to prevent
crop loss and input waste. The nascent discipline of plant disease sensing, or the sci-
ence of using proximal and/or remote sensing to detect and diagnose disease, offers
great promise to extend monitoring to previously unachievable resolutions, a basis
to construct multiscale surveillance networks for early warning, alert, and response
at low latency, an opportunity to mitigate loss while optimizing protection, and a
dynamic new dimension to agricultural systems biology. Despite its revolutionary
potential, plant disease sensing remains an underdeveloped discipline, with chal-
lenges facing both fundamental study and field application. This article offers a per-
spective on the current state and future of plant disease sensing, highlights remain-
ing gaps to be filled, and presents a bold vision for the future of global agriculture.

KEYWORDS agricultural microbiology, agriculture, host-microbe interactions,
hyperspectral imaging, plant disease sensing, plant pathology, remote sensing

Plant disease changes how solar radiation interacts with leaves, canopy, and plant
energy balance, which can be quantified with in situ and imaging spectroscopy.

Also known as “hyperspectral imaging,” these tools are capable of early, non-destruc-
tive, and scalable biotic stress detection in both natural ecosystems and agroecosys-
tems (1–5). Spectral data can allow one to draw inferences about vegetation health
because of the relationship between plant chemical, physiological, anatomical, and
morphological properties and light absorption at specific wavelengths. In terrestrial
remote sensing, the idea of “foliar functional traits” has emerged as a unifying concept
to better understand both natural variability in vegetation function and variability in
the responses to stress (6). Many traits shown to strongly correlate with changes to
plant function (7) can be accurately quantified and mapped with imaging spectroscopy
(8–13). Originating in terrestrial ecology, this use of spectroscopy combined with physi-
ochemistry and taxonomy has been called “spectranomics,” (10, 14). The foundational
components of the spectranomics approach are that plants have chemical fingerprints
that become increasingly unique when additional constituents are incorporated (9)
and spectroscopic signatures determine a portfolio of chemicals found in plants (15).
This approach has since been extended to phylogenetics (16, 17), conservation biology
(14), and plant metabolic functioning (18) with great success. Plant pathologists have
recently begun to take advantage of the spectranomics trail blazed by terrestrial ecolo-
gists, yielding the nascent discipline of plant disease sensing (17). Both beneficial (19)
and parasitic (20) plant-microbe interactions impact a variety of plant traits that can be
sensed. Plant pathogens damage, impair, and/or alter plant function, thus changing
foliar composition, by such mechanisms as production of systemic effectors or second-
ary metabolites or by the physical presence of pathogen structures, such as hyphae
and spores (21). Abiotic and biotic stresses have divergent spectral pathways, which is

Copyright © 2021 Gold. This is an open-access
article distributed under the terms of the
Creative Commons Attribution 4.0
International license.

Address correspondence to
kg557@cornell.edu.

Conflict of Interest Disclosures: K.M.G. has a
patent issued (U.S. patent 11,054,368).

The views expressed in this article do not
necessarily reflect the views of the journal or
of ASM.

This article is part of a special series sponsored by
Floré.

Published

November/December 2021 Volume 6 Issue 6 e01228-21 msystems.asm.org 1

COMMENTARY

16 November 2021

https://orcid.org/0000-0002-0306-9244
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://flore.com
https://msystems.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.01228-21&domain=pdf&date_stamp=2021-12-21


why spectroscopy can be used to differentiate between them (73). Broadband and
multispectral methods relying on visible (Vis) and near-infrared (NIR) reflectance indi-
ces, such as the normalized difference vegetation index (NDVI), have been used to
sense late-stage plant disease since the 1980s (22, 23). Changes in continuous, short-
wave infrared (SWIR) wavelengths have proved valuable for plant disease sensing due
to their sensitivity to a range of foliar properties (24), including nutrient content (12,
13, 25–28), water (29), photosynthetic capacity (30), physiology (31), phenolics (32),
and secondary metabolites (18, 33) all impacted by early-stage disease. By taking a sta-
tistical approach, ranging from nonparametric statistics to deep learning, to hyperspec-
tral data analysis (15), the sum total of direct and indirect changes that microbes
impart to plant health can be quantified with proximal and remote spectroscopy (1, 2).
Plant disease sensing allows us to detect, map, and model the biochemical and physio-
logical pathosystem processes that underlie the diseased plant phenotype, thus form-
ing the basis of our ability to use sensing for disease detection in the first place (4, 5,
34–40).

Plant disease sensing has great appeal due to its inherent scalability and capacity
for passive monitoring. Most detection methods, spanning molecular assays to
smartphone apps, require active sampling: a human must first seek out and observe
disease conditions. Scouting, i.e., the well-trained human eye actively looking for
disease in the field, has been the most widely relied-upon monitoring method since
the dawn of agriculture. Heavy reliance on scouting for initial detection has unfortu-
nately made management into a perpetual game of cat and mouse. The scale of
modern agriculture makes it impossible for scouts to inspect every plant in every
field for disease. Additionally, most diseases can spread for days to even months
before symptoms become noticeable. Compounding the problem, fungicides and
other control practices are universally most effective when applied to early-stage
disease. Applying fungicides to well-established disease decreases the chances of
successful management and increases the likelihood that resistance will emerge
(41). Thus, by the time disease is discovered, it has likely already caused significant
damage, and it is often too late for effective remediation.

The ability to detect early-stage disease can dramatically benefit global agricul-
ture. Remote plant disease sensing offers monitoring at previously unachievable
scales, filling gaps in space and time between labor-intensive field measurements
while reducing uncertainty in downstream analyses and management decision mak-
ing. At the regional level, remote sensing can support strategic use of on-the-ground
expertise by preidentifying regions of likely disease to which scouts can be sent for
evaluation (42–45). Proximal sensing systems deployed in-field on all-terrain vehicles
(ATVs), tractors, or autonomous rovers with on-board computer vision can aid
experts in monitoring larger areas (46–49). Integrating objective plant health assess-
ments via remote sensing into existing decision support systems can improve eco-
nomic injury threshold assessment while providing counterbalance to subjective
human ratings without taking the ultimate decision-making away from the stake-
holder (50). Spectral quantification of organic and synthetic chemical bonds in pesti-
cides on the plant surface and in its interior could one day lead to more prescriptive
fungicide application recommendations (51, 52).

Thinking more globally, forthcoming satellite systems, such as Planet Lab’s
CarbonMapper (53), ESA’s Copernicus Hyperspectral Imaging Mission for the Environment
(CHIME) (70), and NASA’s Surface Biology and Geology (SBG) (71, 72), will revolution-
ize imaging spectroscopy data availability. These systems will provide full-spectrum
(400- to 2,500-nm) hyperspectral imagery at high resolution (30 m) across the entire
globe. Taken as a constellation, these instruments will provide data at weekly or
better intervals (without cost, in the case of CHIME and SBG) and will, for the first
time, democratize the availability of such powerful data products to low- and high-
income countries alike. Disease management in low-income countries is often con-
strained by a lack of expertise to devote to prevention, a lack of resources to devote
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to remediation, and a lack of qualified personnel for both these tasks (54).
Compounding these challenges are unsupportive local governments, lack of equip-
ment and support infrastructure, and preventative material export laws and costs
that growers and researchers in high-income countries do not face. Plant disease
sensing with these next-generation systems offers a path around these historical
challenges by funneling resources and expertise from high-income countries to
global regions most in need.

Plant disease sensing can help uncover biological processes driving disease pat-
terns and cycles across scales. Zooming in to leaf-level applications, in situ and prox-
imal imaging spectroscopy offers the ability to better evaluate hypotheses about
plant function in response to biotic stress, pushing forward the boundary of what
remote sensing may one day be capable of while adding a new dimension of study
to agricultural systems biology. For example, pre- and postsymptomatic disease
detection with spectral systems is now a well-established phenomenon (3, 34, 40,
55–58). However, the underlying pathosystem processes that result in distinguish-
able spectral features between healthy and diseased plants, as well as how common
or unique these biospectral features may be across types and stages of disease, are
not fully understood. Untangling the processes that contribute the most to the
spectral disease phenotype will one day lead to reliable previsual disease detection
and differentiation from nonbiotic stress at scale. Case studies have shown that the
presymptomatic disease phenotype can differ between infections caused by both
different pathogen types (5, 40, 59) and different isolates (39, 60) and can be
strongly impacted by host genotype (38, 61, 62). How will these caveats affect re-
gional and global disease monitoring? Is it possible to monitor for the specific acti-
vation of plant defenses rather than the general impact of disease on plant health
to sidestep these issues? Only further research will tell.

This article has thus far focused on the benefits plant disease sensing can provide
to agriculture; however, fundamental research in this domain stands to benefit mul-
tiple disciplines. Spectranomics can be thought of as a light-based DNA sequence,
capturing both a plant’s current state of existence and its evolutionary history (63),
thus adding a dynamic “live” dimension to multiomics studies (64). Nondestructive
trait quantification with in situ spectroscopy allows live monitoring of infection proc-
esses previously assessable only via destructive methods (40, 62, 65). Advancements
in characterizing plant status via spectranomics combined with improvements to
throughput with robotics will lead to a better understanding of pathogenesis, quali-
tative host resistance, and, more generally, host-microbe interactions. Thinking
more globally, preserving and protecting existing agroecosystems from disease is
critical to conserving biodiversity in natural ecosystems and the long-term ecologi-
cal health of our planet (66). Plant disease sensing can help assess regions most at
risk for agri-food change disruptions and downstream impacts on food security and
safety. Alert systems connected to remote sensing data could warn when vulnerable
wild plant populations are under attack by pathogens, pests, and other, anthropo-
genic factors. Such a system also offers great opportunities for identifying novel/
emerging risks to both natural and agroecosystem functions in the context of cli-
mate change and pathogen spread.

Despite its revolutionary potential, plant disease sensing remains an underdevel-
oped discipline, with challenges facing fundamental study and field application
alike. Disease does not occur in a vacuum; in fact, it is most likely to occur in al-
ready-compromised plants with confounding abiotic and biotic stresses and is usu-
ally under active suppression attempts with chemical, cultural, and other methods
of control. Multiple diseases and stressors of varying importance may therefore
occur within the same pixel, and whether they can be effectively distinguished is yet
unknown. This is critical to understand, because mitigation resources are limited,
and endemic and invasive diseases require different urgency of response. The most
destructive diseases that would be of greatest value to be able to detect are
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frequently under quarantine or destroy-on-discovery orders, preventing field study
in the first place and forcing investigations into controlled environments. Scaling
proximal and in situ findings is not always straightforward (67), nor is translating
findings from controlled conditions to the field. Host genotype has a strong impact
on diseased plant reflectance and classification accuracy (38, 61, 62), challenging
universal model development. Simple indices, such as NDVI, that are widely avail-
able both commercially and from space agencies are useful for general targeting
and risk assessment but have proven insufficient for diagnosis in multistress envi-
ronments (68). Unlike abiotic stress, disease is the result of dynamic interactions
between living organisms within ever-changing micro-, meso-, and macroclimates.
The unique challenges associated with studying plant disease has yielded a disci-
pline far behind other agricultural sensing domains, such as nutrition and water
management. Above all else, there is a great need for interdisciplinary training and
collaboration between plant pathologists and engineers, computer scientists, and
remote sensing experts to meet these challenges and advance plant disease sensing
to its fullest potential (69).

The Gold lab is currently the only research group worldwide wholly dedicated to
studying the fundamental and applied science of plant disease sensing. Our research—
funded by diverse sources ranging from NASA Earth Science Division to grape grower
commodity groups—combines plant pathology, machine learning, and remote sensing
to improve early disease detection and sustainable integrated management interven-
tion. Plant pathology’s foundational theory is the disease triangle, or the concept that
plant disease results from the interaction of a virulent pathogen with a susceptible host
within a conducive environment. A modern interpretation of the triangle adds a fourth
element—management—and acknowledges that these interactions take place in
human-modified environments. In the Gold lab, we study plant disease sensing within
this foundational framework (Fig. 1), in order to make progress against the previously

FIG 1 The four dimensions of plant disease sensing. Inspired by the plant disease triangle, the four dimensions
of plant disease sensing encompass how the environment, host, pathogen, and human management interact
with each other to yield different domains of plant disease sensing.
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discussed challenges. This opens up an exciting new frontier of opportunity that
better harnesses time through earliest detection and management intervention to
prevent crop loss and food insecurity. Oftentimes the greatest challenge in manag-
ing disease is simply finding it in the first place. We envision a world where advan-
ces in digital agriculture, remote sensing, and early intervention make this a thing
of the past. Our ongoing plant disease sensing investigations include building a
framework for global disease surveillance (NASA ROSES #80NSSC20K1533), asymp-
tomatic viral disease detection (NASA ROSES #80NSSC21K1605), developing new
proximal and remote sensing applications for vineyard disease management, and
non-destructive fungicide activity sensing. These studies, and the future avenues of
study they will lead to, will yield powerful insights into the changing climate’s
impact on global disease patterns, improved security for the world’s most at-risk
crops and well-being for the people that rely on them, and more mechanistic sur-
veillance systems adaptive to not only pathosystems but also specific genotype-
environment-microbe-management combinations.
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