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Objective: To identify the individual progression of geographic atrophy (GA) lesions from baseline OCT
images of patients in routine clinical care.

Design: Clinical evaluation of a deep learning-based algorithm.
Subjects: One hundred eighty-four eyes of 100 consecutively enrolled patients.
Methods: OCT and fundus autofluorescence (FAF) images (both Spectralis, Heidelberg Engineering) of

patients with GA secondary to age-related macular degeneration in routine clinical care were used for model
validation. Fundus autofluorescence images were annotated manually by delineating the GA area by certified
readers of the Vienna Reading Center. The annotated FAF images were anatomically registered in an automated
manner to the corresponding OCT scans, resulting in 2-dimensional en face OCT annotations, which were taken
as a reference for the model performance. A deep learning-based method for modeling the GA lesion growth over
time from a single baseline OCT was evaluated. In addition, the ability of the algorithm to identify fast progressors
for the top 10%, 15%, and 20% of GA growth rates was analyzed.

Main Outcome Measures: Dice similarity coefficient (DSC) and mean absolute error (MAE) between manual
and predicted GA growth.

Results: The deep learning-based tool was able to reliably identify disease activity in GA using a standard
OCT image taken at a single baseline time point. The mean DSC for the total GA region increased for the first 2
years of prediction (0.80e0.82). With increasing time intervals beyond 3 years, the DSC decreased slightly to a
mean of 0.70. The MAE was low over the first year and with advancing time slowly increased, with mean values
ranging from 0.25 mm to 0.69 mm for the total GA region prediction. The model achieved an area under the curve
of 0.81, 0.79, and 0.77 for the identification of the top 10%, 15%, and 20% growth rates, respectively.

Conclusions: The proposed algorithm is capable of fully automated GA lesion growth prediction from a
single baseline OCT in a time-continuous fashion in the form of en face maps. The results are a promising step
toward clinical decision support tools for therapeutic dosing and guidance of patient management because the
first treatment for GA has recently become available.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100466 ª 2024 by the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Geographic atrophy (GA) represents a chronic degenerative
disease, which leads to progressive and irreversible loss of
retinal tissue and function. Geographic atrophy is the
advanced stage of nonneovascular age-related macular
degeneration (AMD), which is a leading cause of blindness
in developed countries.1 The majority of all AMD patients
are affected by the nonneovascular AMD type as this is
the natural course of the disease. To date, � 1 million
patients in the United States and 8 million patients
worldwide are affected by GA secondary to AMD, with
an even higher estimated number of unknown cases.2e5

Current treatment concepts for GA secondary to AMD
ª 2024 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
aim to slow disease progression.6,7 Different imaging
modalities can be used to monitor GA development and
progression, including fundus autofluorescence (FAF) and
OCT.8 On FAF, GA appears as sharply demarcated
hypoautofluorescent regions. However, FAF imaging in
GA is limited to the 2-dimensional retinal pigment epithe-
lium (RPE) layer. Moreover, the evaluation of foveal
involvement is difficult, as the macular pigment blocks blue
light in the central macula.6 OCT offers substantial
advantages and additional information in the assessment
of GA lesions compared with FAF. Particularly through
the comprehensive visualization of retinal components like
1https://doi.org/10.1016/j.xops.2024.100466
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the photoreceptor layer, OCT allows for a more detailed
insight into the pathomorphological changes.9 Moreover,
high-resolution OCT is very sensitive for the identification
of early atrophy and therefore provides a better under-
standing of GA precursors and progression.10

In clinical trials, the change in FAF-derived GA growth
rate has been used as the primary end point for evaluating
any potential therapeutic efficacy.11 A recent meta-analysis
revealed a pooled mean GA growth rate between 1.66
mm2/year and 0.33 mm/year.12 However, it has been shown
abundantly that the progression rates in GA are highly
variable among patients ranging from 0.53 to 2.6 mm2 per
year.13 Like in neovascular AMD, treatment requirements
may be correlated with disease activity, i.e., the speed of
progression on an individual patient level. Being able to
predict the progression rate on an individual basis as well
as identifying fast and slow progressors would allow for
optimal patient counseling and personalized treatment,
introducing standardized therapeutic guidelines into the
management of millions of individuals. Moreover, the
design and analysis of treatment studies would strongly
benefit from the identification of patients with different
levels of disease activity and progression profiles.

The aim of this study was to clinically validate a deep
learning-based algorithm to predict the individual GA pro-
gression rate from a single baseline OCT volume over the
time span of 3 years using patient data from routine clinical
care. Additionally, the ability of the algorithm to identify
fast progressors, i.e., patients with the fastest-growing
lesions, was evaluated.
Methods

Data Set and Study Population

Spectral-domain (SD)-OCT scans and FAF images (both Spectralis,
Heidelberg Engineering) of patients with GA secondary to AMD from
the outpatient clinic at the Medical University of Vienna were
analyzed and used for model development and validation.

The study population consisted of 184 eyes of 100 patients who
were consecutively enrolled from routine clinical care. Patients
were � 50 years of age and had a diagnosis of GA on FAF, sec-
ondary to nonneovascular AMD, assessed by 2 experienced
graders. A detailed description has been previously published.14

Patients were excluded if there was a history of other ocular
diseases that would confound retinal assessment. Patients were
followed up every 3 months for � 12 months, and FAF and SD-
OCT scans were performed at every visit. Fundus auto-
fluorescence images were excluded in case of insufficient image
quality preventing accurate measurement of lesion size.

The presented study was approved by the ethics committee of
the Medical University of Vienna (EK Nr: 1246/2016). All
research was performed in compliance with the tenets of the
Declaration of Helsinki and Good Clinical Practice. Written
informed consent was given by all patients for future medical
research and analyses.

Image Analysis and FAF to OCT Reference
Annotations

Fundus autofluorescence images were annotated manually by
delineating the GA area, defined as well-demarcated areas with a
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significantly decreased or extinguished degree of autofluorescence
by certified readers of the Vienna Reading Center, using a vali-
dated image analysis software (OCTAVO, Vienna Reading Cen-
ter). Moreover, all FAF images were graded at baseline for the
perilesional FAF patterns, the presence of a multilobular lesion
configuration, and the presence or absence of subretinal drusenoid
deposits as previously described.14 To obtain matched OCT
gradings, annotated FAF images were anatomically registered in
an automated manner to the corresponding near-infrared reflec-
tance images, which were aligned with the acquired OCT scans by
the imaging device, resulting in 2-dimensional en face OCT an-
notations. A deep learning-based spatial registration method was
employed,15 and the registration process corrected the difference in
magnification between the FAF image and the OCT scan. The
resulting OCT annotations were taken as ground truth for
training and as a reference for the model performance. OCT
offers more detailed information on the pathologic changes in
different retinal layers in GA compared with FAF. By taking the
entire 3-dimensional volume into account, the algorithm benefits
from rich spatial information instead of just looking at an en face
reflectance map. We believe that this is a more precise approach
to segment GA by accurately segmenting the RPE loss on every
B-scan and subsequently creating an en face map.

Model Development

In this study, a newly developed method for modeling the progression
of GA lesion growth over time from a single baseline SD-OCT scan
was used. The technical framework of the algorithm has been pub-
lished in detail.16 In summary, the method takes a single OCT volume
as an input and extracts feature encodings of each A-scan using PSC-
UNet with projective skip-connections that compress the encoded
features in the A-scan dimension.17 These feature encodings represent
the current state of the GA lesion at a given A-scan. The time
derivative at the provided feature encoding is approximated using
another convolutional neural network. With known feature
encodings of the baseline image corresponding to the initial
conditions and the learned time-derivative function of the feature
encodings, the initial value problem is defined. To solve it, the
RungeeKutta fourth order numerical method is used to obtain the
feature encodings at the future time t. In this work, we opt for a
method that can handle a large family of ordinary differential equa-
tions (ODEs) produced by NeuralODE, sacrificing some accuracy. In
general, employing implicit methods in the context of Neural ODEs
greatly increases computational requirements and impacts the stability
due to potential convergence problems of Newton’s iteration at each
time step caused by highly nonlinear NeuralODE. From the family of
explicit methods, we found fourth order-Runge-Kutta to be the best
suitable for the task, as the Euler method often struggles even with the
simplest ODEs, second or third order RungeeKutta methods bring no
additional benefits, and fifth to fourth order adaptive step methods
often produce large computational burden, especially during the
training. Once the encoded features are obtained for each individual
A-scan, they are further transformed into the probability of GA at the
given A-scan using a linear layer. The learning of the time derivative
approximation is enabled by the algorithm described by Chen et al.18

The model is then able to predict the location of the GA lesion growth
at a future time point in the form of an en face segmentation map and
enables a continuous-time predicted GA localization. The block dia-
gram of the model can be found in Figure S1 (available at
www.ophthalmologyscience.org).

Training and Validation

For training and validation, we employed a fivefold cross-
validation setup. The clinical data set was split into 5 groups at
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Table 1. Baseline Characteristics of the Study Population

Data Type Data

Number of patients 100
Number of eyes 184
Baseline age (yrs), mean (SD) 76.2 (7.6)
Female gender, n (% patients) 64 (64)
Follow-up period (mos), mean (IQR) 32 (24-36)
Baseline GA area (mm), mean (95% CI) 2.43 (2.28e2.58)
GA growth rate (mm/yr), mean (95% CI) 0.32 (0.29e0.35)
Baseline FAF patterns, n (% eyes)
Focal 34 (18.5)
Banded 39 (21.2)
Diffuse 87 (47.3)
Diffuse-trickling 11 (6.0)
Patchy 1 (0.5)
None 11 (6.0)
Ungradable 1 (0.5)

Baseline multilobular configuration, n (% eyes)
Yes 44 (23.9)
No 117 (63.6)
Ungradable 23 (12.5)

Baseline SDD, n (% eyes)
Yes 112 (60.9)
No 62 (33.7)
Ungradable 10 (5.4)

Baseline GA area and GA growth rate are presented as square root trans-
formed values.
CI ¼ confidence interval; FAF ¼ fundus autofluorescence; GA ¼
geographic atrophy; IQR ¼ interquartile range; SD ¼ standard deviation;
SDD ¼ subretinal drusenoid deposits.
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the patient level with stratification by the baseline lesion size. Five
instances of the segmentation model were trained. For each
instance, 1 group was selected as the validation set and the
remaining 4 groups as the training set. After the training, each
model processed the corresponding validation set. The results from
the 5 validation sets were pooled together and the segmentation
performance metrics described below were computed. For training,
we sampled 2 visits of a single patient with a time difference of 6 to
12 months, thus, a single patient could produce multiple paired
visits, effectively augmenting the training data set. The network
was asked to process the first visit and reconstruct the GA seg-
mentation of both the first and second visits. For validation, the
whole patient history was utilized. We processed the baseline OCT
with the trained network and compared the network outputs with
the observed patient history.

Statistical Analysis

The performance of the algorithm was evaluated by calculating the
mean � standard deviation of the dice similarity coefficient (DSC),
representing the overlap between the predicted topographicGA region
and the manual ground truth for the total GA region and for the GA
growth region. The GA growth region was defined as the difference
between the GA region at the follow-up visit and the baseline visit. To
adjust for baseline lesion size, theGAgrowth ratewas calculated using
the previously established square root transformation by calculating
the difference between the square root of the baseline and the square
root of the respective follow-up visit.19 Additionally, the mean
absolute error (MAE) � standard deviation for the square root
transformed total GA region and GA growth region was computed.
The correlation between the manual and predicted growth rates was
reported using Pearson correlation coefficient r and the coefficient of
determination R2. The ability of the algorithm to identify fast
progressors for different cut-off values (the top 10%, 15%, and
20%) ofGA lesion growth rateswas evaluated using the area under the
curve with 95% confidence interval. All statistical analyses were done
using Python, sklearn, and scipy.

Results

Data Set and Baseline Characteristics

For training and validation, 967 OCT volumes (at all time
points) from 184 study eyes of 100 patients were used from
routine clinical care at the outpatient clinic. The mean age
was 76.2� 7.6 years and 64% were female. The mean square
root transformed baseline GA area was 2.4 mm (95% con-
fidence interval 2.28e2.58 mm) and the mean square root
transformed GA growth rate was 0.32 mm (95% confidence
interval 0.29e0.35 mm) per year. The baseline characteristics
of the study population are summarized in Table 1.

Geographic Prediction Patterns

Figure 1 visualizes the qualitative results of the GA
progression prediction in the format of en face maps over
time and their comparison to the manual ground truth
annotations. An example of a unifocal and a multifocal
GA lesion is illustrated. The prediction pattern is overall
reliable and correctly identifies the major lesion
component. Precision is highest over the first year,
deviations are discrete over as long as 2 years and
increase when the follow-up is prolonged to 3 years. At
the farthest point in time, lesion growth toward the center is
more likely to be affected by false positive prediction,
whereas the prediction of peripheral multifocal satellites
becomes compromised by false negative prediction. The
respective videos are included in the Supplemental Material
to illustrate the output of the model as a time-lapse through
the GA progression prediction up to 3 years for 1 unifocal
lesion (Video 1, available at www.ophthalmology
science.org) and 1 multifocal lesion (Video 2, available at
www.ophthalmologyscience.org).
Precision of Prediction over Time

The performance of predicting the total current and future
GA region in terms of DSC is presented in Figure 2A,
whereas the performance of predicting the GA growth
region over different time intervals is shown in Figure 2B.
In addition, Figure 2C, D demonstrate the distribution of
square root MAE for the predicted total GA region and
the GA growth region, respectively. All metrics are shown
for the time intervals between baseline acquisition and the
advancing future time points for GA progression
prediction. The values for the mean DSC as well as MAE,
both for the total GA region and GA growth region, are
summarized in Table 2.

The mean DSC for the total GA region at baseline was
0.80 and increased slightly for the first 2 years of prediction
with a mean DSC of 0.82 at years 1 and 2. With increasing
time intervals beyond 3 years, the DSC decreased slightly to
a mean DSC of 0.70. The mean DSC of the GA growth
3
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Figure 1. Qualitative examples of predicted geographic atrophy growth for a unifocal lesion (upper row) and multifocal lesion (lower row) over time.
blue ¼ true positive prediction; orange ¼ false positive prediction; red ¼ false negative prediction compared with the manual ground truth.
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region was 0.25 for the first year of prediction and increased
over time to a mean DSC of 0.38 for years 2 and 3. With
increasing GA growth over time and therefore larger GA
lesion size and accumulating changes in individual disease
biology beyond the RPE layer, the DSC is expected to in-
crease as well.

The MAE was very low over the first year and with
advancing time slowly increased, with mean values ranging
from 0.25 mm to 0.69 mm for the total GA region predic-
tion. The MAE for the GA growth region started from 0.13
mm at 1 year to 0.72 mm at 3 years and was within the range
of the MAE for the total GA region. This was in contrast to
the DSC, which was numerically higher for the prediction of
the total GA region compared with the prediction of the GA
growth region as the DSC is very sensitive to small lesions.
The metrics for all time intervals are summarized in Table 2.
The values for the manual annotations and the model
prediction for the total GA region and GA growth region
are also summarized in Table 2.

Correlation between Ground Truth and
Prediction

The correlation between progression rates derived from the
manual annotations and our model predictions is shown in
Figure 3. The correlation coefficient between manual and
predicted progression rates calculated over the entire
follow-up period of over 3 years was 0.61 with an R2 of
0.37. Numerically, the manual ground truths and the pre-
dicted measurements of the model for the total GA region as
well as the GA growth region in millimeters over the
different time intervals showed similar values. In general,
4

the mean values of the predicted GA growth regions in
millimeters were numerically slightly smaller than the
manual ground truth annotations over time.

Identification of Fast Progressors

The classification performance of the model to identify fast
progressors for different cut-off values, i.e., the top 10%, 15%,
and20%ofGAgrowth rates of all patientswas evaluated by the
area under the curve. The predictive model for the identifica-
tion of fast progressors versus slow progressors produced a
receiver operating characteristic curve with an area under the
curve of0.81 for the top 10%,0.79 for the top15%, and 0.77 for
the top 20% as shown in Figure 4. The optimal operating point
(Yuoden index) had a sensitivity and specificity of 0.73 and
0.91 for the top 10%, 0.73 and 0.88 for the top 15%, and
0.66 and 0.90 for the top 20%, respectively.
Discussion

Several imaging features have been found to predict faster
disease progression in GA. For example, the presence of
intraretinal hyperreflective foci has been shown to correlate
with the conversion from intermediate AMD to late AMD
and with GA progression.20,21 On OCT, the condition of the
photoreceptor layer has gained special interest as a relevant
predictor of GA growth.22,23 It has been demonstrated that
photoreceptor loss and thinning precedes and exceeds GA
growth and correlates with GA growth rates. In general,
studies have found higher growth rates for multifocal
lesions, irregularly shaped lesions, and extrafoveal lesions



Figure 2. Boxplots of dice similarity coefficient (DSC) and mean absolute error (MAE) for total geographic atrophy (GA) region prediction and GA growth
region prediction. A, Distribution of the DSC for the total GA region prediction. B, Distribution of the DSC for the GA growth region prediction. C,
Distribution of the MAE in mm for the total GA region prediction. D, Distribution of the MAE in mm for the GA growth region prediction over time.
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compared with unifocal, circular, and foveal lesions.24e26

On FAF, perilesional FAF patterns labeled as banded or
diffuse were suggested to be associated with faster pro-
gression than lesions with no abnormal or focal FAF
Table 2. Performance Metrics of the Algorith

Performance Metric

t ¼ 0 (baseline) 0 < t
OCT volume (n) 184 29
GT for total GA region (mm) 2.43 � 1.05 2.64 �
Predicted total GA region (mm) 2.50 � 0.81 2.75 �
DSC for total GA region 0.80 � 0.19 0.82 �
MAE for total GA region (mm) 0.28 � 0.26 0.25 �
GT for GA growth region (mm) e 0.25 �
Predicted GA growth region (mm) e 0.27 �
DSC for GA growth region e 0.25 �
MAE for GA growth region (mm) e 0.13 �

DSC ¼ dice similarity coefficient; GA ¼ geographic atrophy; GT ¼ ground tr
patterns.27 However, all those imaging features have been
investigated at a population level and the individual
disease progression of GA growth rate still remains an
overwhelming challenge.
m Predictions for GA Growth over Time

Time

< 1 1 < t < 2 2 < t < 3 t > 3
6 260 148 79
1.08 2.97 � 1.08 3.25 � 1.05 3.56 � 1.18
0.88 2.96 � 0.92 3.11 � 0.96 3.18 � 1.05
0.15 0.82 � 0.13 0.77 � 0.15 0.70 � 0.15
0.25 0.28 � 0.27 0.35 � 0.29 0.69 � 0.47
0.22 0.52 � 0.36 0.75 � 0.42 1.31 � 0.68
0.13 0.42 � 0.21 0.53 � 0.26 0.74 � 0.49
0.16 0.38 � 0.20 0.38 � 0.21 0.37 � 0.23
0.11 0.25 � 0.24 0.35 � 0.34 0.72 � 0.48

uth; MAE ¼ mean absolute error; t ¼ time in years.
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Figure 3. Scatterplot for the correlation between manual ground truth and
predicted geographic atrophy growth rate in mm/year.

Ophthalmology Science Volume 4, Number 4, August 2024
Our proposed algorithm is able to individually predict
GA growth from a single baseline OCT volume in a time-
continuous fashion using deep learning. We provided
robust evidence for achieving GA growth prediction over
3 years of follow-up and obtained interpretable outputs by
providing en face maps for future GA localization. This
personalized atrophy growth risk map represents a clinically
Figure 4. Area under the curve (AUC) for the identification of fast pro-
gressors for different cut-off values of the top 10%, 15%, and 20% of
geographic atrophy lesion growth rate. Dots ¼ operating points;
FPR ¼ false positive rate; TPR ¼ true positive rate.
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useful tool to understand a patient’s prognosis and risk
profile from the baseline visit when patients are being seen
for the first time and whenever treatment decisions have to
be made. The model reached a mean DSC for the prediction
of the total GA growth region of 0.70 to 0.82. The DSC
slightly increased for the progression prediction of up to 2
years. With increasing time of � 3 years, the DSC slightly
decreased for total GA region recognition, indicating a
higher uncertainty with longer time intervals as long as � 3
years. However, only limited follow-up data was available
in year 3. We believe that the algorithm would benefit from
more extensive and long-term follow-up data. When
considering specific GA growth regions, the mean DSC was
numerically lower, ranging from 0.25 to 0.38. However, the
GA growth region represents a substantially smaller region
after excluding the baseline GA region. With increasing
time and increasing GA growth, the DSC for the GA growth
region slightly increased as well. Prediction of biological
activity in disease progression over several years is a most
ambitious goal, particularly in AMD, which has been
recognized as a multifactorial disease process including
many endogenous as well as exogenous pathophysiological
contributors. The OCT can refer to most of the relevant
features located within the retinal layers; however, a stan-
dard OCT will not identify changes in choroidal perfusion
such as flow voids seen only using experimental swept-
source OCT devices.28 Choroidal vascular changes in
elderly individuals will substantially advance over the
duration of several years. Genetic predisposition is another
known factor impacting GA development and
progression.29,30 However, as SD-OCT is the major device
ubiquitously available and is the core modality in the
management of macular disease, particularly in AMD, it is
the ideal prediction tool when equipped with artificial
intelligence-based prediction capacities. Moreover, the
clinical follow-up of AMD in its nonneovascular and neo-
vascular presentation has to be tight to not miss novel
changes threatening visual acuity, such as fluid. A precise
prediction of GA growth activity for as long as 1 year is
most useful and is easily repeated in yearly intervals, if not
in continuous regular monitoring for optimal adjustment of
invasive therapy or threatening foveal involvement in jux-
tafoveal lesions.

One known disadvantage of the DSC is its sensitivity to
small areas. Therefore, we included an additional perfor-
mance metric for the evaluation of the model, namely the
MAE. This metric does not depend on the size of the
evaluated area, as it assesses the absolute area error. The
computed values for the MAE showed only small area errors
for the prediction of the total GA region (0.25e0.96 mm) as
well as for the GA growth region (0.13e0.72 mm), with
only slowly increasing values with longer time intervals. In
contrast to the DSC, the MAE indicated similar values for
both the total GA region as well as the GA growth region
alone. As seen in Figure 2, inaccuracies in the prediction
could be caused by new satellites or because of the GA
expansion within the foveal region. However, both the
DSC and the MAE do not provide information on
the localization of the predicted segmentation. Therefore,
the inaccuracies of the localization can only be evaluated
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qualitatively instead of quantitatively. In addition to the
segmentation metrics, we evaluated the correlation of the
predicted progression rate with the manual ground truth
annotations. In this pilot study performed in a small
population from clinical routine, the model reached a
correlation coefficient of 0.61, indicating a moderate
correlation between the predicted and the manual GA
growth. Further training and validation on more extensive
data are clearly needed to optimize the performance.

There have been a few previous studies which introduced
different models for GA growth prediction on OCT. Previous
work by our group showed that the accumulation of hyper-
reflective foci in the junctional zone around the atrophic
lesion predicts the local progression of GA and indicates
where and whether the atrophic lesion will expand. However,
a global GA progression prediction was not possible.20 Other
proposed models for GA growth prediction reached a DSC of
0.81 to 0.8731 and 0.86 to 0.92.32 However, they were
strongly limited in population size, with 29 and 25 patients,
respectively. Those studies could show that taking into
account more information from a patient resulted in higher
DSC.31 By taking the OCT volume from the baseline and
the first follow-up visit as an input, the model reached bet-
ter performance than by taking just the baseline OCT volume
as an input. However, this approach requires retraining the
model for every new patient.31 Moreover, some approaches
automatically extracted known risk factors of GA growth to
improve the model’s performance.31 Another recent study
proposed a model for personalized atrophy risk mapping
with similar results.33 The algorithm reached a DSC for the
prediction of the total GA area of 0.73 to 0.80 and for the
GA growth area of 0.46 to 0.72. However, this model was
based on en face layer thickness and reflectivity, which is
dependent on accurate layer segmentation.33 A study by
Anegondi et al34 used a multimodal approach with FAF-
only, OCT-only, and FAF and OCT together as inputs. The
performance was evaluated using the squared correlation
coefficient and reached an r2 of 0.91 for the GA lesion area
prediction and an r2 of 0.36 for the GA growth rate prediction
for the OCT-only approach. The prediction from a single
FAF image reached an r2 of 0.96 for GA lesion area and 0.48
for GA growth rate prediction, respectively. The FAF-only
approach showed a high performance also in independent
data sets. Both models achieved better performances than the
reference model using baseline clinical features. This sug-
gests that FAF and OCT images provide further information
compared with anatomic features graded by human experts.34

The proposed models were evaluated with regard to covariate
adjustment to increase the power of clinical trials, rather than
implementation in clinical practice. Moreover, the prediction
was limited to the future overall lesion size without prediction
of the future lesion localization which is, however, most
relevant in the management of GA regarding foveal
involvement.

In addition to the prediction of GA lesion growth and
localization, we evaluated the ability of the algorithm to
identify fast progressors. The algorithm was able to identify
different progression profiles by correctly classifying fast
progressors versus slow progressors. With the first treatment
for GA being implemented in clinical practice, this
represents an important clinical tool for physicians to un-
derstand disease activity in an individual patient and po-
tential treatment benefits. With the first Food and Drug
Administration-approved treatment for wide clinical use,
i.e., pegcetacoplan, a complement C3 inhibitor, physicians,
patients, and payers will be confronted with a huge chal-
lenge in management decisions.35 Complement inhibition
showed phase III efficacy and safety data for the treatment
of GA secondary to AMD and was able to significantly
reduce GA growth rate in treated patients compared with
sham injections. However, we know that there is a high
interindividual variability in GA growth rates, and not
every patient might benefit from a clinically relevant
treatment effect. The difference between sham and
treatment was nevertheless moderate in an allcomer
population and one has to assume that the spectrum of
benefit size is very wide with a population of patients
showing large benefit and others showing little benefit.
Using artificial intelligence-based photoreceptor analyses,
our group has already shown that the ratio of photoreceptor
integrity loss versus RPE loss area is a convincing predictor
for disease activity as well as the therapeutic benefit in
GA.36 Geographic atrophy grows in an unpredictable
manner even for experienced ophthalmologists and under
these perspectives, correctly identifying patients and
lesions that are at high risk of fast progression is therefore
of vital interest to plan therapeutic approaches tailored to
the patient’s risk profile. Moreover, newly developed
treatments will be costly and needed for long-term use;
therefore, knowing which patients might benefit the most
from such treatments will be essential regarding socioeco-
nomic efforts. Moreover, OCT has not been routinely
introduced into monitoring GA disease, and treatment
standards have yet to be established. To provide the base for
an efficient learning curve in GA management, OCT-based
tools providing reliable parameters will help to introduce
urgently needed guidance, paving the way into the era of
individualized risk assessment and objective decision-
making processes in GA patients, which is highly needed
after approval of the first paradigm-shifting therapy.

Limitations of our study include a possible selection bias
due to the exclusion of patients with other retinal diseases
and images with bad quality. Also, the model was trained
and evaluated on Spectralis scans only. More studies are
needed to investigate the performance of the algorithm on
OCT images of other devices and mixed cases. Furthermore,
the automated registration of FAF-based annotations to
OCT might lead to some discrepancies. On the other hand,
automated registration of different retinal imaging modal-
ities such as OCT and FAF allows the use of more imaging
data without the need for manual annotations of every
modality with laborious efforts. There could be a correlation
in growth rates between fellow eyes as the study population
derives from clinical routine patients. Moreover, the pro-
posed algorithm is not able to predict functional deficits.
However, knowing which patients are at risk of faster pro-
gression and therefore might benefit most from treatment is
an important clinical decision support tool for physicians.
Assessing functional deficits and risk of visual loss is very
difficult in GA patients as the routinely collected best-
7
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corrected visual acuity in clinics does not reflect the disease
activity. To be implemented in clinical practice, the algo-
rithm would need further external validation and extension
on more clinical data. However, this proof-of-concept has
shown that fully automated prediction of GA lesion growth
only from the baseline OCT is feasible. Another strength of
our analysis is the use of consecutively collected data from
routine clinical care for the evaluation and testing of the
algorithm.

In summary, we could show that the algorithm is capable
of fully automated GA lesion growth prediction from a single
8

baseline OCT volume in a time-continuous fashion. The al-
gorithm provides interpretable outputs in the format of en
face maps showing future GA growth and localization as a
clinically relevant tool. Moreover, the algorithm was able to
correctly identify fast progressors and hence patients who
have a high risk of rapid disease progression, which supports
the assessment of objective metrics for targeted interventions.
The results of this pilot study are a promising step toward
clinical decision support tools for therapeutic dosing and
guidance of patient management on a large scale, now that
the first treatment for GA has finally become available.
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