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Trends in AI-powered Classification of Thyroid Neoplasms Based on Histopathology Images - a Systematic Review

ABSTRACT

Background: Assessment of thyroid nodules histopathology using AI is crucial for an ac-

curate diagnosis. This systematic review analyzes recent works employing deep learning 

approaches for classifying thyroid nodules based on histopathology images, evaluating 

their performance, and identifying limitations. Methods: Eligibility criteria focused on 

peer-reviewed English papers published in the last 5 years, applying deep learning to 

categorize thyroid histopathology images. The PubMed database was searched using 

relevant keyword combinations. Results: Out of 103 articles, 11 studies met inclusion 

criteria. They used convolutional neural networks to classify thyroid neoplasm. Most 

studies aimed for basic tumor subtyping; however, 3 studies targeted the prediction of 

tumor-associated mutation. Accuracy ranged from 77% to 100%, with most over 90%. 

Discussion: The findings from our analysis reveal the effectiveness of deep learning 

in identifying discriminative morphological patterns from histopathology images, thus 

enhancing the accuracy of thyroid nodule histopathological classification. Key limitations 

were small sample sizes, subjective annotation, and limited dataset diversity. Further 

research with larger diverse datasets, model optimization, and real-world validation is 

essential to translate these tools into clinical practice.

Keywords: Thyroid neoplasms, histopathology images, artificial intelligence, ma-

chine learning, deep learning, computer-aided/assisted classification.

1.	 BACKGROUND
Thyroid nodules are frequently ob-

served in clinical practice, and accurate 
diagnosis is crucial for proper patient 
management. The accurate character-
ization and classification of thyroid 
tumors, including distinguishing ma-
lignant from benign lesions, remains a 
significant challenge in pathology. Sev-
eral diagnostic modalities, including 
radiology US (ultrasound), CT (com-
puterized tomography) scan, MRI 
(magnetic resonance imaging), cyto-
pathology, and histopathology, are in 
place to achieve this goal. While his-
topathology examination is consid-
ered the gold standard for diagnosis, it 
can be sometimes challenging due to 
the subjective nature of interpretation 
by pathologists. Manual evaluation of 
thyroid histopathology slides is prone 
to interobserver variability, especially 
in borderline lesions such as NIFTP 
(Noninvasive Follicular Thyroid Neo-

plasm with Papillary-like Nuclear Fea-
tures) (1).

A common theme is developing com-
putational approaches to complement 
pathologists’ expertise and reduce the 
subjectivity and interobserver vari-
ability inherent to manual slide review 
and conventional microscopy. The uti-
lization of AI (artificial intelligence) 
methods has demonstrated the po-
tential to enhance the precision and 
efficiency of thyroid nodule histopa-
thology diagnosis. Emerging DL (deep 
learning) techniques offer the poten-
tial to improve the efficiency and con-
sistency of analyzing complex morpho-
logical patterns in thyroid histologic 
images.

Recent studies have investigated the 
utility of deep CNNs (convolutional 
neural networks) and related DL ap-
proaches for the computational pa-
thology of thyroid lesions (2, 3). They 
have focused specifically on developing 
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DL systems to classify thyroid tumors/nodules into different 
subtypes including malignant vs. benign categories to guide 
clinical decision-making.

Other than DL, some studies adopted a traditional image 
analysis approach for thyroid nodule classification based on 
nuclear morphology characterization (4, 5). Valentim et al 
used computerized nuclear morphometry and texture anal-
ysis of histology images coupled with CRT (Classification 
and Regression Trees) to distinguish follicular pattern thy-
roid lesions. They demonstrated that computerized quanti-
tative image analysis can also provide discriminating nuclear 
features to classify thyroid tumors (6). While accurate for the 
study dataset, extensive feature engineering and limited di-
versity may affect scalability.

Although DL-assisted classification of thyroid nodules 
based on radiology (7) or cytopathology (8-10) images are 
extensively explored in the literature, no recent review eval-
uated the performance of such techniques in classifying his-
topathology images. The application of digital pathology and 
DL for the analysis of thyroid histopathology images is an 
emerging area of research. While the approaches and aims 
vary, the collective work highlights the significant potential 
of these techniques to uncover novel insights from high-reso-
lution WSIs (whole slide images).

2.	 OBJECTIVE
Herein, we aim, in this systematic review, to identify and 

summarize recent studies (published within the past 5 years) 
employing DL approaches in classifying thyroid neoplasms 
based on histopathology images. The research’s primary ob-
jectives are to evaluate these methods’ effectiveness, identify 
prevailing trends and patterns, and pinpoint areas that re-
quire further investigation.

3.	 MATERIAL AND METHODS
Search Strategy:
We conducted this systematic review following the 

PRISMA (Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis) guidelines (11). The review protocol was 
registered within the PROSPERO database under registra-
tion number CRD42023457854.

We performed a comprehensive literature search of the 
Medline PubMed database, focusing on the last 5 years from 
January 2019 to September 2023. We utilized specific combi-
nations of keywords such as ‘thyroid’, ‘histopathology’, ‘im-
ages’, ‘classification’, ‘diagnosis’, ‘prediction’, ‘artificial intelli-
gence’, ‘machine learning’, ‘deep learning’, ‘computer-aided/
assisted’, and other relevant terms. Our search was limited to 
English language original research articles published in high-
quality, peer-reviewed journals indexed in PubMed. To en-
sure inclusion of the most relevant research, we iteratively re-
fined the PubMed search query using various keyword com-
binations. The final optimized search query was:

(Thyroid[Title] AND (Histopatholog*[Tiab] OR His-
tolog*[Tiab] OR Patholog*[Tiab]) AND (image*[Tiab] OR 
slide*[Tiab]) AND (classif*[Tiab] OR diagnos*[Tiab] OR 
predict*[Tiab]) AND (artificial intelligence[Tiab] OR ma-
chine learning[Tiab] OR deep learning[Tiab] OR convolu-
tional[Tiab] OR neural network*[Tiab] OR automated[Tiab] 
OR computer-assisted[Tiab] OR computer-aided[Tiab]))

Study Selection:
The first step in refining the search results was screening the 

titles and abstracts to identify relevant works based on prede-
termined inclusion and exclusion criteria.

The inclusion criteria were as follows: 1) original En-
glish-language research articles published within the last 5 
years and indexed in PubMed that 2) utilized AI/ML/DL 
techniques for classification of thyroid neoplasms based on 
histopathology images, 3) reported performance metrics of 
the classification methods, and 4) had full text freely avail-
able.

The exclusion criteria were: 1) studies based on cytology 
images, 2) studies based on radiology images (US, CT, MRI, 
etc.), and 3) studies focused solely on morphometry and/or 
feature engineering.

Data Extraction:
We extracted pertinent information from the studies se-

lected during the screening process using a standardized 
form. The extracted data included details such as author, title, 
objectives, data characteristics (source, type, quantity), study 
design (methodological approach), ML/DL model architec-
ture including input patch dimensions and output classes, 
evaluation metrics, and limitations as reported by the au-
thors. We performed a descriptive analysis of the extracted 
data to identify prevalent patterns and trends.

4.	 RESULTS:
Overview of the included studies
The search strategy outlined above initially yielded 103 ar-

ticles. After excluding non-English and non-original articles, 
95 articles remained. Screening the titles and abstracts based 
on the predefined inclusion and exclusion criteria led to the 
exclusion of papers utilizing imaging modalities other than 
histopathology (e.g. cytopathology, ultrasound, CT, MRI). 
This screening process resulted in 15 remaining articles, of 
which 11 had freely accessible full text (Fig. 1).

Study Characteristics:
A total of 11 studies meeting the inclusion criteria were 

identified. These studies were published between January 
2019 and August 2023. The key trends observed across the 
included studies were: 1) leveraging whole slide images from 

Figure 1: Prisma Flow Diagram
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histopathology glass slides; 2) extracting image patches/tiles 
to generate large, labeled datasets suitable for deep learning; 
3) utilizing state-of-the-art CNNs pretrained on natural im-
ages (ImageNet) and fine-tuned on histology data; 4) in-
corporating image preprocessing and augmentation strat-
egies to improve model performance; 5) complementing 
deep learning with traditional image analysis and machine 
learning where limited labeled data was available; 6) focusing 
primarily on basic classification of thyroid neoplasms; 7) 
demonstrating promise in predicting specific genetic muta-
tions linked to malignant behavior and prognosis from histo-
morphology patterns; 8) experimenting with training CNN 
models on hyperspectral rather than traditional RGB im-
ages; and 9) utilizing frozen rather than formalin-fixed paraf-
fin-embedded sections in 3 studies (annex 1).

In addition to the 11 included studies, several other rel-
evant studies with similar objectives were identified but ex-
cluded due to unavailable full text access. These included a 
study by Anand et al 2021 (12) that described a weakly su-
pervised technique to train a DNN (deep neural network) to 
predict BRAF V600E mutational status with high accuracy in 
unannotated H&E-stained images of thyroid cancer tissue. 
Two studies by Esce et al (13, 14) demonstrated the efficacy 
of CNNs in predicting the probability of nodal metastases 
in PTC (papillary thyroid carcinoma) based on the histopa-
thology features of the primary tumor. Finally, a study by No-
jima et al 2023 (15) compared the prediction accuracy of 3 
CNN models in distinguishing FA (follicular adenoma) from 
FTC (follicular thyroid carcinoma) based on histopathology 
images.

5.	 DISCUSSION
This systematic review demonstrates current applications 

of deep learning and digital pathology techniques for the au-
tomated analysis of thyroid histopathology images. The col-
lection of included studies highlights a diversity of approaches 
with the shared goal of leveraging digital pathology imaging 
and artificial intelligence to enhance the analysis of thyroid 
histopathology specimens. Although all studies utilized his-
topathological tissue images as the dataset, there were some 
key differences in their approaches. The studies differed in 
terms of specific objectives, sample types, image formats, and 
analytical methodology. Nevertheless, the results collectively 
demonstrated the utility of machine learning and deep learn-
ing-based techniques for enabling enhanced classification 
and diagnosis based on thyroid histopathology images.

Comparing Objectives: Exploring Simple Subtyping 
vs. Predicting Associated Mutations:

The specific classification tasks and objectives varied across 
the included studies. Although the principal aim for most 
studies was basic diagnostic classification of thyroid neo-
plasms with generic tumor subtyping, which has direct di-
agnostic relevance, three studies focused on the novel goal 
of predicting specific genetic mutations associated with thy-
roid tumors directly from histomorphology features (16-18). 
These studies targeted mutations such as TERT, BRAF, and 
RAS, demonstrating the potential to infer molecular charac-
teristics from histological imaging features (annex1).

Tissue sample preparation, processing, and staining:
The sample sources and preparation methods varied among 

the included studies. While most utilized formalin-fixed par-
affin-embedded (FFPE) thyroid tissue sections, three studies 
(19-21) used frozen sections. All samples were stained with 
the conventional hematoxylin and eosin (H&E) protocol. Al-
though H&E staining is the histopathology standard, Ozolek 
et al 2014 (5) explored special stains such as Feulgen stain, 
which preferentially binds DNA and highlights nuclear chro-
matin patterns better than H&E. Enhanced visualization of 
nuclear features is particularly relevant in thyroid tumors, 
where nuclear characteristics are key for precise classifica-
tion. While H&E remains the typical staining technique, 
evaluations of complementary stains like Feulgen may fur-
ther improve the nuclear detail essential for computational 
pathology applications in this domain (5).

Data sources: Institutional versus public cases:
While most studies utilized institutional samples to con-

struct their datasets (table 1), two studies also incorporated 
public datasets (2, 16). One study relied solely on a public 
dataset (18). Tsou and Wu leveraged the large public TCGA 
thyroid cancer dataset, comprising H&E-stained whole slide 
images from PTC patients. They obtained 51 and 52 samples 
with RAS and BRAF mutations, respectively, along with di-
agnostic labels, reducing the need for extensive in-house data 
collection and annotation (18). Dolezal et al and Bohland et 
al used both institutional and public cases. Bohland et al eval-
uated two datasets–the Tharun dataset, aggregating cases 
from two centers to obtain 154 slides spanning 5 thyroid 
tumor subtypes, and the public 138-case Nikiforov collec-
tion (2). Dolezal et al supplemented 115 in-house WSIs with 
497 public TCGA cases (16). The remaining studies required 
the compilation of primary institutional datasets due to the 
lack of suitable public resources for their specific research 
questions. Sample sizes ranged from 25 institutional thyroid 
cancer cases (13 TERT-mutant, 12 TERT-wildtype) analyzed 
by Kim et al (17) to over 1,300 institutional WSIs gathered by 
Zhu et al (21).

All studies scanned images at either 20x or 40x magnifica-
tion. While larger datasets enable more robust deep learning 
model development, they require greater resources for anno-
tation and training.

Both institutional specimens and public datasets can pro-
vide representative histopathology data to develop and eval-
uate deep learning solutions. Overall, careful consideration of 
research aims to guide data preparation remains critical for 
continued progress in this emerging field.

Image acquisition technique (RGB vs Hyperspectral):
RGB was the standard image format across most studies. 

To improve model performance, some authors experimented 
with hyperspectral (HS) image acquisition. Two studies uti-
lized HS images (22, 23), captured across a wide spectral 
range beyond human vision. Each pixel contains a continuous 
spectrum of measurements rather than just RGB values, en-
abling detailed spectroscopic histopathology analysis.

Tran et al (23) designed a CNN model called HyperDeep 
for pixel-wise prediction of thyroid cancerous regions in HS 
images. HyperDeep achieved 95.3% average accuracy, out-
performing benchmark CNNs using RGB images. Similarly, 
Halicek et al (22) developed the Hyperspectral Tumor Detec-
tion Network (HTDN) for HS images, achieving over 93% 
tumor detection accuracy, surpassing conventional histopa-
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thology.
Overall, the combination of information-rich HS data 

and deep learning algorithms demonstrated promise for im-
proving cancer diagnosis and evaluation.

Image preprocessing techniques
Many studies incorporated image preprocessing strategies 

to improve model performance. Kim et al (17) experimented 
with color transformations like HSV (hue, saturation, value) 
and HED (hue, exposure, dark) in different combinations to 
enhance histological image details. The best performance was 
achieved using DenseNet161 (HSV-strong) + CRNN (HSV-
strong). Wang et al (3) used a Laplacian of Gaussian (LOG) 
filter to identify nuclei that appear dark under H&E staining.

Tumor segmentation/annotation (manual vs auto-
mated):

Both automated and manual approaches were utilized for 
tumor delineation. Automated techniques like CNN-based 
segmentation expedited the process, while manual annota-
tion by pathologists ensured patches contained represen-
tative tumor regions. Kim et al used CNN-based tumor de-
tection and segmentation (17), while other studies relied on 
manual annotation. In Bohland et al study (2), multiple pa-
thologists provided diagnoses and manually annotated re-
gions of interest (ROIs) on WSIs. Complexities arise from 
high-resolution WSIs, need for expert annotations, and vari-
ability in imaging conditions. However, diagnostic and slide-
level labels in public datasets (16) enabled training neural net-
works without new annotations.

Extraction of patches/tiles (manual vs automated):
Cropping multiple patches from ROIs or entire WSIs was 

commonly used across studies to simplify analysis and ex-
pand limited datasets. However, patch-based approaches, 
whether manual or automated, may suffer from selection bias. 
Only two studies utilized manual patch extraction guided 
by pathologists(2, 24), while all other studies adopted auto-
mated extraction. Due to tumor heterogeneity, automated ap-
proaches require additional steps for tumor localization and 
annotation. Extracted patch sizes (table 1) ranged from 2392 
x 2392 pixels (20) down to 256 x 256 pixels (17), depending 
on magnification and neural network input requirements. Re-
sizing large patches to match network defaults may lead to loss 
of fine details or cropping may discard relevant information, 
potentially impacting model performance. Conversely, very 
small patches could cause overfitting, as models may memo-
rize patch-specific details rather than learning generalizable 
features applicable to the full dataset. Ultimately, patch size 
selection involves balancing trade-offs between capturing rel-
evant information, computational constraints, and model re-
quirements.

Classification approaches: DL vs traditional image 
analysis:

Most studies relied on CNNs for classification of thyroid 
histopathology images, using state-of-the-art architectures 
like DenseNet, ResNet, VGG, and Inception. Pre-training on 
natural images (ImageNet) provides feature learning before 
fine-tuning on histology data, although the domain shift re-
mains a consideration (annex 1).

While DL models can learn discriminative features inde-
pendently, providing engineered features as additional in-
puts may improve performance where labeled data is lim-

ited. Some works opted for traditional pipelines using hand-
crafted features and ML classifiers, suggesting hybrid ap-
proaches could be beneficial (2). Bohland et al compared tra-
ditional feature engineering to DL models. They performed 
nuclear segmentation with U-Net, extracted 36 nuclear fea-
tures, and classified using ML. They aggregated median and 
standard deviation statistics across 700,000 nuclei per case 
to reduce features while preserving relevant information. Al-
though slightly better performing, this approach requires ex-
tensive effort.

Base models:
Most studies leveraged ImageNet-pretrained CNNs alone 

or combined with other components like LSTMs, MLPs, 
or traditional classifiers (table 1). Model choices depend on 
factors like task complexity, compute resources, and perfor-
mance needs.

Kim et al (17) used DenseNet161, VGG16, and Effi-
cientNet_b4 for detection, then a CRNN (ResNet152 + 
LSTM + MLP) for prediction. Halicek et al (22) used In-
ceptionV4 and MLP for detection. Some compared multiple 
CNNs like ResNet, DenseNet, VGG16, and EfficientNet (2, 
3, 19, 24). Others used single models like Xception (16), In-
ceptionV3 (18, 20), UNET (21), or VGG19 (23).

CNN model differences lie primarily in their base architec-
tures, which vary in depth, efficiency, and design. Fine-tuning 
pretrained models or extending them with additional layers 
targets specific histopathology tasks. Recent works describe 
training CNNs from scratch on histopathology images rather 
than ImageNet (25).

Output class configuration:
Within the scope of the 11 scrutinized research endeavors, 

it is discernible that investigators meticulously tailored their 
classification tasks to harmonize with the clinical context and 
overarching objectives. This involved the utilization of both 
binary classifications, which accentuated pivotal diagnostic 
distinctions, and multi-class schemes. These strategic choices 
were influenced by the specific histopathology image datasets 
under examination and their corresponding clinical applica-
tions (table 1).

A predominant tendency among these studies was to ap-
proach histopathology image classification primarily through 
the lens of binary classification. This binary paradigm was 
often adopted for purposes such as subtyping, mutation pre-
diction, or tumor segmentation. For instance, Bohland et al 
(2) embarked on a subtyping endeavor, categorizing thyroid 
nodules into either PTC-like or non-PTC-like. In the domain 
of mutation prediction, Kim et al (17) ascertained the TERT 
promoter mutation status, classifying it as either positive or 
negative, while Tsou et al (18) endeavored to differentiate be-
tween RAS and BRAF mutated subtypes. Similarly, Dolezal et 
al (16) dichotomized thyroid nodules into RAS-like or BRAF-
like mutated subtypes. In the context of tumor segmentation, 
scholars such as Tran et al, Halicek et al, and Zhu et al (21-
23) employed binary classification to segregate patches into 
tumor or normal categories.

Conversely, several studies departed from this binary di-
chotomy, opting for multi-class classification paradigms. No-
tably, Li et al and Chen et al (19, 20) extended their classifi-
cations to three categories: benign, malignant, or uncertain. 
Wang et al (3) pushed the envelope further by defining a com-
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prehensive taxonomy of seven classes, encompassing normal, 
goiter, FA, PTC, FTC, MTC (medullary thyroid carcinoma), 
and ATC (anaplastic thyroid carcinoma). In a similar vein, 
Deng et al (24) orchestrated the classification of thyroid le-
sions into one of six classes: PTC, MTC, FTC, FA, adeno-
matous goiter, or normal.

The choice between binary and multi-class classification 
hinges on a confluence of factors, including the clinical in-
quiry at hand and the inherent characteristics of the data. In 
navigating this decision-making process, it is imperative to 
deliberate upon the clinical significance of model predictions 
and the potential ramifications thereof. For instance, in sce-
narios where the diagnostic course of action diverges signifi-
cantly between subtypes, a multi-class approach emerges as a 
more judicious choice. Multi-class classification affords a finer 
level of granularity in predictions, catering to the nuances of 
distinct pathological categories. Conversely, when the clinical 
decision ultimately resolves into a binary outcome, especially 
within the framework of an imbalanced dataset, the adoption 
of a binary-output model is preferred, given its simplicity and 
interpretability. Careful consideration of these factors is par-
amount in ensuring that the chosen classification strategy 
aligns harmoniously with the clinical context and objectives.

Analysis of Results/Evaluation of model performance:
The studies consistently demonstrated the potential of 

deep learning to extract discriminative features from thyroid 
histology images, enabling accurate classification and pre-
diction. Studies utilized various evaluation metrics to assess 
model performance on image classification tasks. Accuracy 
and AUC (area under the ROC curve) were most common, 
measuring overall correctness of predictions and ability to 

discriminate classes, respectively.
Reported accuracy ranged from 77-100%, with substan-

tial variability attributable to differences in study design, 
methods, and datasets. However, most studies achieved 
high accuracy of 90% or above, with top-performing models 
reaching 80-95% accuracy (Table 1).

Notably, Kim et al (17) achieved 0.95 accuracy and 0.94 
AUC using color transformation in preprocessing. Bohland et 
al (2) reported DL accuracy of 77.4% and 89.1% on two data-
sets, versus 83.5% and 89.7% for features-based, with mean 
AUC of 0.93 and 0.75. Multiple studies achieved AUC ex-
ceeding 0.9 (16, 18, 22, 23) (Fig. 2).

Some authors reported two levels of performance assess-
ment. Li et al (20), reported patch-level accuracy of <80% and 
slide-level accuracy (with rule-based method) of 95.3-100%. 
Similarly, Chen et al (19) reported a classification accuracy of 
> 0.96 on ROI-based diagnosis.

Figure 2. Comparison of performance metrics among the studies

Paper Data
Patch/tile size 

(pixel)
Model Architecture

Output 
classes

AUC Accuracy

Deng et al
799 images from 559 pa-

tients
2500×3200 

ResNet50, ResNext50, Effi-
cientNet, DenseNet121

Multiclass
0.822 - 0.994

92.18 - 97.53%

Bohland 
et al 

156 WSIs 40x 
133 WSIs 20x 

1916×1053 
2272×2272 

SVC (Feature-based)
ResNet101 (Deep learning)

Binary
0.93

-
89.7%
89.1%

Wang et al 
100x images from 806 pa-

tients
11,715 patches

448×448
VGG19

Inception-RestNetV2
Multiclass

97.34%
94.42%

Zhu et al 1,374 WSIs (frozen) 512×512 U-net, Decision tree Binary 0.94 - 0.98 -

Li et al 
608 WSIs 40x (frozen)

150000 patches
2392×2392 InceptionV3 Multiclass -

< 0.8 (Patch 
level)

95.3% - 100 % 
(Slide)

Chen et al 345 WSIs 40x (frozen) 1024×1024 InceptionV3, VGG16, ResNet50 Multiclass - > 0.96 (ROI)

Kim et al 25 WSIs 40x (institutional) 256×256 

DenseNet161, VGG16, Efficient-
Net-B4 

RestNet152 (Feature extraction)
RNN (Feature integration)

MLP (TERT prediction)

Binary
0.94

0.95

Dolezal 
et al 

115 WSIs 40x (institutional)
497 WSIs TCGA

299×299 Xception-based Binary 0.935 -

Tsou & Wu 
103 WSIs 40x TCGA 
(51 RAS & 52 BRAF)

2575 patches
2048×2048 InceptionV3 Binary 0.94 -

Tran et al 
WSIs 40x (institutional)

3 datasets (RGB, HS, and 
HS- RGB)

400×400 VGG19 Binary
0.96 (HS)

0.93 (RGB)
0.94 (HS-RGB)

-

Halicek 
et al

200 WSIs 40x (thyroid) 1040×1392 InceptionV4, MLP Binary
0.9 (HSI-synthe-

sized RGB)
-

Table 1. Summary of the models’ architecture used across the studies with their performance metrics.
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While these results offer promising insights into the poten-
tial of DL in advancing thyroid diagnosis and management, 
further research is warranted to address identified limita-
tions.

6.	 LIMITATIONS WITH SUGGESTED KEY SOLUTIONS:
The selected studies demonstrated promising applications 

of DL for thyroid histopathology image classification. How-
ever, some key limitations were observed that restrict the re-
al-world utility and clinical translation of these approaches. 
Small sample sizes, subjective annotation, and lack of case 
diversity were common limitations. The works highlight the 
need for larger standardized datasets, expanded diversity in 
subclasses, comparison across multiple sites and rigorous 
evaluation on heterogeneous real-world data.

Small, imbalanced dataset:
One fundamental challenge is the small, imbalanced data-

sets used in most studies, which limits model performance 
and generalizability (16). Furthermore, diversity is limited 
given single-center data (17, 23). DL prerequisites of large, 
labeled datasets and computational resources may hinder its 
translation to clinical practice. Expanding datasets through 
extensive labeling efforts with increased examples per class 
will be critical moving forward.

No quality control for data preparation
Objective quality control of data extraction and prepro-

cessing programs is required to limit potential biases (21). 
Direct comparison of pathologists with versus without as-
sistance of models using reader studies would better demon-
strate clinical utility and guide development. There is also a 
lack of head-to-head benchmarking between techniques on 
shared public datasets (2).

Bias in ROI annotation and patch extraction:
Additionally, potential subjectivity and selection bias can 

arise during tumor/region annotation by pathologists, which 
may not fully capture the diversity of real-world samples. 
Also, subjective patch sampling may introduce selection bias. 
Developing standardized annotation protocols could help 
mitigate this (17). Most studies focused narrowly on classi-
fication tasks, while localization, segmentation, and other 
problem formulations warrant deeper investigation.

lacking details for model deployments
As an emerging field, translating these approaches into 

widespread clinical practice remains challenging. Crucially, 
clinical implementation remains overlooked, with no clear 
strategies for model deployment and workflow integration. 
Conducting usability studies is advised before deployment.

Model optimization & interpretability
Regarding model development, the field is still in early 

stages, with limited model architectures and hyperparame-
ters evaluated so far. Broad optimization of network architec-
tures and hyperparameters through extensive experiments 
could boost performance. Another key aspect is model inter-
pretability, which remains underexplored but critical for clin-
ical acceptance. Implementing methods to explain model rea-
soning and validate learned features is beneficial.

Lacking clinical and radiological correlation.
Another issue is the sole reliance on histopathology images, 

lacking complementary clinical, genomic, and radiographic 
data that pathologists use to reach diagnostic decisions. In-

tegrating these multiple modalities represents an important 
frontier. Enabling multi-modal integrations represent fertile 
directions for future research to unlock the full potential of 
DL in thyroid histopathology.

7.	 CONCLUSION
This systematic review offers comprehensive insights into 

recent advancements in DL approaches for the classification 
of thyroid neoplasms based on histopathology images. The 
findings underscore the potential of these techniques to en-
hance accuracy and improve clinical decision-making. While 
further optimization is warranted, integration of these tools 
to guide pathologists could markedly improve thyroid cancer 
screening, diagnosis, prognosis, and treatment selection for 
better patient care.

•	 Funding: This study did not receive any funding.

•	 Registration: The procedural instructions for this systematic review 

were officially recorded within the PROSPERO database under regist-

ration number RD42023457854 https://www.crd.york.ac.uk/Pros-

pero/
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