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Abstract
Background: This study compared the transduction efficiencies of an adeno-associated viral (AAV) vector, which was 
pseudotyped with an AAV1 capsid and encoded the green fluorescent protein (GFP), with a lentiviral (LV) vector, which 
was pseudotyped with a VSV-G envelop and encoded the discosoma red fluorescent protein (dsRed), to investigate 
which viral vector transduced the lateral hypothalamus or the amygdala more efficiently. The LV-dsRed and AAV1-GFP 
vector were mixed and injected into the lateral hypothalamus or into the amygdala of adult rats. The titers that were 
injected were 1 × 108 or 1 × 109 genomic copies of AAV1-GFP and 1 × 105 transducing units of LV-dsRed.

Results: Immunostaining for GFP and dsRed showed that AAV1-GFP transduced significantly more cells than LV-dsRed 
in both the lateral hypothalamus and the amygdala. In addition, the number of LV particles that were injected can not 
easily be increased, while the number of AAV1 particles can be increased easily with a factor 100 to 1000. Both viral 
vectors appear to predominantly transduce neurons.

Conclusions: This study showed that AAV1 vectors are better tools to overexpress or knockdown genes in the lateral 
hypothalamus and amygdala of adult rats, since more cells can be transduced with AAV1 than with LV vectors and the 
titer of AAV1 vectors can easily be increased to transduce the area of interest.

Background
Viral vectors are used as tools to introduce genes or
short-hairpin RNAs (shRNAs) into the brain in order to
unravel the role of genes. The advantages of viral vectors
are that they can be injected locally and that they estab-
lish long term expression of a gene or shRNA. Several
viral vectors have been tested in vivo in the central ner-
vous system, such as adeno-associated viral (AAV), lenti-
viral (LV), adenoviral (AdV) and herpes simplex viral
(HSV) vectors [1-4]. To date, studies in the rodent hypo-
thalamus and amygdala mainly have used AAV or AdV
and to a lesser extent LV vectors [5-10]. In this study we
compared the transduction efficiencies of AAV and LV
vectors. The LV and AAV vector used in this study both
used the CMV promoter to drive the expression of a fluo-
rescent marker, dsRed or GFP respectively. The AAV and

LV vectors were pseudotyped; the AAV vector was
pseudotyped with AAV1 and the LV vector was pseudo-
typed with VSV-G. To date, at least 12 serotypes of AAV
are discovered (AAV1-AAV12) [11-20] that probably use
different receptors to enter cells [21-28]. Nevertheless, for
most serotypes the cell entry receptors are still unknown.
Until now the most widely used serotype is AAV2. How-
ever, recent studies have shown that AAV1 and AAV8
coated vectors transduce more neurons than AAV2
coated vectors in vivo in several brain areas, such as the
rat striatum, hippocampus, midbrain [29-35]. We have
chosen to use an AAV1 pseudotyped vector, because we
previously have shown that this serotype is more efficient
in transduction of neurons in the adult rat hypothalamus
than an AAV2 encapsidated vector [36]. For the LV vector
we chose the vesicular stomatitis virus glycoprotein
(VSV-G), because it was shown to have a broad tropism
for all kinds of neurons. However there are also other* Correspondence: r.a.h.adan@umcutrecht.nl
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envelope proteins which can be used to pseudotype LV
vectors and target the CNS [37].

It is important to know which viral vector, AAV or LV,
is most efficient in transduction of brain areas involved in
energy homeostasis, because then it is possible to effi-
ciently alter gene expression in specific brain nuclei to
further investigate the function of genes involved in feed-
ing behavior. The lateral hypothalamus (LH) and
amygdala (AM) are important brain areas involved in
energy homeostasis [38]. Previously, we have shown that
AAV vectors can be used to alter behavior in rats. AAV-
mediated overexpression of neuropeptide Y, agouti and
agouti-related peptide in the hypothalamus increased
parameters such as body weight and food intake [36,39-
41]. However, a study by another group showed that LV
vectors can be also used to alter gene expression in the
hypothalamus and thereby alter body weight [42]. Thus,
AAV and LV vectors are able to change gene expression
and behavior after transduction of neurons in the rat
hypothalamus. However, it is unclear whether AAV or LV
vectors are more efficient in transduction of the rat hypo-
thalamus or amygdala. Therefore, this study compared
the transduction efficiencies of a LV and an AAV vector
in the LH and AM of adult rats.

Results
In vitro testing of antibodies
To confirm that GFP and dsRed antibodies were able to
detect the respective proteins with similar efficiencies,
293T cells were transfected with constructs encoding for
CMV-GFP and/or CMV-dsRed (Figure 1A, B). Since the
promoter driving the expression of the fluorescent pro-
teins was the same, we expected similar levels of expres-
sion. The endogenous fluorescence of GFP and dsRed
was compared with the immunostained fluorescence.
The cells transfected with only one construct showed co-
localization of endogenous fluorescence and immunos-
tained fluorescence (Figure 1C, D). In addition, cells co-
transfected with CMV-GFP and CMV-dsRed showed co-
localization of both immunohistochemistry signals (Fig-
ure 1E). The pictures showed that red fluorescent signals,
endogenous or immunostained, were at least threefold
stronger in intensity than green fluorescent signals.

AAV1-GFP and LV-dsRed transduction in vitro
The AAV-GFP plasmid was pseudotyped with an AAV1
coat, because that coat was previously shown to be more
effective in transduction of hypothalamic nuclei, such as
the LH, than AAV2 coated vectors [36]. It is still
unknown which entry receptors AAV1 uses to enter cells
and it is therefore unknown which cell line is most opti-
mal for determining transducing units. Nevertheless, we
performed a serial dilution with AAV1-GFP on HT-1080
cells to obtain an indication of transducing units. These

results showed that the titer of AAV1-GFP was 5 × 108

t.u./ml, which is substantially lower than the 6.6 × 1013

g.c./ml. The LV-dsRed had a titer of 3.9 × 108 t.u./ml.
Before mixing the two viruses, the preparations were

diluted. AAV was diluted to 2 × 108 and 2 × 109 g.c./μl,
thus 1.5 × 103 and 1.5 × 104 t.u./μl on HT-1080 respec-
tively. LV-dsRed was diluted to 2 × 105 t.u./μl. Subse-
quently the diluted viruses were mixed 1:1 and 1 μl of this
mix was injected in each brain area. This resulted in 1 ×
108 or 1 × 109 g.c. (7.5 × 102 or 7.5 × 103 t.u.) of AAV1-
GFP and 1 × 105 t.u. of LV-dsRed per site.

Transduction of the LH by AAV1-GFP and LV-dsRed
To determine the transduction efficiencies of AAV and
LV vectors in the LH the animals were perfused four
weeks after injection with viral vectors. Immunostaining
for GFP and dsRed showed positive staining in the injec-
tion tract. These were probably apoptotic cells and were
not included in our quantification (Figure 2, upper panel).
Counting of all GFP and dsRed immunostained positive
cells revealed that AAV1-GFP, at 1 × 108 g.c., transduced

Figure 1 In vitro testing of the antibodies against GFP and dsred. 
A: schematic overview of AAV vector used. B: schematic overview of LV 
vector used. C: shows endogenous dsRed fluorescence (red) in 293T 
cells transfected with CMV-dsRed. C':shows immunostaining for dsRed 
(green) in these cells. C'': shows the co-localization of the immunos-
tained and endogenous fluorescence (yellow). D: shows endogenous 
fluorescence (green) in 293T cells transfected with CMV-GFP. D': shows 
immunostaining for GFP (red) and D'' shows the overlay of D and D' 
(green nucleus with red cytoplasma). E: 293T cells co-transfected with 
CMV-GFP and CMV-dsred were immunostained for GFP (red (E)) and 
dsRed (green (E')). These stainings overlap (yellow (E'')). Scalebar is 50 
μm.
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significantly more cells in the LH compared with LV-GFP,
at 1 × 105 t.u. (Figure 3). The total area transduced by
AAV1-GFP at the injection site was 3338 (± 599) μm2 and
an area of 2441 (± 403) μm2 was transduced by LV-dsRed.
As expected, an increase in titer of AAV1-GFP from 1 ×
108 to 1 × 109 g.c. in the LH resulted in 14.2-fold increase
in the area transduced at the injection site; the total trans-
duced area at the injection site increased from 3338 (±
599) μm2 to 47525 (± 10822) μm2 (p = 0.0005). In the LH
AAV1-GFP predominantly transduced neurons, because
GFP and NeuN co-localize (Figure 4A, B) and LV-dsRed

probably also transduced mainly neurons, because dsRed
and GFAP did not co-localize (Figure 4C, D).

Transduction of the AM by AAV1-GFP and LV-dsRed
In addition, we studied the transduction efficiencies of
AAV1-GFP and LV-dsRed in the AM (Figure 2, lower
panel). Similar to the LH, AAV1-GFP transduced signifi-
cantly more cells than LV-dsRed in the AM (Figure 3).
The number of cells transduced by AAV1 or LV in the
AM was comparable to the numbers transduced in the
LH. In the AM AAV1 and LV vector also predominantly
transduced neurons, however some cells transduced with
AAV1-GFP did not co-localize with NeuN and had a
microglia appearance.

Discussion
This study showed that an AAV1 vector transduced sig-
nificantly more cells in the LH and AM of rats than a LV-
VSV-G vector. This is in agreement previous studies
which showed low levels of transgene expression after
injection of 1 μl of LV vectors in other rat brain nuclei,
namely the red nucleus [43] and the retina [44]. In con-
trast, several studies reported substantial levels of trans-
duction by LV in the rat striatum and hippocampus,

Figure 2 In vivo transduction of the LH and AM by AAV1-GFP and 
LV-dsRed. The titer of LV-dsRed was kept constant at 1 × 105 t.u., while 
the titer of AAV1-GFP was 1 × 108 or 1 × 109 g.c. Immunostaining for 
GFP is shown in green and for dsRed in red.
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Figure 3 Quantification of the total number of cells transduced 
AAV1-GFP and LV-dsRed. Graphical representation of the total num-
ber of cells which where transduced by 1 × 108 g.c. of AAV1-GFP and 
by 1 × 105 t.u. of LV-dsRed in the LH or in the AM. *** p < 0.0001.

Figure 4 Co-localization of GFP and NeuN and dsRed and GFAP in 
the LH and AM. A: shows that AAV1-GFP (red, 1 × 109) and NeuN 
(green) co-localize in the LH. B: shows a close-up of AA1V-GFP and 
NeuN co-localization. C: shows no co-localization of dsRed (green) and 
GFAP (red) in the LH. D: shows no overlap between LV-red (green) and 
GFAP (red).
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however, these groups injected larger volumes of LV,
namely 2 or 3 μl [45-47]. In addition, LV vectors have
been reported to efficiently transduce cells in the mouse
hippocampus and striatum [48,49] and AAV and LV vec-
tors were reported to transduce approximately similar
numbers of cells after injection in mouse hippocampus or
hippocampal slices [50,51]. These data indicate that there
may be species differences and/or brain area differences,
which may contribute to variations in transduction effi-
ciencies by LV and AAV vectors in rat and mouse brain.

The titer of our AAV1-GFP preparation was 6.6 × 1013

g.c./ml, which is a titer in the range that we usually obtain
with AAV production. The number of transducing units/
ml will be lower than genomic copies/ml since not all vec-
tor DNA is properly packaged into infectious particles.
The optimal cell line for determining the t.u./ml of AAV1
preparations is unknown. We assessed the t.u./ml of
AAV1-GFP on HT-1080 cell line. The titer of AAV1-GFP
was 5 × 108 t.u./ml, and this prep was diluted 330 times,
to 1.3 × 103 t.u./μl before mixing with LV-dsRed. The LV-
dsRed was only diluted 2 times to 2 × 105 t.u./μl. Since the
number of t.u. of AAV1-GFP injected was much lower
than the t.u. of LV-dsRed, we conclude that AAV1 is more
efficient in transduction of the LH and AM than LV-VSV-
G. However, it has to be kept in mind that comparison of
t.u. of LV-VSV-G and AAV1 vector preparations on cell
lines is complicated, because the vectors probably use dif-
ferent, still unknown, entry receptors and different cell
lines have different surface receptors. For example, one
dose of AAV1/2 vectors has different t.u. values on differ-
ent cell lines [52]. In addition, the t.u. of LV-dsRed prepa-
ration was assessed in the presence of polybrene, which
enhances transduction [53], however, polybrene was not
added when LV-dsRed was injected in vivo.

In the LH AAV1-GFP at 1 × 108 g.c. al ready transduced
more cells than LV-dsRed. When the titer of AAV1-GFP
was increased a ten-fold, the area transduced and the
numbers of neurons transduced were increased accord-
ingly. This indicates that increasing the titer is a valid
method to increase the number of transduced neurons.

We only observed 6-7 dsRed positive cells after injec-
tion of 1 × 105 t.u. of LV. Thus, ideally the titer of LV-
dsRed should be increased to transduce more cells in the
LH and AM. The methods we used for LV preparation
and titer determination are standard procedures in the
field. Normally, titers of concentrated LV vectors are
reported to be in the range of 5 × 107 to 1 × 109 t.u./ml
[45,48,54]. Thus compared with results from others, 3.9 ×
108 t.u./ml is a high titer. Therefore, it is technically diffi-
cult to increase the LV titer to transduce more neurons in
the AM and LH of rats.

The differences in transduction by AAV1-GFP and LV-
dsRed in the LH and AM may be explained by the fact

that the vectors probably used different receptors to enter
cells. The LV-dsRed used in this study was pseudotyped
with VSV-G. VSV-G transduces many cell types from dif-
ferent species, but it is still unknown how VSV-G enters
these cells. For a long time it was thought that phosphati-
dylserine (PS) was the receptor to mediate membrane
fusion [55]. However, more recent data indicated that PS
is not the entry receptor [56]. AAV-GFP was pseudotyped
with AAV1 capsid proteins. The entry receptor for AAV1
also is unknown, but there are indications that α-2,3 and
α-2,6 N-linked sialic acids facilitate transduction by
AAV1 vectors [23].

Exchanging GFP and dsRed genes between LV and
AAV vector (thereby obtaining AAV-dsRed and LV-GFP)
probably will not alter the transduction efficiencies which
we observed in this study, since the promoter and other
parts of the vectors including the viral coat are
unchanged. Previous studies have compared expression
of GFP and dsRed in LV or AAV vectors and showed that
the expression profile remained the same when only the
fluorescent markers were changed; co-injection of two
vectors (e.g. LV-GFP and LV-dsRed) showed that expres-
sion of both vectors largely overlapped [45,57].

The co-localization of AAV1 and NeuN showed that
AAV1 predominantly transduced neurons in the LH and
AM. This is in agreement with previous studies which
showed that AAV1 predominantly transduced neurons in
different rat brain regions at all investigated time points
after injection [29,33,34]. The LV and GFAP immunohis-
tochemistry signals did not co-localize indicating that LV
at 4 weeks post-injection probably transduced neurons.
This confirms data from previous studies where LV pre-
dominantly co-localized with NeuN in the rat brain
[45,46,58,59].

Conclusion
When a substantial part or the entire LH or AM of rats
needs to be transduced AAV1 vectors are preferred over
LV vectors, since more neurons can be transduced with
AAV1 than with LV-VSV-G vectors and the titer of AAV
preparations can easily be increased.

Methods
Cell lines and constructs
Human embryonic kidney (HEK) 293T cells were main-
tained at 37°C with 5% CO2 in Dulbecco's modified Eagles
medium (DMEM) supplemented with 10% fetal calf
serum (FCS), 2 mM glutamine, 100 units/ml penicillin,
100 units/ml streptomycin and non-essential amino
acids.

pAAV-CMV-GFP was constructed by removing the
CMV promoter with a part of the GFP gene from
pTRCGW [60] through digestion with KpnI and BsrGI.
Subsequently this fragment was ligated into a KpnI BsrGI
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digested backbone of pAAV-CBA-GFP (kind gift from M.
Sena-esteves [61]). This digestion removed the CBA pro-
moter and a part of the GFP gene.

The construction of LV-CMV-dsRED was previously
described [62].

To check the specificity and intensity of staining of the
GFP and dsRed antibodies, 2.5 μg of pPRIME-CMV-GFP
and pPRIME-CMV-dsRed [63] were transfected, alone or
together, on 10 cm dishes with polyethylenimine (PEI).
The morning after transfection the cells were trypsinized
and seeded in 24 wells plates containing poly-L-lysine
coated glass cover slips. Seventy-two hours after transfec-
tions cells were washed with phosphate buffered saline
(PBS), fixated for 20 minutes with 4% paraformaldehyde
(PFA) and stored in PBS at 4°C until immunohistochem-
istry was performed.

Virus production and purification
AAV production was performed with 15 × 15 cm dishes
293T cells, which were 80-90% confluent at day of trans-
fection. Two hours before transfection, the 10% FCS-
DMEM was replaced with 2% FCS-DMEM. The transfec-
tions were performed with polyethylenimine (PEI) as
described by Reed S.E. et al. [64]. pAAV-CMV-GFP was
co-transfected with the helper plasmid pDP1 [65] (Plas-
mid factory, Bielefeld, Germany) in a molar ratio of 1:1.
The transfection mix remained on the cells until the next
day, then the 2% FCS-DMEM was refreshed. The produc-
tion and purification was essentially performed as
described by Zolotukhin et al. [66]. Briefly, sixty hours
after transfection, the cells were harvested in their
medium, centrifuged and washed with PBS containing 5
mM ethylenediaminetetraacetic acid (EDTA). Finally, the
cells were collected in 12 ml ice cold buffer (150 mM
sodium chloride (NaCl), 50 mM 2-amino-(hydroxym-
ethyl)-1,3-propanediol (Tris), pH 8.4 ) and stored at -20°C
until further use. Subsequently, the cells were freeze-
thawed twice, incubated for 30 minutes with 50 units/ml
Benzonase (Sigma, the Netherlands) at 37°C and centri-
fuged. After centrifugation, the supernatant was loaded
onto an iodixanol gradient (60%, 40%, 25%, 15%, superna-
tant (Optiprep, Lucron bioproducts, Belgium)) in quick-
seal tubes (Beckman Coulter, The Netherlands). After
1.25 hour of ultracentrifugation (70.000 rpm at 18°C) in
Ti70 rotor (Beckman Coulter, the Netherlands), the 40%
layer was extracted. This 40% layer was used for ion-
exchange chromatography with 5 ml Hitrap Q HP col-
umns (GE Healthcare, The Netherlands). Subsequently
PCR was used to determine AAV positive fractions. The
positive fractions were pooled and desalted/concentrated
on Centricon Plus-20 Biomax-100 concentrator columns
(Millipore, The Netherlands). The titer, in genomic cop-
ies per ml (g.c./ml), was determined by qPCR with syber-
green mix in a LightCylcer (Roche) [67]. The qPCR

primers were designed to detect BGHpolyA and were
BGHpolyA_F: 5' CCTCGACTGTGCCTTCTAG;
BGHpolyA_R: 5' CCCCAGAATAGAATGACACCTA.
The titer obtained for AAV1-GFP was 6.6 × 1013 genomic
copies (g.c.)/ml. In addition we also performed a serial
dilution with AAV1-GFP virus on HT1080 cells, to obtain
an indication of the transducing units in this AAV prepa-
ration. Seventy-two hours after infection GFP positive
cells were counted and a titer was calculated. This serial
dilution showed that a titer of 5 × 108 transducing units
(t.u.)/ml was achieved.

Lentivirus with CMV promoter driving dsRed expres-
sion (LV-dsRED) was produced as described previously
[62]. In short, 293T cells were transfected using the
ViraPower Lentiviral Expression System (Invitrogen,
Breda, the Netherlands) according to manufacturer's
instructions. Forty-eight hours after transfection virus
containing supernatant was harvested, centrifuged at
2.000 rpm for 3 minutes to remove cell debris and con-
centrated by two rounds of ultracentrifugation (19.400
rpm, 4°C, 2 hours each), resuspended in PBS, aliquoted
and stored at -80°C until use. Virion titers were measured
by real-time PCR and titers were calculated from those
and verified by dsRed expression in 293T cell with addi-
tion of polybrene [68]. Titer of LV-dsRed was 3.9 × 108

t.u/ml.

Animals
Twelve male Wistar rats of 220-250 g, were purchased
from Charles River (Crl-Wu, Germany). All rats were
individually housed in filtertop cages with ad libitum
access to food (CRM pellets; Special Diet Services,
Whitham, Essex, UK) and water. Animals were kept in a
temperature- and humidity-controlled room (21 ± 2°C)
with a 12 h light/dark cycle (lights on at 7:00 A.M.). All
experimental procedures were approved by the Commit-
tee for Animal Experimentation of the University of
Utrecht (Utrecht, The Netherlands).

Just before stereotactic injections AAV1-GFP was
diluted in PBS to 2 × 108 g.c/μl or 2 × 109 g.c./μl and LV-
dsRed was diluted to 2 × 108 tu/μl. The diluted AAV and
LV vectors were mixed 1:1 and 1 μl of this mixture was
injected in the LH or in the AM of rats. The injections
were performed with a micro-infusion pump. The injec-
tion speed was 0.2 μl/minute. After the injection the nee-
dle remained in the injection site for 10 minutes.

After 11/2 week of acclimatization surgery was per-
formed under fentanyl/fluanisone (Hypnorm®, Janssen
Pharmaceutica, Beerse, Belgium, 0.1 ml/100 g intramus-
cular) and midazolam (Dormicum®, Roche, Woerden, the
Netherlands, 0.05 ml/100 g intraperitonal) anesthesia.
Carprofen (Rimadyl®, Pfizer Animal Health, Capelle a/d
Ijssel, the Netherlands, 0.01 ml/100 g s.c.). Four rats were
injected bilaterally in the LH (coordinates AP-2.6,
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ML+2.0, DV-8.6) with 1 μl of AAV-LV mixture containing
1 × 108 gc of AAV1-GFP and 1 × 108 tu of LV-dsRed.
Another four rats also received 1 μl AAV-LV mixture in
the LH. Here LV-dsRed remained 1 × 108 tu, however, the
titer of AAV1-GFP was raised 10 times to 1 × 109 gc. In
addition, four rats received injections in the central AM
(coordinates AP-2.1, ML+4.0, DV -8.0) with a mixture of
1 × 108 gc of AAV1-GFP and 1 × 108 tu of LV-dsRed. Four
weeks after the injections the rats were anesthetized and
perfused with 4% PFA containing 0.05% glutaraldehyde.
Subsequently, the brains were isolated and placed in
4%PFA overnight at 4°C. The next morning the brains
were placed in PBS and stored at 4°C until further use.
The perfused brains were sectioned on a vibratom (Leica)
at 40 μm in series of 10.

Immunohistochemistry
Every tenth 40 μm section was used for GFP-dsRed stain-
ing. The free floating sections were washed 3 times with
PBS, permeabilized for 30 minutes in PBS supplemented
with 0.5% triton X-100 at room temperature (RT),
blocked for 1 hour in PBS with 1.5% normal goat serum
(NGS) at RT and incubated overnight in PBS supple-
mented with mouse monoclonal anti-dsRed (1:400, Clon-
tech), rabbit polyclonal anti-GFP (1:1000, Invitrogen) and
1.5% NGS at 4°C. The next morning sections were
washed 3 times for 10 minutes with PBS and incubated
for 1 hour with secondary antibodies (ALEXA 555 conju-
gated goat anti mouse (1:500) and ALEXA 488 conju-
gated goat anti rabbit (1:1000) both Invitrogen) in 1.5%
NGS at RT. After 3 times 10 minutes wash with PBS, the
sections were transferred to microscope slides and kept
over night in the dark to dry. All sections were embedded
in 90% glycerol and stored flat at 4°C.

A similar protocol was used for GFP-NeuN double
staining, the antibody of mouse NeuN (Chemicon) was
used at 1:2000 dilution and goat anti-mouse ALEXA 555
was used at 1:1000 dilution.

For dsRed-GFAP staining the sections were washed 3 ×
in PBS and incubated in sodium citrate buffer (10 mM
tri-sodium citrate, pH = 8.5) for 30 minutes at 70°C. Sub-
sequently, the sections were allowed to cool down to
room temperature, washed 3 times for 5 minutes with
PBS, blocked in PBS+ 3% fetal calf serum (FCS) for 60
minutes and incubated overnight in PBS supplemented
with mouse anti-dsRed (1:500), rabbit anti-GFAP (1:4000,
DAKO), 0.2% triton X-100 and 1% FCS at 4°C. The next
morning the sections were washed 3 times for 10 minutes
in PBS and incubated in PBS supplemented with goat
anti-rabbit-ALEXA 488 (1:250), goat anti-mouse-ALEXA
555 (1:500), 0.2% triton-X100 and 1% FCS for 1 hour.
After 3 times 10 minutes wash with PBS, the sections
were transferred to microscope slides and kept over night

in the dark to dry. All sections were embedded in 90%
glycerol and stored flat at 4°C.

Imaging and data analysis
The number of positive cells for GFP and dsRed were
counted in every section, except the positive cells in the
injection tract which are probably macrophages.

The MCID system was used to digitize pictures from
sections containing endogenous or immunohistochemis-
try signals.

GraphPad Prism was used for data analysis and treat-
ment effects were evaluated with two-tailed t-test.
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