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Abstract

Recent advances in oncology have lead to identification of a plethora of alterations in signaling pathways that are
critical to oncogenesis and propagation of malignancy. Among the biomarkers identified, dysregulated kinases and
associated changes in signaling cascade received the lion’s share of scientific attention and have been under
extensive investigations with goal of targeting them for anti-cancer therapy. Discovery of new drugs is immensely
facilitated by molecular imaging technology which enables non-invasive, real time, dynamic imaging and quantifi-
cation of kinase activity. Here, we review recent development of novel kinase reporters based on conformation
dependent complementation of firefly luciferase to monitor kinase activity. Such reporter system provides unique
insights into the pharmacokinetics and pharmacodynamics of drugs that modulate kinase signaling and have a
huge potential in drug discovery, validation, and drug-target interactions.

Introduction
Cell signaling is a mode of communication by which the
intracellular information is conveyed from the site of
instigation to the site of action. Recent advances in
molecular profiling technologies such as microarrays
and proteomics along with synergistic growth in the
field of bio-informatics, have actuated our appreciation
of signaling changes in patho-physiological conditions
and led to identification of unique disease biomarkers
[1-5]. For example growth factor such as EGFR or Her-2,
may be considered as biomarkers in certain human can-
cers where they are amplified, overexpressed and/or
mutated and immensely alter the downstream signaling
[6-12]. Identification of such unique central regulators in
the disease signaling has lead to development of targeted
molecular drugs [6,12]. Although, number of these dis-
ease biomarkers have been identified and characterized,
the true impact of these understandings will be felt only
when applied to diagnosis, staging and treatment of
patients. Currently, these innovative developments in
understanding the role of biomarkers in human malig-
nancy have minimally ameliorated clinical oncology. This
is partly due to the fact that most of the efforts are
focused on identifying biomarkers from cancer samples
obtained by biopsy of tumors which provide a frozen

snapshot of biomarkers at the time of sample retrieval
and fail to provide any information on the dynamic
changes within the malignancy and its milieu [13]. There-
fore, concurrent innovations are needed for real time and
non-invasive monitoring of biomarker and events they
modulate in live cells or organisms [14].
Molecular imaging is a recent area of investigation

that attempt to develop suitable probes for noninvasive
visual representation of biological processes at the cellu-
lar and molecular level in the whole organism and the
modalities and instrumentation to support the visualiza-
tion and quantification of these processes. This is an
attempt to bridge the gap between discovery of biomar-
kers and their deployment in clinic. At present molecu-
lar imaging is still largely in the animal experimental
phase but promises to bring dramatic change in the way
in which a disease is diagnosed, staged and treated. In
clinical oncology it will allow oncologists to diagnose
cancer at an earlier stage based on molecular characteri-
zation, predict the risk of precancerous lesion progres-
sion, quantify activities of specific molecules related to
tumor growth, invasion and metastasis, select a rational
molecular therapy and assess the efficacy of chemo and
radio therapeutic agents in real time [15-21]. Over the
past several years three different noninvasive imaging
technologies have been fine tuned for prime time: (A)
optical imaging (bioluminescence and fluorescence ima-
ging) [22-24]; (B) magnetic resonance imaging [MRI]
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[25]; (C) nuclear imaging (e.g single photon emission
computed tomography [SPECT] and positron emission
tomography [PET]) [26-28]. These have been extensively
discussed in a number of reviews and book chapters
[13,14,29-32]. In this article, we will discuss the recent
development in the field of bioluminescent optical ima-
ging for monitoring signaling cascades with special
emphasis on luciferase complementation platforms for
imaging of kinases.

Bioluminescent optical reporters and
complementation assays
Discovery of reporters that are genetically encoded and
generate light such as fluorescent proteins and luci-
ferases in conjunction with the development of instru-
mentation for real time functional imaging of their
activity has offered researchers powerful tools to per-
form noninvasive studies of dynamic biological process
in intact cells and whole organisms. These optical repor-
ter systems have extensively utilized in molecular ima-
ging of signaling pathways mainly because of their
efficiency for sequential imaging, operational simplicity,
and substantial cost benefits. Bioluminescent firefly luci-
ferase based reporters are widely used for non-invasive,
real-time, repetitive imaging both in vitro and in vivo.
For monitoring signaling cascade or activity of specific
biomarker in vivo, firefly luciferase is the reporter of
choice as 30% of the light generated by firefly luciferase
has an emission spectra above 600 nm, a region where
the signal attenuation by the absorbing and scattering
properties of live mammalian tissue is minimal [33,34].
A major disadvantage of luciferases, like other geneti-
cally encoded reporters, is that their use in clinical set-
ting is contingent upon the acceptance of gene therapy
protocols for patients. However, in basic research they
exhibit a principal advantage in assessing a variety of
biological functions including transcriptional and trans-
lational regulation, signal transduction, protein-protein
interaction, oncogenic and viral transformations, cell
migration and trafficking and monitoring tumor burden
[35-41] Additionally, a number of modifications have
been described for targeting/expressing these reporters
in specific organelle, cells or organs by exploiting indu-
cible promoters and regulatory elements [42-46].
Protein complementation assay have garnered a lot of

lime light for monitoring protein-protein interaction,
kinase and protease activities [47]. Here, the monomeric
reporter is split into two separate inactive components
in such a way that when these components are brought
into close proximity they re-constitute the original
reporter activity (Figure 1). Complementation for a
number of reporters have been developed for under-
standing mammalian biology. These include fluorescent
proteins (GFP and YFP), bioluminescent enzymes

(Firefly Luciferase, Renilla Luciferase, Gaussia Luciferase;
Figure 1), b-galactosidase, dihydrofolate reductase
(DHFR) and TME1 b-lactamase [48-54]. Luker et al.
optimized firefly luciferase protein complementation by
screening incremental truncation libraries of N- and
C-terminal fragments of luciferase [50]. They utilized
the complementation assay for demonstrating the phos-
phorylation dependent interaction between human
Cdc25C and 14-3-3-e in vitro and FRB-FKBP12 interac-
tion in vivo in real time non-invasively. On similar lines
Paulmurugan and Gambhir [55] developed Renilla luci-
ferase complementation assay and monitored in real
time the interaction of MyoD and Id. Similarly, Gaussia
luciferase complementation assay were developed by
Remy and Michnick [53] where they monitored cross-
talk of TGFb and insulin signaling. Li et al [56] reported
development of luciferase complementation based
probes for ligand dependent EGFR dimerization and

Figure 1 Principle of luciferase complementation based
reporter. When luciferase is split to two components (A), each of
the units is incapable of generating bioluminescence. However,
when the individual components are brought in close proximity,
the luciferase enzymatic activity is restored because of
intramolecular complementation (B).
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activation. We have utilized the firefly luciferase comple-
mentation for monitoring Akt kinase and caspase-3 pro-
tease activity [30,57-59].

Imaging of kinases
Protein kinases are one of the principle regulators of
signaling cascades influencing majority of cellular deci-
sions [60-65]. Protein kinases posttranslationally modify
a substrate protein by covalent attachment of a phos-
phate group to a specific amino acid. This phosphoryla-
tion of substrate proteins can be mediated by protein
Ser/Thr kinases (at serine or threonine residue) or by
protein Tyr kinases (at tyrosine residue). Phosphoryla-
tion of target residues in proteins results in changes in
substrate activity, sub-cellular location or/and interac-
tion with other proteins [30]. These changes mediate a
bulk of signaling in normal eukaryotic cells and are very
tightly controlled by autoinhibitory and regulatory con-
straints which act as a safeguard for aberrant kinase
activation [62-66]. Dysregulation and mutations in
kinase activity have been reported to play a causal role
in more than 400 human diseases including as cancer,
neurological disorders, rheumatoid arthritis, and psoria-
sis [66-71]. Although we have met with colossal success
in identification of aberrant kinases in a plethora of dis-
eases, the translation of this information to clinic has

been much less successful such that majority of these
biomarkers remain undrugged. Therefore, fresh impetus
is needed in the areas that will allow identification of
novel inhibitors for kinase biomarkers. Towards this, we
need the molecular imaging modalities that have the
potential to be adapted for high through put screening
of inhibitor libraries.
We have recently developed a luciferase complementa-

tion based kinase imaging platform that allows quantita-
tive, real time, non-invasive imaging of kinase activity
(Figure 1) and is easily amenable for high throughput
screening of new drugs [30,57,58]. We have utilized this
technology to monitor Akt, one of the best character-
ized serine threonine kinases that is involved in tumor
initiation, progression and resistance to cancer treat-
ment and is a central signaling hub wherein many
upstream oncogenic stimuli such as growth factor sig-
naling and cytokine cascades converge [72]. This recom-
binant bioluminescent Akt reporter, (BAR) was
constructed by fusion of an Akt consensus substrate
peptide and phospho-amino acid binding domain
(FHA2) which were flanked by the amino- (N-Luc) and
carboxyl- (C-Luc) terminal domains of the firefly lucifer-
ase reporter molecule (figure 2). In the presence of Akt
kinase activity, phosphorylation of the Akt consensus
substrate sequences within the reporter results in its

Figure 2 The domain structure and mechanism of action of a kinase reporter. (A) N-Luc (amino acids 2-416) and C-Luc (amino acids 398-
550) are the amino- and carboxy-terminal domains of firefly luciferase that are fused to the appropriate ends of the reporter. The peptide
domain constitutes a kinase substrate sequence with a flexible linker (L) containing of GlyGlySerGlyGly on either side. Yeast Rad52p FHA2
phospho-Ser/Thr binding domain (residues 420-582) attached to the amino-terminal of substrate peptide domain. (B) The proposed mechanism
of action for the split luciferase based kinase reporter involves kinase dependent phosphorylation of the target peptide which results in its
interaction with the FHA2 domain. In this form the reporter has minimal bioluminescence activity. In the absence of kinase activity, association
of the N-Luc and C-Luc domains restores bioluminescence activity.
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interaction with the FHA2 domain, thus stearically pre-
venting reconstitution of a functional luciferase reporter
molecule. In the absence of Akt kinase activity, release
of this stearic constraint allows reconstitution of the
luciferase reporter molecule whose activity can be
detected non-invasively by bioluminescent imaging
(BLI). The inhibition of Akt activity using an Akt inhibi-
tor, API2 and a PI-3K inhibitor, perifosine resulted in
an increase of bioluminescence activity in a time- and
dose-dependent manner (figure 3), which indicated that
BAR provides a surrogate for Akt activity in terms of
quantity and dynamics [57,58]. BAR was also used to
study upstream signaling events of Akt. For example,
stimulation of EGFR could be evaluated using Akt activ-
ity as a surrogate and monitored by bioluminescent ima-
ging [57]. The use of an EGFR inhibitor, erlotinib in the
erlotinib-sensitive and -resistant cell lines resulted in
differential activation of the BAR reporter. In summary,
BAR allows imaging of signaling leading to activation/
inactivation of Akt in a quantitative, dynamic and non-
invasive manner and that this kinase imaging platform
may be adapted for other kinases.
In vivo imaging in animals is a significant advantage of

bioluminescent kinase which allows for an enhanced
understanding of pharmacokinetics and bioavailability of
specific drugs. For example, at 40 mg/kg API-2 treat-
ment, peak inhibition was detected at 12 hours and inhi-
bitory levels of the compound were detected for up to
24 hours (high bioluminescence) but decreased there-
after (figure 3B). In contrast, when 20 mg/kg was deliv-
ered, although peak inhibition was detected at 12 hours,

a decrease in reporter activity was measured in subse-
quent measurements [57]. Unlike API-2 for which pub-
lished pharmacokinetics data are not available, the
pharmacokinetics of perifosine has been extensively stu-
died. Published data demonstrated that high plasma
concentrations of the drug could be detected for as long
as seven days post treatment [73,74]. The high levels of
Akt inhibitory activity for three days detected with non-
invasive BAR supports the above observation (figure
3C). Further, Perifosine induced a 12 fold induction in
BAR bioluminescence activity while API-2 showed only
4-fold. This difference may be reflective of their bioa-
vailability at the tumor site. Such studies establish an
important role for bioluminescent kinase imaging plat-
form in detection of in vivo drug-target interaction.
A major utility of bioluminescent kinase reporter is for

high throughput screening of a library of inhibitors.
Such cell based assays provide a major advantage in that
only compounds that interact with the target in the cor-
rect cellular compartment and under normal cellular
physiological conditions of that compartment (pH, con-
centrations of specific ions etc.) would be identified. In
contrast to other cell based reporter screens, which are
fraught with false positives, the kinase reporter
described here is a “gain of function assay” wherein the
inhibition of kinase activity results in an increase in bio-
luminescence. For example, compounds that kill cells
(and thus result in a loss of signal) or those that inhibit
luciferase activity may show up as false positives in typi-
cal luciferase/fluorescent/enzyme based assays. However,
specific inhibition of reporters like BAR result in an

Figure 3 Imaging of pharmacodynamics of PI3K/AKT-kinase inhibitors in live animals [57]. (A) Mice transplanted with D54 cells stably
expressing bioluminescent Akt reporter (BAR) were treated with vehicle control (20% DMSO in PBS), API-2 (20 mg/kg or 40 mg/kg) or perifosine
(30 mg/kg). Images of representative mice are shown before treatment, during maximal luciferase signal upon treatment (Max), and after
treatment. (B) Tumor-specific bioluminescence activity of D54 cells stably expressing BAR, treated with either the vehicle control (20% DMSO in
PBS) or API-2 (20 mg/kg or 40 mg/kg), was monitored at various times. Fold induction of signal intensity over pretreatment values was plotted
as mean ± s.e.m. for each of the groups. (C) Bioluminescence activity in tumor-bearing mice before treatment and in response to treatment
with 30 mg/kg perifosine, plotted as fold induction over pretreatment values (± s.e.m.) for each of the groups.
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increase in bioluminescence activity and thus non-speci-
fic cytotoxic agents are eliminated. Such carefully
designed screening methodology will enable us to nar-
row down the number of positive compounds to a smal-
ler group of “true positives”.
Optimum activity and specificity of a kinase is depen-

dent upon its subcellular localization. For example, Akt
is recruited to the plasma membrane by PI-3 kinase-
generated D3-phosphorylated phosphoinositides which
bind to the Akt PH domain and induce the transloca-
tion [75,76]. At the cell membrane, phosphoinositide-
dependent kinase-1, co-localizes and phosphorylates
within the activation loop of Akt [75,76]. Therefore, a
membrane targeted reporter for Akt activity is more
likely to have higher activity. Indeed, the sensitivity of
MyrPalm-BAR reporter was more than twice as much
when compared with BAR alone in reporting Akt signal-
ing [30]. Thus, utilization of subcellular information of
kinases may optimize the kinase reporters and therefore
must be employed for reporter construction.
As discussed above, the BAR can be adapted for other

protein kinases including receptor or non-receptor Tyr
and Ser/Thr kinases by using a suitable substrate and a
specific phospho-amino acid binding protein domain.
We have successfully adapted this platform for monitor-
ing GSK3b/CK1a kinase activities using a b-catenin
substrate sequence [77]. Towards a comprehensive
understanding of oncological signaling and accelerating
the drug discovery process, we are currently developing
imaging tools for several high priority oncological tar-
gets such as EGFR, Her2, c-Met, Ras-Raf-MEK-ERK
(MAPK), mTor, and TGFb receptor. Further, to aid in
identifying the target phosphorylation site, there are a
number of resources and methodologies described in lit-
erature [78-88] and on the web such as http://www.
kinasenet.ca, http://www.phosphosite.org, http://www.
kinase.com. Experimentally verified phosphorylation
sites are available at http://phospho.elm.eu.org and for
prediction of phosphorylation site http://www.cbs.dtu.
dk/services/NetPhos/ or http://scansite.mit.edu may be
useful.
In summary, molecular imaging reporters for kinases

provide a unique opportunity to monitor cellular path-
ways both in vitro and in vivo. This greatly facilitates
the real time visualization of the aberrant oncological
signaling and will play an important role in monitoring
therapeutic outcome, drug-target validation as well as
identification of next generation of drugs.
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