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Abstract

Approximately 170 million are infected with the hepatitis C virus (HCV) world wide and an
estimated 2.7 million are HCV RNA positive in the United States alone. The acute phase of the
HCV infection, in majority of individuals, is asymptomatic. A large percentage of those infected with
HCV are unable to clear the virus and become chronically infected. The study of the HCV
replication cycle was hampered due to difficulties in growing and propagating the virus in an in vitro
setting. The advent of the HCV pseudo particle (HCVpp) and HCV cell culture (HCVcc) systems
have made possible the study of the HCV replication cycle, in vitro. Studies utilizing the HCVpp and
HCVcc systems have increased our insight into the early steps of the viral replication cycle of HCV,
such as the identification of cellular co-receptors for binding and entry. The aim of this article is to
provide a review of the outstanding literature on HCV entry, specifically looking at cellular co-
receptors involved and putting the data in the context of the systems used (purified viral envelope
proteins, HCVpp system, HCVcc system and/or patient sera) and to also give a brief description of

the cellular co-receptors themselves.

Introduction

Epidemiology

Approximately 170 million are infected with the hepatitis
C virus (HCV) world wide. HCV is a positive strand RNA
virus belonging to the flaviviridae family and is the sole
member of the genus Hepacivirus. It is a hepatotropic virus
which replicates in the cytoplasm of hepatocytes. In the
United States an estimated 2.7 million are HCV RNA pos-
itive [1]. Most individuals infected with HCV show little
or no symptoms during the acute phase of the infection.
Of those infected with HCV, 54-86% fail to clear the virus
and develop a chronic infection. The chronic phase can
last many decades and can ultimately lead to end stage
liver disease. In retrospective studies in individuals with
chronic HCV infections, cirrhosis of the liver occurred in
17-55%, hepatocellular carcinoma (HCC) developed in
1-23%, and liver related death occurred in 4-15%. In
prospective studies, cirrhosis developed in 7-16% of

chronically infected individuals, HCC occurred in 0.7%-
16%, and liver related death in 1.3-3.7% [2]. HCC, by
itself, is the third leading cause of cancer related deaths
worldwide with 40.1% of patients with HCC being anti-
HCV positive [3].

Treatment options and efficiency

Since the initial acute phase of a HCV infection is in most
cases asymptomatic, most infected individuals seeking
treatment are chronically infected. The goal of any treat-
ment is to achieve a sustained virological response (SVR),
which is the absence of serum HCV RNA up to 6 months
after therapy is concluded. The initial tool for treatment
for a HCV infection was mono-therapy with interferon-o
(IEN-a). An improvement was made to this therapy with
the introduction of pegylated interferon-o (peg-IFN-a).
The purpose and result of the pegylation of IFN-a was an
increase in the half life of the drug, in vivo, from a few
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hours to days. This resulted in an increase of greater than
100% in achievement of SVR when compared to treat-
ment with IFN-a [4]. To increase efficiency of the treat-
ment, peg-IFN-a therapy has been supplemented with
ribavirin. Combination therapy with peg-IFN-a and riba-
virin has resulted in a further increase in treatment effi-
ciency with 54% of HCV infected patients achieving SVR.

The response and rate of SVR is dependent on the geno-
type of HCV with only 30% of genotype 1 infected indi-
viduals achieving SVR, whereas greater than 80% of
genotype 2 or 3 achieve SVR with combination therapy
[4]. Combination therapy treatment regiments are geno-
type dependent and the amount of peg-IFN-o. adminis-
tered is dependent on the type used. For peg-IFN-a-2a a
dose of 180 ng/week is prescribed during the course of the
therapy. For peg-IFN-a.-2b a dose of 1.5 pg/kg/week is pre-
scribed. For those infected with HCV genotypes 1, 4, 5, or
6, peg-IFN-a. is prescribed in combination with 1000 mg/
day (75 kg or less) or 1200 mg/day (greater than 75 kg) of
ribavirin. For those infected with genotype 2 or 3 the dura-
tion of treatment is 24 weeks with the combination of
peg-IFN-a and 800 mg/day of ribavirin prescribed [5].

Of those that do not respond to therapy, and continue to
be chronically infected, a percentage will develop HCC or
decompensation and therefore require a liver transplant.
For those with an active HCV infection, reinfection after
transplantation is universal. Reinfection occurs during
liver reperfusion with HCV levels reaching pre-transplant
levels in a period of 72 hours. Post-transplantation, the
steady state of HCV viral load is 10 times higher than pre-
transplantation. Of those that develop post-transplanta-
tion cirrhosis, 42% develop decompensation and only
50% survive one year after the development of decompen-
sation. Living donor liver transplant (LDLT) allows for the
pre-treatment of patients, prior to the transplantation, to
lower the viral load or eradicate the virus. This leads to a
very low (10%) post-transplantation viral reoccurrence

[6].

Genomics and Proteomics

The hepatitis C virus (HCV), a positive stranded RNA
virus, is the sole member of the Hepacivirus genus within
the Flaviviridae family. The HCV genome is 9.6 kb with a
5' NCR, followed by an open reading frame coding for
structural and non-structural proteins, and 3' NCR region.
Within the 5' NCR region resides an internal ribosome
entry site (IRES) which drives the translation of the
genome. The product of the translation process is a 3000
amino acid long polyprotein. The polyprotein is cleaved
by viral and cellular enzymes (signal peptidases) to indi-
vidual proteins. The structural proteins are the core pro-
tein and the envelope glycoproteins, E1 and E2. The non-
structural proteins are the P7 ion channel, the NS2-3 pro-
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tease, the NS3 serine protease and RNA helicase, the NS4A
polypeptide, the NS4B and NS5A proteins, and the NS5B
RNA-dependent RNA polymerase (RdRp) [7].

The NS5B RdRp lacks proof reading function, and cou-
pled with the high rate of replication of the virus, leads to
the production of a viral pool with high level of genetic
variability. HCV isolates are classified into genotypes and
subtypes [8]. There are 6 major genotypes that differ in
nucleotide sequence by 30-50% and several subtypes
within a genotype that differ in nucleotide sequence by
20-25%. The term quasispecies refers to the genetic heter-
ogeneity of the viral pool found in an infected individual
[8]. Of the six different genotypes, genotype 1 is the most
resistant to current therapy for HCV infection.

In vitro models of HCV infection

Since the discovery of HCV different in vitro models have
been used to study the viral replication cycle. The first in
vitro system of significance was the HCV replicon system.
In a prototype HCV replicon the HCV IRES drives the
translation of a neomycin phosphotransferase gene fol-
lowed by a heterologous (ECMV) IRES driving the transla-
tion of the HCV structural and nonstructural (full length
replicon), or nonstructural genes (subgenomic replicon)
[9]. The HCV replicon system allowed for the first time the
study of HCV RNA replication but not the whole viral rep-
lication cycle. Cells transfected with the HCV replicon,
although replicating HCV RNA at high levels, were incapa-
ble of producing infectious virus. An in vivo study in chim-
panzees supported the hypothesis that the adaptive
mutations required for efficient replication of the HCV
genome in vitro interfered with virus packaging and secre-
tion [10].

The HCV replicon system allowed for the study of HCV
RNA replication. To understand the process of entry a
HCV pseudo-particle (HCVpp) system was contrived
[11,12]. HCVpp is made by transfecting 293T cells with 2
plasmids, one containing an envelope deficient HIV pro-
viral gene, with a luciferase cassette, and the second con-
taining the HCV glycoproteins. The particles produced can
then be used to infect naive cells and the level of infectiv-
ity can be measured by a luciferase assay. The HCVpp sys-
tem allowed for the study of early infection events,
binding and entry, of the HCV replication cycle.

In 2003 a HCV genotype 2a clone was isolated from a Jap-
anese patient with a rare case of fulminant hepatitis C.
This clone was designated as JFH1 (for Japanese fulmi-
nant hepatitis 1) and the replicon constructed from this
strain was found to replicate in Huh-7 cells (hepatoma
cell line) without the need for adaptive mutations [13].
Subsequently, it was found that transfection of JFH1 RNA
into Huh7 cells resulted in the de novo production of
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infectious virus (designated HCVcc for cell culture derived
HCV) that is capable of infecting naive Huh7 cells [14-
16]. The virus produced in tissue culture was infectious in
chimpanzees [14,17] and in immunodeficient mice with
partial human livers, and the virus inocula derived from
these animals was infectious for naive Huh7 cells [17].

HCYV replication cycle

HCV infection is a highly dynamic process with a viral half
life of a few hours and production/clearance of an esti-
mated 10!2virions per day in an infected individual [18].
Upon binding to hepatocytes, HCV enters cells by clath-
rin-mediated endocytosis [19]. A number of cellular co-
receptors of HCV have been identified. They include gly-
cosaminoglycans [20-24], the LDL receptor (LDLR)
[25,26], DC-SIGN and L-SIGN [27-29], CD81 [24,30-47],
SRBI [48-56], and claudin-1 [57-59]. Current evidence
suggests that within the endosome, the low pH environ-
ment triggers the fusion process of the virus with the
endosomal membrane and the introduction of the HCV
genome into the cytoplasm [60-62].

Translation of the HCV genome is driven by the IRES
located in the highly conserved 5' NCR. Initiation of trans-
lation occurs through the formation of a complex of the
HCV IRES and the 40S ribosomal subunit. This event is
followed by association elF3 and the ternary complex of
elF2Met-tRNAGTP and the formation of a 48S-like com-
plex at the initiation codon of the HCV RNA. The final and
rate limiting step is the GTP-dependent association of the
60S subunit to form the 80S complex [63]. The translation
process and subsequent processing by viral and cellular
proteases yields mature structural and non-structural pro-
teins. The structural proteins and p7 polypeptide are proc-
essed by the endoplasmic reticulum (ER) signal peptidase
and the nonstructural protein are processed by the NS2-3
protease and NS3-4A serine protease [7].

The expression of the HCV proteins leads to the formation
of replication complexes in the cytosol. The replication
complexes are situated near the cell membrane which can
be visualized as a membrane alteration called the mem-
branous web [64,65]. It has been recently shown that the
binding of a liver specific micro-RNA (miRNA),
miRNA122, to the 5' NCR of HCV enhances the viral RNA
replication process [66]. The expression of HCV proteins
and the replication of the HCV genome is followed by the
packaging of the virus particles and secretion. Presumably
virions form by budding into the ER and exiting through
the secretory pathway.

HCYV association with lipoproteins and particle density

Current evidence indicates that HCV particles, both in
vitro and in vivo, exist as virus-lipoprotein particles with a
broad density profile [15,67-70]. The density profile of a
HCV positive serum sample from a chronically infected
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patient displayed a distribution from 1.13-1.04 g/ml,
with the majority of the HCV RNA being at 1.08 g/ml and
below. At pH 4 the density shifted slightly toward higher
densities and an increase to pH 9.2 had no effect on the
density profile. Immunoprecipitation experiments using
ApoB and ApoE antibody showed that at densities below
1.06 g/ml the HCV particles from the serum sample were
associated with ApoB and ApoE, which suggests associa-
tion of these viral particles with LDL and VLDL. This asso-
ciation decreased as particle densities increased [68].

The density profile of HCVcc particles shows an HCV RNA
distribution from 1.0 to 1.18 g/ml with a peak at 1.13 to
1.14 g/ml. The HCVcc infectivity profile displays a broad
distribution from 1.01 to 1.12 g/ml with no infectivity at
densities greater the 1.12 g/ml [15]. The HCV RNA and
infectivity peaks of the density profile HCVcc do not over-
lap and there is little or no infectivity at the density of the
RNA peak. This fraction has been shown to largely con-
tains a RNase resistant encapsidated HCV RNA particles
which are non-infectious [67].

HCYV entry cellular receptors

CD8I

CD81 was recognized early as an entry receptor for HCV
[43]. CD81 is a member of the tetraspanin family of pro-
teins. Tetraspanins are type III membrane glycoproteins
which span the membrane 4 times and therefore produc-
ing 2 extracellular loops and a short intracellular loop. Of
the 2 extracellular loop, the long extracellular loop (LEL)
contains the signature structural feature of the tetraspanin
family of proteins. There are disulfide bonds between the
4 cysteine residues in the LEL which form a subloop struc-
ture containing a region that is hypervariable between
family members. The region outside the subloop contains
greater structural conservation among family members,
forming 3 alpha helices. Tetraspanins have no intrinsic
enzymatic activity. They form structures on the plasma
membrane called tetraspanin enriched microdomains
(TEMS) which are distinct from lipid rafts although they
have been shown to interact physically. Although there
has been evidence that tetraspanins interact with counter
receptors on other cells, most evidence indicates that they
instead act in cis with other transmembrane proteins and
regulate post-ligand binding events, including integrin-
mediated adhesion strengthening. The c-terminus of
CD81, CD151, and other tetraspanins meet the criteria for
being recognized by either type III or type I PDZ domains
therefore leaving open the possibility of interaction with
the cytoskeleton. Previous studies have shown that tet-
raspanins affect such processes such as cell proliferation,
apoptosis, and tumor metastasis [71,72].

Due to the lack of an in vitro infectious system, early stud-
ies utilized soluble E2 (sE2, lacking the transmembrane
region) to identify CD81 as a HCV receptor [31,36,43,73-
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76]. The binding strength, K, of sE2 to CD81 LEL were
experimentally found to be at 1.8 nM at 25°C and 9.1 nM
at 37°C, and the formation of disulfide bonds among the
4 cysteines in the LEL are necessary condition for sE2
binding to the CD81 LEL [77]. The role of CD81 as a cel-
lular receptor for HCV was further strengthened with the
advent of the HCVpp [32,34,37,40,41,47,49,55,78] and
HCVcc [24,30,38,55] systems. It has been demonstrated
that HCV and HCV glycoprotein E2 bind CD81 and not
other members of the tetraspanin family [36]. Binding of
E2 occurs at the CD81 LEL and binding of E2 to CD81, or
infections with HCVpp or HCVcc, are inhibited with pre-
treatment with CD81 LEL or antibody versus CDS81
[34,36,47,76,77].

Expression of CD81 is not indicative of permissiveness to
HCYV infection and the expression of human CD81 in cells
that are CD81 negative or in cells of other species does not
confer susceptibility to HCV infection, with the exception
of human CD81 expression in CD81 negative human
hepatic cell lines (i.e. HepG2 cell line) [32-
34,37,41,47,79]. The level of CD81 expression does not
foretell the level of permissiveness to HCV infection.
HepG2 cells, a CD81 negative human hepatoma cell line,
transfected and expressing CD81 were less susceptible to
HCVpp infection than Huh7 cells, a CD81 positive
human hepatoma cell line, although expressing higher
levels of surface CD81 [34].

The identification CD81 LEL as the domain which inter-
acts with HCV E2 led to studies to discern the E2 binding
site on the LEL. It was previously shown that CD81 is nor-
mally found as a homodimer on the plasma membrane,
and binding studies showed that sE2 binds optimally to a
LEL dimer and with much less affinity to a LEL monomer.
Furthermore, mutational studies on the LEL identified
L162, 1182, N184, and F186 as residues that might form
part of the E2 binding site. Mutations to these residues do
not disrupt the formation of CD81 multimers or the for-
mation of disulfide bonds within the LEL [76].

Antibodies against CD81 were shown to block HCVcc
infection if introduced prior to or after the binding of
virus to Huh7-Lunet cells at 4°C. In a follow up experi-
ment, cells were infected at various duration, at 37°C, in
the presence or absence of anti-CD81, for 10, 20, 30 or 60
minutes. Subsequently, cells were washed and medium
was added containing anti-CD81 for 4 hours. The cells
were washed and fresh media, without anti-CD81, was
added and the efficiency of HCVcc infection was com-
pared to a control infection. Anti-CD81 was able to
potently inhibit HCVcc infection, by 60%, even when fol-
lowing an extended binding phase at 37°C, suggesting
that CD81 acts at a stage after virus binding [62].
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SRBI

The class B scavenger receptor (SRBI) protein was initially
identified as a high affinity low density lipoprotein (LDL)
and modified LDL receptor [80,81]. It is a 82KD protein,
located primarily to the caveolae, with 2 transmembrane
regions, 2 cytoplasmic domains, and large extracellular
loop containing a cysteine rich region and 9 putative sites
for N-linked glycosylation [82-84]. Its primary function is
as a high density lipoprotein (HDL) receptor and its role
in cholesterol transport was clarified shortly thereafter
[85-88]. SRBI is highly expressed in the liver and ster-
oidgenic tissues, such as the adrenal gland and the ovaries
[85,86,89].

Central to the physiological role of SRBI is its primary lig-
and, HDL. HDL can accept free cholesterol and converts it
to cholesterol ester (CE) by a HDL associated enzyme lec-
ithin cholesterol acyltransferase. HDL associated CE can
be transferred to other lipoproteins for subsequent trans-
port and metabolism. HDL can deliver the CE to the liver,
or steroidgenic tissues in which the CE is used for the pro-
duction of steroid hormones. In the liver, the HDL-
derived cholesterol can be secreted into bile, converted to
bile acids, or repackaged into lipoproteins and secreted
[89].

The role of SRBI in cholesterol regulation is one of uptake
and efflux. The process of selective uptake of free choles-
terol (FC) and CE from HDL and LDL particles is largely
accomplished without the breakdown of the lipoparticles
[82-85,87,88,90-92]. The reverse process of efflux is the
movement of cholesterol from the cell to HDL and LDL
particles via SRBI [84,88,93,94]. The process of uptake
and efflux of cholesterol is inhibited by antibodies against
SRBI, which inhibit the binding of lipoprotein, and with-
out an acceptor, such as HDL, there is not an observable
transfer of cholesterol from SRBI expressing cells to the
extracellular space [94,95].

The importance of SRBI to cholesterol metabolism is fur-
ther highlighted by work done with mice. In one study tar-
geted mutation of the SRBI genes in mice lead to an
increase in plasma cholesterol levels of 30-40% in heter-
ozygote (single knockout mutation) animals and an
increase of 2.2 folds in the homozygote (double knockout
mutation) as compared to wild type [96]. In a separate
study, with mutations in the promoter region of SRBI,
there was an increase in plasma cholesterol levels of 50~
70% and an increase in size and cholesterol content of the
HDL particles in mutant mice as compared to wild type.
There was also a decrease in the hepatic uptake of free cho-
lesterol (40%) and selective uptake of HDL cholesterol
(50%) by mutant animals as compared to wild type [97].
Liver over-expression of SRBI in mice lead to 92-94%
decrease in total plasma cholesterol levels as compared to
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wild type animals. There was also a decrease in plasma
phospholipids (75%) and triglycerides (45-58%) levels
as compared to wild type animals [98].

SRBI and its ligand HDL are of significance in the early
steps of HCV infection. The identification of SRBI as a
HCV cellular receptor was made with HCVpp in vitro. The
infection of 293T cells by HCVpp was enhanced 10 fold
with the over-expression of SRBI, and SRBI anti-serum
reduced HCVpp infectivity of Huh7 and CD81+ HepG2
cells in a dose dependent manner [49]. Infection of Huh7
cells by HCVpp was enhanced in the presence of HDL. The
increase in infectivity was 5 fold if the HDL was added to
the media after HCVpp binding to cells whereas the
increase was only 1.7 fold when both were added simul-
taneously. This points to the possibility that HDL
enhancement of HCVpp infectivity occurs post binding
[50]. The production of HCVpp particles in presence of
HDL or human serum increased infectivity of the pro-
duced virus in a dose dependent manner. There was not a
significant increase in infectivity when the virus was
grown in the presence of LDL or VLDL. The enhancement
in infectivity was lost when cells were treated with anti-
SRBI prior to infection or SRBI expression was attenuated.
Enhancement was also lost, in a dose dependent manner,
upon treatment of cells with drugs which block SRBI abil-
ity to uptake cholesterol esters from HDL [51].

As with the HCVpp, similar results are seen with the
HCVcc in vitro system. Infectivity of HCVcc, grown in
serum free media, increased up to 2 folds with introduc-
tion of HDL, but decreased with increasing concentrations
of HDL. At HDL levels equivalent to physiological con-
centrations, HDL was inhibitory for HCVcc infection of
Huh?7 cells [99]. In a separate study, HCVcc infectivity of
Huh7.5 cells over-expressing SRBI increased 18 fold as
compared to parental cells. The over-expression of SRBI in
Huh?7.5 cells led to an increase in cell to cell spread and
secondary infections by HCVcc [54].

The important roles of SRBI and HDL in HCV infection
has led to a closer look at the effects cholesterol has on
infectivity of HCV. The depletion of cholesterol, by 60%,
from Huh?7 cells prior to infection with HCVcc resulted in
a 6.2 fold inhibition of infectivity. Inhibition was reversed
upon treatment of cells with exogenous cholesterol [55].
The cholesterol/phospholipid ratio of HCVcc was found
to be 1.29, as compared to a ratio of 0.4 and 0.42 for cell
membranes of non-infected and infected cells, respec-
tively. A decrease of HCVcc cholesterol levels led to a
decrease in the infectivity of the virus [100]. These results
indicate the importance in cholesterol levels to infectivity
which further highlight the role SRBI plays directly and in-
directly in HCV infection.
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The effective interaction of the HCV glycoproteins, SRBI,
and CD81 are necessary for a productive infection to
occur. Experimental results have shown complex forma-
tion between HCV E2, CD81, and SRBI. Removal of one
protein abrogated formation of any complex between the
remaining proteins [78]. In the case of HCVcc infection,
synergistic inhibition of infectivity was observed when
cells were pretreated with both anti-CD81 and anti-SRBI,
as compared to treatment with one antibody. The authors
concluded their results point to CD81 and SRBI function-
ing cooperatively during the infection process. Although
both CD81 and SRBI are needed for a productive HCVpp
infection, there was a lack of synergy when blocking both
receptors which points to a lack of cooperativity between
the two receptors in a HCVpp infection [55].

Claudin-1

Claudins are transmembrane proteins involved in the for-
mation of tight junctions. Their tetraspan transmembrane
topology produces two extracellular loops, one intracellu-
lar loop, and two intracellular tails (the C and N-termi-
nus). Within the family of mammalian claudins the N-
terminal is ~7 amino acids, the first extracellular loop
(ECL1) is ~50 amino acids, the intracellular loop ~12
amino acids, the second intracellular loop (ECL2) is ~25
amino acids, and the C-terminal 25-50 amino acids [101-
103].

A general function of claudins, in tight junction forma-
tion, is paracellular sealing. Claudin-1, -5, -11, and -14
knock out mice have shed light on the function of these
proteins, in vivo, in the tightening of skin [104], the blood
brain barrier [105], myelin sheets and Sertoli cell layers
[106], and the epithelial in the inner ear [107], respec-
tively. The distinct properties of a given tissue and its rela-
tionship to its tight junctions seem to be largely
dependent on the combination of claudins that are
expressed and on the manner they copolymerize
[103,108,109]. Claudin-1 is highly expressed in the liver
and is also found in other epithelial tissues [110].

Performing a cyclic lentivirus based repackaging screen of
a complementary DNA library, derived from a highly per-
missive cell line to HCV infection, for genes that confer
susceptibility to HCV infection to non-permissive cell
lines, claudin-1 was identified as a cellular receptor for
HCV [111]. Claudin-1 is expressed in all hepatoma cell
lines permissive to HCVcc and HCVpp infection, except
for Bel7402 [112], as well as primary hepatocytes [113].
The expression of claudin-1 in 293T cells enhanced
HCVpp infection, in one study by more than a 100 fold
[111] and another to the same levels as HCVpp infection
of Huh7.5 cells [113]. HCVpp infection of 293T cells
expressing claudin-1 was inhibited by serum from HCV+
patients, anti-CD81, and bafilomycin A1, demonstrating
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that HCVpp entry was also dependent on the envelope
glycoproteins, CD81, and endosomal acidification [113].
Claudin-1 expressing 293T cells were also permissive to
HCVcc infection, although efficiency of infection was
1000 folds less than Huh7 cells [111]. The overexpression
of claudin-1 in cell lines permissive to HCVpp infection
did not enhance infectivity [111].

HCVpp infection remained CD81 dependent even when
claudin-1 was overexpressed in Hep-G2 (CD81 negative
cell line, becomes susceptible to HCVpp upon expression
of CD81) cell line. The expression of murine claudin-1,
instead of human claudin-1, did not negatively effect
HCVpp susceptibility which suggests that claudin-1 in not
a determinant of specie host range of the virus. Down reg-
ulation of claudin-1 via siRNA resulted in a decrease in
infection levels of HCVpp and HCVcc [111].

The n-terminal 1/3 of extracellular loop 1 (ECL1) was
identified as sufficient for HCVpp entry when expressed in
a claudin-7 background. Of the 5 residues that differ
between the claudin-1 and claudin-7 in the n-terminal 1/
3 of ECL1, 2 were found to be important in regard to
HCVpp infection. The introduction of M32I or K48E into
claudin-7 rendered 293T cells partially permissive to
HCVpp infection, but the combination of both mutations
supported HCVpp entry as efficiently as claudin-1 [111].

Post binding antibody inhibition of claudin-1 demon-
strate that, like CD81 [62], claudin-1 acts at a post-bind-
ing stage in HCV infection. The results of these
experiments suggest a sequence in which CD81 interacts
with the virus prior to claudin-1 [111]. Cell to cell fusion
studies also demonstrated that claudin-1 is required for
HCV envelope glycoprotein mediated fusion although it
is unclear if claudin-1 participates directly in the fusion
process or that its involvement is required in an earlier
step [111].

Two other family members of claudin-1, claudin-6 and -9,
have been identified as possible HCV cellular receptors.
The expression of claudin-6 and -9 in 293T cells resulted
in the cells becoming permissive to HCVpp infection at
similar levels as Huh7.5 [112,113] and permissive to
HCVcc infection, but at titers 400 times lower than those
achieved in Huh7.5 cells [112]. Interestingly, the attenua-
tion of claudin-1 expression and expression of either clau-
din-6 or -9 in Huh?7.5 cells, lead to abrogation of HCVcc
permissiveness. Furthermore the expression of claudin-6
and -9 in claudin-1 negative hepatoma cell lines was not
effective in conferring the ability to become HCVpp per-
missive, but the expression of claudin-1 made the cell line
permissive to HCVpp infection [113]. The exception
seems to be the HCVpp permissive hepatoma cell line
Bel7402, which is claudin-1 negative but expresses clau-
din-9. The reduction in claudin-9 expression in Bel7402
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led to the a significant decrease in HCVpp infectivity
[112].

LDLR

The LDL receptor (LDLR) is a single pass transmembrane
glycoprotein of 839 amino acids. It is a modular proteins
consisting of seven adjacent LDL receptor type-A (LA)
modules at the n terminal end, followed by a region of
homology to the epidermal growth factor precursor
(EGFP) which consists of two epidermal growth factor-
like (EGF) modules, a YWTD domain, a third EGF mod-
ule, a serine and threonine rich region, a transmembrane
region, and a 50 residue cytoplasmic tail [114-116].

The LDLR receptor is responsible for the cellular seques-
tering of cholesterol containing LDL and VLDL particles
from circulation. The underlying genetic cause familial
hypercholesterolemia (FH) is a loss of function mutations
in the LDLR gene. FH is an autosomal genetic disorder
affecting approximately 1 in 500 individuals worldwide.
In heterozygous individuals, FH presents as an increased
risk of atherosclerosis and coronary heart disease.
Homozygous individuals, if untreated, typically die of
heart disease at an early age [116]. The LA repeats have
been shown to be the ligand binding domain of LDLR
[117].

A majority of plasma cholesterol in humans circulates in
the form of LDL. LDL is the primary ligand for the LDLR
and consists of one copy of apolipoprotein B-100 (apoB-
100) as its primary protein component. The LDLR recep-
tor also binds, with high affinity, lipoproteins which con-
tain multiple copies of apolipoprotein E (apoE), such as
the B-migrating forms of very low density lipoprotein (B-
VLDL) and some intermediate density lipoproteins
[118,119]. LDLR binding of apoE requires apoE associa-
tion with lipids [120]. LDLR-ligand complexes enter cells
via clathrin-coated pits and are then delivered to endo-
somes where the low pH environment triggers the release
of ligand from receptor. The receptor is then returned to
the plasma membrane in a process called receptor recy-
cling. The lipoprotein particle proceeds to the lysosome
where the hydrolysis of the released cholesterol esters
occurs [121].

There is evidence that LDLR is involved in the HCV infec-
tion process. The binding of HCV particles, from HCV
positive serum of patients, to human dermal fibroblasts
were inhibited by pretreatment of cells with >200 ug/ml
of purified LDL. The expression of LDLR on COS-7 cells
led to HCV binding to the cells from 7 out of 12 patient
sera [25]. Further evidence for the role of LDLR in HCV
infection was gathered by studies done with primary
human hepatocytes. A peptide inhibitor of LDL binding
to LDLR inhibited HCV infection of hepatocytes. This
effect was most potent when the peptide was added at the
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time of infection and the inhibitory effect diminished pro-
gressively when peptide was added at time points after
infection. This results suggests that LDLR is involved in
viral attachment to the hepatocytes. Treatment of hepato-
cytes with monoclonal antibodies against LDLR or LDL
also inhibited HCV infection [26]. These findings and the
association of HCV particles with lipoproteins suggest a
role for LDLR as a cellular receptor for HCV.

Glycosaminoglycans

Glycosaminoglycan (GAG) chains on cell surface prote-
oglycans serve as attachment sites for the binding of a
number of viruses and other microorganisms. GAG chains
are ubiquitously present on the cell surface of eukaryotic
cells with varying composition and concentration
dependent on cell type [122]. The GAG heparan sulfate
comprises of a family of linear polysaccharides with a sig-
nature motif of repeating units of [GlcA-GlcNAc],,, where
GlcA is glucuronic acid and GlcNAc in N-acetylglu-
cosamine. The saccharides undergo N deacetylation and
N sulfation of the GlcNAc residues, O sulfation at other
positions, and epimerization of GlcA to iduronic acid,
which gives rise to structural diversity throughout the
length of each chain [123].

The GAG heparan sulfate has been identified as a HCV cel-
lular receptor [20,22-24,62]. Heparin, a close structural
homologue of highly sulfated heparan sulfate, was able to
bind HCV E2 in an ELISA, in a concentration-dependent
manner. The dissociation constant, K;, for E2 and E1
binding to heparin was measured at 5.2 x 10 M and 5.3
x 108 M, respectively [20,22]. The binding of E2 to
HepG2 cells was inhibited in a dose-dependent manner
by pre-incubation of E2 with heparin and liver derived
highly sulfated heparan sulfate [20].

The pretreatment of HCVpp with heparin and highly sul-
fated heparan sulfate led to marked inhibition in infectiv-
ity of Huh7 cells with an IC,, 0.5 pg/ml. If HCVpp was
allowed to bind Huh7 cells prior to the addition of
heparin or highly sulfated heparan sulfate, the inhibitory
effect was not as dramatic [22,23]. The pretreatment of
HCVcc particles with heparin led to a dose dependent
inhibition of HCVcc binding at 4°C to Huh7 cells, and
the pretreatment of Huh7 cells with heparinase II and
heparinase III inhibited HCVcc binding to Huh7 cells at
4°C by 51-75% and 60-75%, respectively [24].

The incubation of HCVcc particles with heparin led to a
moderate dose dependent inhibition of HCVcc infection
of Huh7 cells with an IC5, value of 50 pug/ml. This inhibi-
tory effect was not observed if Huh7 cells were pre-treated
with heparin prior to the addition of virus implying direct
interaction of HCVcc with heparin is responsible for the
inhibition observed. The pretreatment of Huh7 cells with
heparinase I and III also led to a moderate inhibition of
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HCVcc infectivity (40-60%). Heparin's inhibitory effect
on HCVccinfection of Huh7 cells was abrogated if admin-
istered to cells after viral binding had taken place [62].
This, and other findings, indicate that cellular GAG, and
specifically highly sulfated heparan sulfates, are involved
in the process of HCV binding to cells.

Occludin

A recent study has identified occludin (OCLN) as a HCV
cellular receptor [124]. OCLN is a four transmembrane
domain protein present in the tight junctions of polarized
epithelial cells. HCV permissive human hepatoma cell
lines such as Huh7 or cell lines shown to lack other entry
factors (i.e. HepG2 and 293T cells) were found to express
detectable levels of OCLN. Overexpression of OCLN did
not enhance susceptibility to HCVpp infection. Silencing
of OCLN expression lead to inhibition of HCVpp infec-
tion in Hep3B cells and inhibition of infection of both
HCVpp and HCVcc in Huh-7.5 cells. These observations
indicate that OCLN is essential for HCV infection of natu-
rally permissive cell lines. Overexpression of human
OCLN in HCV resistant cell lines, which express the other
entry co-receptors, led specific enhancement in suscepti-
bility to HCVpp infection.

Liver tissue expression of HCV receptors

The expression levels and localization of the known HCV
receptors in normal and infected liver was examined and
published by Dr. McKeating's laboratory [125]. In a nor-
mal liver, CD81 expression on hepatocytes was observed
on the basolateral surface with some canalicular expres-
sion. CD81 expression was also present in the stroma of
the portal tracts. SRBI expression was seen on the sinusoi-
dal endothelium and hepatocytes. There was minimal
amount of SRBI expression observed on the bile ducts and
hepatocyte expression was located at the basolateral sur-
face. Claudin 1 expression was seen on the bile ducts and
hepatocytes, with low levels of expression on the sinusoi-
dal endothelium. Hepatocyte expression of claudin 1 was
observed on the basolateral and canalicular membranes.
In a HCV infected liver an increase in claudin 1 expression
was observed on the basolateral membrane of hepato-
cytes. In normal liver tissue, the co-localization of claudin
1 and CD81 was observed to be the strongest in the apical-
canalicular region. In HCV infected liver tissue, the co-
localization was prominently observed at the basolateral
region. Claudin 1 and SRBI co-localization was seen at the
basolateral membrane in both normal and HCV infected
liver tissue.

Conclusion

This review summarizes the role each HCV cellular co-
receptor in the infection process and the endogenous
function of each of these co-receptors. Much has been
learned in the past few years of the mechanism and
requirements for HCV to successfully infect naive cells.
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With future advances in developing robust in vivo (i.e.
small animal model of HCV infection) and in vitro (i.e.
infection of primary hepatocytes, HCVcc strains of differ-
ent genotypes) assays our understanding of the processes
involved in the early steps of HCV infection will be greatly
expanded.
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