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A B S T R A C T   

The paper is devoted to a compartmental epidemiological model of infection progression in a heterogeneous 
population which consists of two groups with high disease transmission (HT) and low disease transmission (LT) 
potentials. Final size and duration of epidemic, the total and current maximal number of infected individuals are 
estimated depending on the structure of the population. It is shown that with the same basic reproduction 
number R 0 in the beginning of epidemic, its further progression depends on the ratio between the two groups. 
Therefore, fitting the data in the beginning of epidemic and the determination of R 0 are not sufficient to predict 
its long time behaviour. Available data on the Covid-19 epidemic allows the estimation of the proportion of the 
HT and LT groups. Estimated structure of the population is used for the investigation of the influence of 
vaccination on further epidemic development. The result of vaccination strongly depends on the proportion of 
vaccinated individuals between the two groups. Vaccination of the HT group acts to stop the epidemic and 
essentially decreases the total number of infected individuals at the end of epidemic and the current maximal 
number of infected individuals while vaccination of the LT group only acts to protect vaccinated individuals from 
further infection.   

1. Introduction 

Covid-19 epidemic has stimulated an unprecedented interest to the 
epidemiological models, mostly, compartmental ODE models. There are 
numerous recent works devoted to fitting the available data, calculating 
the basic reproduction number, and making predictions about the 
further epidemic progression (see Aguiar et al., 2020; Arino and Portet, 
2020; Belgaid et al., 2020; Krantz et al., 2020; Sinha, 2020; Supino et al., 
2020; Zhao et al., 2020 and the references therein). These models give a 
good description of the evolution of the number of infected individuals 
and the sizes of other classes involved with the epidemiological models 
in the beginning of epidemic, and they take into account the influence of 
the measures of social distancing and some other measures to prevent 
the rapid epidemic spread. The situation is more complex with the 
prediction of the future epidemic progression because the parameters of 
the models are influenced by the measures of social distancing and other 
behavioral changes, and hence it is impossible to predict various 

scenario in advance. 
At the end of the first year of the epidemic and during its second 

wave, sufficient amount of data are available to model the long time 
epidemic progression, including the development of collective immu
nity, the final size of epidemic, and the influence of vaccination on 
further epidemic growth profile. An important assumption here is that 
recovered and vaccinated individuals do not become susceptible any 
more. Though it is one of the most important open questions of the 
coronavirus disease, and immunological studies show that the quantity 
of antibodies in recovered individuals can be highly variable Wu et al., 
2020, we will adopt here this hypothesis. 

The influence of heterogeneity of the population with respect to its 
role in the epidemic progression is largely discussed in the existing 
literature (Eikenberry et al., 2020; Kucharski et al., 2020; de Leon et al., 
2020; Rojas et al., 2020; Sharma et al., 2020). Different age and social 
groups can have different frequency of interactions and implementation 
of the measures of social distancing. Furthermore, the so-called 
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superspreaders, a relatively small group of people with a large number 
of social interactions, play an important role in the coronavirus epidemic 
(Kochanczyk et al., 2020b). Consideration of two types of individuals, 
one having frequent social interaction and the other having restric
ted/cautious social interaction, together in a single group with an 
average infectivity can lead to erroneous predictions. 

In this work we will study how the heterogeneity of the population 
influences its long time progression including the final size and duration 
of epidemic. In order to simplify the model and the interpretation of the 
results, we will consider only two groups in the population, one of them 
with high disease transmission (HT) and another one with low disease 
transmission (LT) potentials. If the total size of the population is N, the 
initial size of the first group (HT) is N1 and the second group (LT) is N2 
such that N = N1 + N2, then we introduce the coefficient k = N1 /N 
characterizing the structure of the population. If k = 1, then the whole 
population belongs to the first group, if k = 0, to the second group. In 
general, k adopts the values between 0 and 1. Two extreme values of k 
correspond to a single group epidemic. 

The proportion between these two groups strongly influences the 
final size of epidemic (final number of susceptible individuals Sf ) (cf. 
Dolbeault and Turinici, 2020) and the maximal current number of 
infected individuals Im. This second parameter (Im) is particularly 
important for the estimation of the necessary number of hospital beds to 
handle the worst case scenario. It appears that for the same basic 
reproduction number R 0, the values Sf and Im can differ several times 
depending on the parameter k. It is important to stress here that fitting 
the same data in the beginning of epidemic can be done for any value of 
k but further epidemic progression will crucially depend on it. Thus, the 
initial growth rate does not allow the prediction of long time epidemic 
progression in a heterogeneous population. 

We suggest a method to estimate the structure of the population in 
each given country during the Covid-19 epidemic on the basis of the 
available data before, during and after the first lockdown. Since there 
were no measures of social distancing (obligation of wearing masks, 
restriction on social gathering, etc.) before the lockdown, we assume 
that the whole population belonged to the first group (HT), and k = 1. 
On the other hand, during the lockdown, we assume that the whole 
population respected strict measures of social distancing and other re
strictions, and N2 = N, that is k = 0. In both cases, we fit the data and 
determine the parameters of the epidemiological model. After the 
lockdown when the restrictions are gradually lifted, the population 
splits into two groups, HT and LT, in certain proportion. We assign the 
first group the same parameters as before lockdown, and the second 
group the same parameters as during lockdown. Hence, we have all 
parameters characterizing each group, and one free parameter k which 
determines the proportion between the groups. The data after lockdown 
allow us to determine the value of this parameter and to characterize the 
heterogeneity of the population. Carrying out this analysis for several 
countries, we obtain k ≈ 0.1 during the summer period and k ≈ 0.2 in 
September-November 2020 (Sharma et al., 2020). This increase of the 
parameter k corresponds to the second wave of the epidemic. The rate of 
epidemic growth and the size of the second wave are determined by the 
value of k. 

Clearly, suggested approach does not take into account the hetero
geneity inside each group, possible exchange between the groups, and 
some other factors. However, it gives a single efficient parameter 
characterizing the structure of the population and the epidemic pro
gression. We will call this parameter the coefficient of social interaction 
since k = 0 corresponds to low interaction during the lockdown and k =
1 to high interaction before the lockdown. Once the lockdown is relaxed, 
it is expected that people continue to follow some restrictions, either 
imposed by public authorities or self-imposed. However, different social 
and professional groups can have different levels of implementation of 
these restrictions and of the intensity of social contacts. As a result, the 
population splits into two groups, and the parameter k adopts some 

intermediate value between 0 and 1. 
Having determined the structure of the heterogeneous population, 

we can study the influence of vaccination on the further epidemic pro
gression. The results of the vaccination strongly depend on whether it is 
applied to HT group or to LT group. In particular, with only 5% of 
vaccinated individuals (of the whole population) for k = 0.2, the total 
number of infected individuals at the end of epidemic is almost 3 times 
less than without vaccination, if vaccination is applied to the HT group. 
If vaccination is applied to the LT group, the effect of vaccination is 
weak. Hence, vaccination of the first group acts to stop the epidemic 
while vaccination of the second group only protects vaccinated in
dividuals. Though this result can be expected, the difference in the re
sults of vaccination is quite striking. 

The contents of the paper are as follows. In the next section, we 
introduce and study a model problem of a heterogeneous population. We 
determine various parameters of epidemic progression and show that 
with the same initial growth rate, its outcome can strongly differ 
depending on the structure of the population. In Section 3 we introduce 
a more complete epidemiological model of heterogeneous population. 
We apply it to Covid-19 in Section 4 in order to determine the structure 
of the heterogeneous populations and to model the influence of vacci
nation on the epidemic progression. Finally, discussion of the model and 
of the result is presented in Section 5. 

2. Model problem 

We begin the study of epidemic progression in a heterogeneous 
population with the model problem consisting of susceptible and 
infected individuals with two sub-populations: 

dS1

dt
= − β11

S1

N
I1 − β12

S1

N
I2, (2.1)  

dS2

dt
= − β21

S2

N
I1 − β22

S2

N
I2, (2.2)  

dI1

dt
= β11

S1

N
I1 + β12

S1

N
I2 − σ1I1, (2.3)  

dI2

dt
= β21

S2

N
I1 + β22

S2

N
I2 − σ2I2, (2.4)  

where S1 and S2 are two classes of susceptible individuals, andI1, I2 two 
classes of infected individuals, βij are the rates of disease transmissions, 
σj are the clearance rates, and N is the total population. We consider the 
sub-populations of susceptible and infected individuals based on their 
classification or behaviour which is directly responsible for the alter
ation of rate of disease spread. The classification or division into two 
different groups may be due to the different age groups, different 
implementation of distancing measures, and so on. This model is similar 
to the model recently considered in Dolbeault and Turinici (2020). We 
will present a more detailed analysis compared to the previous one. 
Along with basic reproduction number and the final size of epidemic, we 
will determine the maximal number of infected and will show that for 
the same value of basic reproduction number, the populations can 
strongly differ by their final size and the maximum of infected in
dividuals. This effect occurs because of the heterogeneity of the popu
lation. Furthermore, we will study the influence of vaccination on the 
heterogeneous population. 

2.1. Basic reproduction number 

In the beginning of epidemic, S1 and S2 can be considered as con
stant. We set: 

S1

N
= k ,

S2

N
= 1 − k, 0 ≤ k ≤ 1.
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The linearized matrix of the system (2.1) - (2.4) evaluated at disease free 
equilibrium point (kN, (1 − k)N, 0,0) is given by 

J =

⎛

⎜
⎜
⎝

0 0 − kβ11 − kβ12
0 0 − (1 − k)β21 − (1 − k)β22
0 0 kβ11 − σ1 kβ12
0 0 (1 − k)β21 (1 − k)β22 − σ2

⎞

⎟
⎟
⎠.

The non-zero eigenvalues of J can be obtained from the block matrix 

A =

(
kβ11 − σ1 kβ12
(1 − k)β21 (1 − k)β22 − σ2

)

.

We find maximal eigenvalues of J from the equation: 

λ2 − (kβ11 +(1 − k)β22 − σ1 − σ2)λ + k(1 − k)(β11β22 − β12β21) − kβ11σ2

− (1 − k)β22σ1 + σ1σ2

= 0.

In order to simplify the expression for basic reproduction number, we 
suppose that 

σ1 = σ2 = σ, β12 = β21 = (β11 + β22)/2 . (2.5)  

Then 

2λ = kβ11 + (1 − k)β22 − 2σ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

kβ2
11 + (1 − k)β2

22

√

. (2.6)  

The basic reproduction number R 0 is as follows: 

R 0 =

(

kβ11 +(1 − k)β22 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

kβ2
11 + (1 − k)β2

22

√ )/

(2σ) .

If, moreover, β11 = β22 = β for some β, then λ = β − σ, R 0 = β /σ. 

2.2. Final size of epidemic 

Taking a sum of Eqs. (2.1), (2.3) and (2.2), (2.4), we obtain the 
equalities: 

dS1

dt
+

dI1

dt
= − σ1I1 ,

dS2

dt
+

dI2

dt
= − σ2I2 . (2.7)  

Integrating them from 0 to ∞ and assuming that Ij(0) = Ij(∞) = 0, j = 1,
2, we conclude that 

S0
1 − Sf

1 = σ1

∫ ∞

0
I1(t)dt , S0

2 − Sf
2 = σ2

∫ ∞

0
I2(t)dt .

Next, we divide Eq. (2.1) by S1, Eq. (2.2) by S2 and integrate from 0 to ∞: 

− ln

(
Sf

1

S0
1

)

=
β11

Nσ1

(
S0

1 − Sf
1
)
+

β12

Nσ2

(
S0

2 − Sf
2
)
,

− ln

(
Sf

2

S0
2

)

=
β21

Nσ1

(
S0

1 − Sf
1
)
+

β22

Nσ2

(
S0

2 − Sf
2
)
.

With the notation x = Sf
1/S0

1, y = Sf
2/S0

2, and assumptions (2.5) we 
obtain the system of two coupled transcendental equations 

β11k(1 − x) + β12(1 − k)(1 − y) = − σlnx, (2.8)  

β21k(1 − x) + β22(1 − k)(1 − y) = − σlny, (2.9)  

with respect to x and y. If β11 = β22 = β, then this system is reduced to 
the single equation R 0(1 − x) + lnx = 0 independent of k. Its solution 
gives the final size of susceptible population for the homogeneous 
population. 

In the general case, the solution of this system depends on β11, β22, 

and k. We will vary their values in such a way that the basic reproduc
tion number does not change, and we will analyze the final size of 
epidemic. 

Consider the following example: β = 2.5,σ = 1. Then λ = 1.5, R 0 =

2.5. For different values β11 and β22 such that (β11 + β22)/2 = β, we find 
from (2.6) the value of k for which λ = 1.5:  

β11  2.6 3 3.5 4 4.5 4.75 5 
β12,β21  2.5 2.5 2.5 2.5 2.5 2.5 2.5 
β22  2.4 2 1.5 1 0.5 0.25 0 
k  0.495 0.475 0.45 0.427 0.403 0.393 3.82  

For each of these combination of parameters, we determine x and y 
from system (2.8), (2.9), and the corresponding values Sf

1 and Sf
2. The 

results of these calculations are shown in Fig. 1. The final value of the 
first susceptible sub-population slowly decreases, for the second sub- 
population increases. The final value of the total susceptible popula
tion increases almost 3 times between the minimal value for the ho
mogeneous population and the maximal value reached for β22 = 0. 

We consider another example where 

β = 1.5, σ = 1, λ = 0.5, R 0 = 1.5.

In this case the final size of susceptible for the homogeneous population 
is Sf = 0.417. The maximal total susceptible for the heterogeneous 
population is reached for β11 = 3 and equals Sf = 0.587. The ratio of the 
maximal and minimal value decreases with the decrease of R 0 but their 
difference remains approximately the same as in the previous example. 

2.3. Maximum number of infected 

Maximal number of infected individuals for homogeneous population. 
If we assume that βij = β for all i, j = 1,2 for some β, and σ1 = σ2, 

then system (2.1)-(2.4) can be reduced to the system 

dS
dt

= − β
S
N

I ,
dI
dt

= β
S
N

I − σI, (2.10)  

where S = S1 + S2, I = I1 + I2. Denote by tm the time of maximum of I(t), 
and by Im the maximal value, Im = I(tm), and Sm = S(tm). Integrating the 
sum of the equations in (2.10) 

dS
dt

+
dI
dt

= − σI  

from 0 to tm, we get 

Fig. 1. Final value of the total susceptible population and in the two sub-classes 
as functions of β11, Sf

1 - lower curve, Sf
2 - middle curve, Sf

1 + Sf
2 - upper curve. 

The values of parameters: β22 = 5 − β11, β12 = β21 = 2.5, σ = 1. 

V. Volpert et al.                                                                                                                                                                                                                                 



Ecological Complexity 47 (2021) 100940

4

Sm − S0 + Im − I0 = − σ
∫ tm

0
I(t)dt, (2.11)  

where S0 = S(0) = N, I0 = I(0). Next, from the first equation in (2.10), 

ln(Sm) − ln(S0) = −
β
N

∫ tm

0
I(t)dt. (2.12)  

From Eqs. (2.11), (2.12), 

Im − I0 = S0 − Sm +
σN
β

ln
(

Sm

S0

)

. (2.13)  

From the second equation in (2.10), since the derivative equals 0 at t =
tm, we find Sm = σN/β. Using the notation R 0 = β /σ, from (2.13) we 
find, 

Im − I0

N
= 1 −

1
R 0

−
lnR 0

R 0
, Sm =

N
R 0

. (2.14)  

If R 0 = 1, then from the previous equations it follows that Im = I0, Sm =

N. For R 0 > 1, we get Im > I0 and Sm < N. 
Maximal number of infected individuals in a heterogeneous population. 
In order to find the maximal number of infected individuals in the 

heterogeneous population, we consider an approximation t1m = t2
m, 

where t1
m is the time of maximum of I1(t) and t2

m of I2(t). Numerical 
simulations show that these times to maximum are close to each other. 
Integrating Eqs. (2.7) from 0 to tm, we obtain: 

S0
1 − Sm

1 + I0
1 − Im

1 = σ1

∫ tm

0
I1(t)dt , S0

2 − Sm
2 + I0

2 − Im
2 = σ2

∫ tm

0
I2(t)dt ,

(2.15)  

where S0
j = Sj(t0), Sm

j = Sj(tm), I0
j = Ij(t0), Im

j = Ij(tm), j = 1,2. Next, we 
divide Eq. (2.1) by S1, Eq. (2.2) by S2 and integrate to get: 

− ln
(

Sm
1

S0
1

)

=
β11

N

∫ tm

0
I1(t)dt +

β12

N

∫ tm

0
I2(t)dt ,

− ln
(

Sm
2

S0
2

)

=
β21

N

∫ tm

0
I1(t)dt +

β22

N

∫ tm

0
I2(t)dt .

Taking into account (2.15), we obtain 

− ln
(

Sm
1

S0
1

)

=
β11

Nσ1

(
S0

1 − Sm
1 + I0

1 − Im
1

)
+

β12

Nσ2

(
S0

2 − Sm
2 + I0

2 − Im
2

)
, (2.16)  

− ln
(

Sm
2

S0
2

)

=
β21

Nσ1

(
S0

1 − Sm
1 + I0

1 − Im
1

)
+

β22

Nσ2

(
S0

2 − Sm
2 + I0

2 − Im
2

)
. (2.17)  

Assuming that I′1(tm) = I′2(tm) = 0, we get from (2.3), (2.4): 

Sm
1 = σ1N

Im
1

β11Im
1 + β12Im

2
, Sm

2 = σ2N
Im

2

β21Im
1 + β22Im

2
. (2.18)  

We suppose that I0
j ≪Im

j , j = 1,2 and σ1 = σ2. Set 

x = Im
1

/
N, y = Im

2

/
N, γij = βij

/
σ, i, j = 1, 2.

With this notation and (2.18), Eqs. (2.16), (2.17) can be written in the 
following form: 

ln
(

k
γ11x + γ12y

x

)
= (k − x)γ11 + (1 − k − y)γ12 −

γ11x
γ11x + γ12y

−
γ12y

γ21x + γ22y
,

(2.19)  

ln
(

(1 − k)
γ21x + γ22y

y

)

= (k − x)γ21 + (1 − k − y)γ22 −
γ21x

γ11x + γ12y

−
γ22y

γ21x + γ22y
. (2.20)  

Solving this system of equations, we find x and y and, consequently, Im
j , 

j = 1,2. We then use formulas (2.18) to determine Sm
j , j = 1,2. 

Fig. 2 shows the comparison of the values Im
j and Sm

j , j = 1,2 obtained 
from direct numerical simulations and found by the approximate 
analytical method presented above. This approximation is more accu
rate for β11 > β22 (β11 + β22 = 5) which corresponds to our main 
assumption that the first sub-population is smaller and spreads infection 
faster than the second sub-population. Let us recall that the population is 
homogeneous if β11 = β22. The heterogeneity of the population in
creases with the increase of β11. The maximal current number of infected 
individuals decreases with the increase of β11. This effect is especially 
pronounced for the second sub-population. 

2.4. Collective immunity 

The notion of collective immunity implies that epidemic progression 
slows down due to the decrease of the number of susceptible individuals. 
Let us give a more precise definition for the homogeneous population 
implying that collective immunity begins at the moment of time when 
the number of infected individuals reaches its maximum, t = tm, Im =

I(tm). The number of infected individuals begins to decrease after this 
time. The results of the previous section allow us to determine the exact 
value of Im and Sm but not tm. In order to find an approximate value of tm 

we use the approximation I(t) = I0eλt within the time interval 
I0 ≤ I(t) ≤ Im. Then 

tm ≈
1
λ

ln
(

Im

I0

)

=
1

β − σ ln
(

1+
N
I0

(

1 −
1

R 0
−

lnR 0

R 0

))

.

In the case of heterogeneous population, the total number of infected 
individuals I(t) = I1(t) + I2(t) has a single maximum at some t = tm 

though the maxima of each component I1(t) and I2(t) are reach at some 
close but different times t1

m and t2
m, respectively. We consider that col

lective immunity begins at time t = tm. In the approximate analytical 
solution considered above we assume that t1

m = t2
m. Under this approxi

mation, the time of the beginning of collective immunity can be deter
mined similarly to the homogeneous population but with more 
cumbersome calculations related to solution of system (2.19) - (2.20). 

2.5. Vaccination 

The result of vaccination of a heterogeneous population essentially 
depends on the distribution of vaccinated individuals between different 
population groups. The epidemic is mainly spread by the first sub- 
population (HT), and their vaccination efficiently decreases the num
ber of infected individuals. 

We assume that vaccination is fully efficient in the sense that 
vaccinated individuals do not become infected. In order to model the 
action of vaccination at time t = t0, we set 

S1(t0 + 0) = S1(t0 − 0) − κV, S2(t0 + 0) = S2(t0 − 0) − (1 − κ)V, Ij(t0 + 0)

= Ij(t0 − 0), j = 1, 2,

where V is the number of vaccinated, κ is part of vaccinated in the first 
sub-population, (1 − κ) in the second sub-population. System (2.1)-(2.4) 
is considered for t > t0 with the indicated initial conditions at t = t0. 

Fig. 3 (left) shows the total number of infected individuals IT 
depending on vaccination. The total number of infected is calculated by 
the formula: IT = N − V − Sf

1 − Sf
2. In numerical simulations we set Sf

j =

Sj(tf ), j = 1, 2, where tf is the final time of epidemic defined as time 
when the number of infected individuals becomes less than 1. Let us 
recall, that Ij(t) converge to 0 as t→∞ but these functions remain posi
tive for any finite time. Taking into account that these variables signify 
the number of individuals, the epidemic can be considered as finished at 
t = tf defined above. 
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Fig. 2. The maximal number of infected individuals (left figure) in direct numerical simulations of system (2.1)-(2.4) (solid lines) and as solution of system (2.19), 
(2.20) (dashed lines). The lower curves correspond to the first sub-population (Im

1 ) and the upper curves to the second sub-population (Im
2 ). The corresponding values 

of the number of susceptible individuals (right figure) in numerical simulations of system (2.1)-(2.4) (solid lines) and by formulas (2.18). The lower curves 
correspond to the fist sub-population (Sm

1 ) and the upper curves to the second sub-population (Sm
2 ). The values of parameters: β22 = 5 − β11, β12 = β21 = 2.5, σ = 0.1. 

The value of k is chosen in such a way that the basic reproduction number R 0 = 2.5 is the same in all simulations (see the explanation in the text). 

Fig. 3. The total number of infected individuals (left figure) in numerical simulations of system (2.1)-(2.4) at the end of epidemic depending on the proportion of 
vaccinated individuals V to the total population N. The lower curve corresponds to the vaccination of the first sub-population (κ = 1) and the upper curve to the 
vaccination of the second sub-population (κ = 0) with the same total number of vaccinated individuals. The maximal current number of infected individuals (right 
figure) depending on the proportion of vaccinated individuals V to the total population N. The lower curve corresponds to the vaccination of the first sub-population 
(κ = 1) and the upper curve to the vaccination of the second sub-population (κ = 0) with the same total number of vaccinated individuals. The values of parameters: 
β11 = 4, β22 = 1, β12 = β21 = 2.5, σ = 0.1, k = 0.1, t0 = 5. 

Fig. 4. Schematic representation of the model with different classes of individuals. Two subclasses of susceptible give respectively exposed non-infectious, exposed 
infectious, infected symptomatic and asymptomatic. There are unique classes of quarantined, hospitalized, recovered, and dead. 
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We compare two cases, where all vaccinated belong to the first sub- 
population (κ = 1) or all of them belong to the second sub-population (κ 
= 0). In the first case, the influence of vaccination on the total number of 
infected individuals at the end of epidemic is essentially stronger than in 
the second case. If we take as example V equal 5% of the total population 
(V/N = 0.05), then IT reduces from 0.45N (without vaccination) to 
0.25N, that is almost twice. At the same time, if only the second popu
lation is vaccinated, then the reduction is only 5%, that is the same as the 
number of vaccinated. 

This difference becomes even more essential for the maximal current 
number of infected individuals (Fig. 3, right). More detailed data on the 
results of vaccination are presented in Tables 1, 2, 3. These results 
depend on the values of parameters, in particular on the parameter k 
characterizing the proportion between the two sub-populations. How
ever, the general tendency is the same as presented above: vaccination of 
the first sub-population is much more efficient. It is also interesting to 
note that vaccination increases the final time of epidemic. These tables 
show the results of numerical simulations of the results of vaccination in 
three cases: vaccination is applied only to the first sub-population (HT), 
only to the second sub-population (LT), and in proportion 20% HT and 
80% LT. In all cases the number of vaccinated individuals is the same. It 
is given in percentage of N1. The case k = 0.2 and 10% of N1, for 
example, corresponds to 2% of the total population N. In all cases the 
vaccine is administrated on day 5. 

3. Full model 

3.1. Model of heterogeneous population 

We consider conventional compartmental approach to model the 
epidemic progression with the following classes of population: suscep
tible individuals S, exposed (with viral load) but not yet infectious E1, 
exposed infectious (no yet symptoms) E2, infected symptomatic Is, 
infected asymptomatic Ia, quarantined Q, hospitalized J, recovered R. 
Exposed infectious and infected asymptomatic individuals are in some 
sense similar to each other because they are infectious but do not 
manifest symptoms. However, the rate of disease transmission and the 
duration of these stages for them can be different. 

The susceptible population can be heterogeneous with respect to a 
variety of characteristics: age classes, their activity including education, 
professional, retired, medical workers (Gauchon et al., 2021; Prague 
et al., 2020; Roux et al., 2020). We will study how the heterogeneity of 
the population can influence the final size and duration of epidemic. For 
simplicity of presentation and analysis we restrict ourselves to two 
subclasses of susceptible individuals S1 and S2. According to this sepa
ration on subclasses, we introduce the corresponding subclasses in the 
groups E1, E2, Is, and Ia, while Q, J, and R remain homogeneous. Under 
these assumptions, we obtain the following equations for S1 and S2: 

dS1

dt
= −

S1

N
[β11(Is1 + p11Ia1 + p12E12)+ β12(Is2 + p21Ia2 + p22E22)+ βQQ+ βJJ],

(3.1)  

dS2

dt
= −

S2

N
[β21(Is1 + p31Ia1 + p32E12)+ β22(Is2 + p41Ia2 + p42E22)+ βQQ+ βJJ].

(3.2)  

Here E12, Is1 , Ia1 and E22, Is2 , Ia2 are the subclasses of the corresponding 
classes E2, Is, Ia; βij are the coefficients characterizing the intensity of 
infection transmission between the classes Si and Isj , i, j = 1,2; the co
efficients pij, i = 1,2,3,4, j = 1,2 show how the coefficients of infection 
propagation change for the classes Ia1 , Ia2 and E21,E22 in comparison 
with Is1 and Is2 . Finally, the coefficients βQ and βJ characterize infection 
progression due to the interaction with the classes Q and J. 

The corresponding equations for the classes E11, E21 have the 
following form: 

dE11

dt
=

S1

N
[β11(Is1 + p11Ia1 + p12E12)+ β12(Is2 + p21Ia2 + p22E22)+ βQQ+ βJJ]

− μ1E11,

(3.3)  

dE21

dt
=

S2

N
[β21(Is1 + p31Ia1 + p32E12)+ β22(Is2 + p41Ia2 + p42E22)+ βQQ+ βJJ]

− μ2E21,

(3.4)  

where μ1 and μ2 are the rates at which E11 and E21 progress to the in
fectious exposed compartments E12 and E22, respectively. Next, 

Table 1 
The model under consideration is (2.1) - (2.4) with vaccine in S1.  

k  % Im1 /N  Im2 /N  Sf
1/N  Sf

2/N  tf  

0.2 – 0.0007 0.0016 0.1209 0.6187 846  
10% 0.00004 0.0009 0.1249 0.6645 1113  
20% 0.00001 0.0003 0.1286 0.7168 1715  
30% 0.000008 0.00002 0.1321 0.7770 4828 

0.3 – 0.0031 0.0045 0.1220 0.4334 488  
10% 0.0020 0.0031 0.1294 0.4742 582  
20% 0.0011 0.0019 0.1371 0.5216 736  
30% 0.0004 0.0008 0.1450 0.5772 1084  
40% 0.00007 0.0001 0.1530 0.6437 2068 

0.4 – 0.0068 0.0069 0.1199 0.3086 365  
10% 0.0047 0.0051 0.1302 0.3435 422  
20% 0.0029 0.0034 0.1414 0.3846 510  
30% 0.0015 0.0019 0.1535 0.4337 664  
40% 0.0005 0.0007 0.1665 0.4935 1012  

Table 2 
The model under consideration is (2.1) - (2.4) with vaccine in S2.  

k  % Im1 /N  Im2 /N  Sf
1/N  Sf

2/N  tf  

0.2 – 0.0007 0.0016 0.1209 0.6187 846  
10% 0.0006 0.0014 0.1259 0.6152 901  
20% 0.0005 0.0011 0.1310 0.6114 965  
30% 0.0004 0.0009 0.1363 0.6073 1040 

0.3 – 0.0031 0.0045 0.1220 0.4334 488  
10% 0.0028 0.0039 0.1291 0.4265 511  
20% 0.0025 0.0033 0.1366 0.4190 536  
30% 0.0022 0.0028 0.1446 0.4109 565  
40% 0.0020 0.0024 0.1530 0.4020 599 

0.4 – 0.0068 0.0069 0.1199 0.3086 365  
10% 0.0063 0.0059 0.1289 0.2986 380  
20% 0.0057 0.0050 0.1387 0.2875 397  
30% 0.0052 0.0041 0.1491 0.2753 416  
40% 0.0046 0.0034 0.1605 0.2619 439  

Table 3 
The model under consideration is (2.1) - (2.4) with vaccine in S1 and S2.  

k  % Im1 /N  Im2 /N  Sf
1/N  Sf

2/N  tf  

0.2 – 0.0007 0.0016 0.1209 0.6187 846  
10% 0.0006 0.0013 0.1257 0.6247 935  
20% 0.0004 0.0009 0.1307 0.6306 1050  
30% 0.0003 0.0007 0.1359 0.6366 1203 

0.3 – 0.0031 0.0045 0.1220 0.4334 488  
10% 0.0025 0.0037 0.1292 0.4402 529  
20% 0.0020 0.0029 0.1369 0.4471 581  
30% 0.0016 0.0022 0.1451 0.4541 647  
40% 0.0012 0.0016 0.1538 0.4610 734 

0.4 – 0.0068 0.0069 0.1199 0.3086 365  
10% 0.0056 0.0056 0.1295 0.3158 395  
20% 0.0045 0.0044 0.1399 0.3231 433  
30% 0.0035 0.0034 0.1512 0.3304 483  
40% 0.0025 0.0024 0.1636 0.3378 549  
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dE12

dt
= μ1E11 − δ1E12, (3.5)  

dE22

dt
= μ2E21 − δ2E22. (3.6)  

The coefficients δ1 and δ2 characterize the transition from exposed to 
infected classes. The equations for the infected classes are as follows: 

dIa1

dt
= (1 − σ1)δ1E12 − η1Ia1 , (3.7)  

dIa2

dt
= (1 − σ2)δ2E22 − η2Ia2 , (3.8)  

dIs1

dt
= σ1δ1E12 − (ρ11 + ζ11 + ζ12 + ζ13)Is1 , (3.9)  

dIs2

dt
= σ2δ2E22 − (ρ21 + ζ21 + ζ22 + ζ23)Is2 , (3.10)  

where σ1 and σ2 determine the proportions between the classes of 
symptomatic and asymptomatic individuals, 0 < σj < 1, j = 1,2. 

Symptomatic infected individuals can become quarantined, hospi
talized or recover, and asymptomatic infected recover without hospi
talization. Symptomatic individuals move to the quarantine class, and 
the rate of their transfer to hospital and recovered class are ξ1 and ξ2, 
respectively. The equation for the quarantined class writes: 

dQ
dt

= ζ11Is1 + ζ21Is2 − (ξ1 + ξ2)Q. (3.11)  

Hospitalized individuals can recover or die with the rates ν and ρ2: 

dJ
dt

= ζ12Is1 + ζ22Is2 + ξ1Q − (ρ2 + ν)J, (3.12)  

dR
dt

= η1Ia1 + η2Ia2 + ζ13Is1 + ζ23Is2 + ξ2Q + νJ. (3.13)  

This model was introduced in Sharma et al. (2020) where the basic 
reproduction number and the final size of epidemic were found. It was 
also used to fit the data on the Covid-19 epidemic in some countries 
before and during the lockdown and to determine the parameters by 
fitting the numerical simulation with the epidemiological data. 
Furthermore, most sensitive parameters were estimated. We will use this 
model and parameter values in the next section in order to study the 
influence of vaccination on epidemic progression, as illustrative 
example. 

3.2. Characterization of epidemic progression 

In this section we present the results of numerical simulations of 
system (3.1)-(3.13). Fig. 5 shows the evolution in time of the two sus
ceptible populations S1(t) (left figure) and S2(t) (right figure) for 
different values of parameter k = N1/N. Larger values of k corresponds 
to the increase of the proportion of the first sub-population for which the 
disease transmission rate is more intensive. We observe from the figure 
that increasing k leads to the decrease of the final time of epidemic. The 
final size of the first sub-population remains approximately constant. 
This is due to the fact that epidemic is basically transmitted by the first 
sub-population, and it is finished when this sub-population reaches 
collective immunity. The final size of the second sub-population de
creases with the increase of k (Fig. 6, left) but it remains above the level 
of collective immunity. These final sizes can be found from the analytical 
formulas obtained in Sharma et al. (2020). 

The maximal values of infected individuals increase with the in
crease of k (Fig. 6, right). We consider here the sum of symptomatic and 
asymptomatic classes, 

Ij(t) = Iaj (t) + Isj (t) , j = 1, 2.

Though the first sub-population N1 = kN is essentially less than the 
second one, N2 = (1 − k)N for small k, the maximal values of infected 
individuals, I1

m and I2
m are close to each other because disease trans

mission occurs faster in the first sub-population. 

4. Application to the Covid-19 epidemic 

4.1. Coefficient of social interaction 

The heterogeneity of the population with respect to the disease 
transmission is related to multiple factors. Among them different age, 
professional and social groups, various religious and cultural traditions 
which can influence people behavior with respect to the measures of 
social distancing and vaccination. Detailed description of all these 
different groups would essentially complicate the model and would in
crease the number of parameters difficult to estimate. Therefore, we 
propose to consider only two cumulative groups. One of them includes 
people with high disease transmitting potential (HT) and another one 
with low disease transmitting potential (LT). According to the models 
we consider here, these two classes are represented by S1 and S2 
respectively. They differ by the values of parameter βij in the expression 
βijIiSj/N, i, j = 1, 2. These are effective parameters characterizing the 
frequency of contacts between infected and susceptible individuals and 
the rate of infection transmission. For the two groups N1 (HT) and N2 
(LT) of the whole population N, there are the corresponding subclasses 

Fig. 5. Numerical simulations of system (3.1)-(3.13). The evolution of the sub-populations S1(t) (left) and S2(t) in time for different values of k. The values of the 
coefficients βij are as follows: β11 = 4, β22 = 1, β12 = β21 = 2.5. The values of other parameters are given in Table 4 in the appendix. 
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of susceptible S1 and S2, exposed and infected. Hence, there are four 
different coefficients: β11 characterizes the interaction inside HT, β22 
inside LT, and β12, β21 between the groups. 

We consider the parameter k = N1/N already used in the previous 
sections. For k = 0, there is a single group LT, for k = 1 another single 
group HT. We will consider the values of k between 0 and 1. This 
parameter characterizes the distribution of total population into two 
groups and influences the intensity of social interactions. 

We determine the values of parameters βij and k from the Covid-19 
data. In the beginning of the epidemic, before lockdown, there were 
no measures of social distancing. We suppose that the whole population 
belonged to the first group (HT). We neglect here the heterogeneity of 
the population with respect to the frequency of contacts. Fitting the data 
on the epidemic progression allows us to determine the coefficient β11. 
Its value can be different in different countries. Next, we suppose that 
during the first lockdown the whole population respected the measures 
of social distancing and belonged to the second group (LT). As before, 
fitting the data allows us to determine β22. In the data fitting we used the 
model presented in Section 3 (Sharma et al., 2020). The values of the 
other parameters were determined from the available data. 

After the first lockdown, the measures of social distancing were 
partially preserved. These restrictions differed between the countries 
and evolved in time. They were less strict than during the first lockdown 
allowing the emergence of two cumulative groups N1 and N2 described 
above. Simplifying this characterization of the population, we suppose 
that the first group (HT) is similar to the population before lockdown, 

and it is characterized by the coefficient β11 described above. The second 
group (LT) is similar to the population during the lockdown, and it is 
characterized by the coefficient β22. We set the values of the coefficients 
β12 and β21 characterizing the interactions between the groups accord
ing to the formula β12 = β21 = (β11 + β22)/2. It is an empiric relation 
which cannot be determined from the data. We will discuss it below. 

Next, we determine the value of the coefficient k fitting the data after 
lockdown. Fig. 7 shows consecutive stages of epidemic progression in 
Germany with the first stage (before lockdown), second stage (during 
lockdown), third stage (June-July, 2020), and the fourth stage 
(September-November, 2020). According to the method described 
above, we get β11 = 3.95, β22 = 1.05, β12 = β21 = 2.5 (the values of 
other parameters are given in Table 4 in the appendix). Fitting the data 
in June-July, we find k = 0.1, that is the first group (HT) represents 10% 
of the whole population. We then continued the simulation for the 
period September-November with two different values of k: the same as 
before, k = 0.1 (left figure), and k = 0.2 (right figure). Increase of k 
shows a rapid growth of the number of infected. Let us note that this 
simulation was done in July, 2020 (Sharma et al., 2020), and it gave a 
reasonably good prediction of the epidemic progression during the 
fourth stage. Increase of the coefficient of social interaction k during the 
fourth stage is related to the beginning of the academic year and the 
intensification of professional activity after summer vacation. 

Another example is shown in Fig. 8. Fitting of data for Israel gives 
β11 = 2.91, β22 = 0.3, β12 = β21 = 1.17. The value of k after lockdown 
varied from 0.1 to 0.3. The estimates of the coefficients βij for some 

Fig. 6. The final size of susceptible classes for different values of k (left). The upper curve shows the total number of susceptible, the middle curve corresponds to 
S2(t) and the lower curve to S1(t). The maximal number of infected individuals for different values of k (right). The upper curve shows the total number of infected 
(symptomatic plus asymptomatic), the middle curve corresponds to the second sub-population and the lower curve to first sub-population. The values of the co
efficients βij are as follows: β11 = 4, β22 = 1, β12 = β21 = 2.5. The values of other parameters are given in Table 4 in the appendix. 

Fig. 7. Numerical simulations of epidemic progression in Germany with system (3.1)-(3.13). The values of the coefficients βij are as follows: β11 = 3.95, β22 = 1.05,
β12 = β21 = 2.5 (see the explanation in the text). The values of other parameters are given in the appendix. The values of k: 1 in February-March 2020 (before 
lockdown), 0 in April-May (lockdown), 0.1 in June-August (after lockdown), 0.1 in September-November (left) and 0.2 in September-November (right). Reprinted 
from Sharma et al. (2020) with permission. 
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European countries are presented in Sharma et al. (2020). The values 
around β11 = 4 and β22 = 1 are quite specific, and we used them in the 
previous sections of this work. The value of k after the first lockdown 
usually changes between 0.1 and 0.3. We will use these characteristic 
values of parameters in the next subsection in order to study the influ
ence of vaccination on the epidemic progression. 

4.2. Vaccination 

We proceed to the effect of vaccination on the epidemic progression. 
Similar to the modelling approach considered in Section 2, we apply 
vaccination at some time t = t0 and model it by decreasing the number 
of susceptible individuals: 

S1(t0 + 0) = S1(t0 − 0) − κV , S2(t0 + 0) = S2(t0 − 0) − (1 − κ)V,

while all other classes do not change. Here κ is the proportion of all 
vaccinated individuals V in the first sub-population and (1 − κ) in the 
second one. 

Figs. 9 and 10 show the influence of the number of vaccinated in
dividuals and of their distribution among the two sub-population on the 
total and maximum number of infected individuals. The total number of 
infected individuals in the first sub-population is determined as IT

1 =

N1 − Sf
1 − κV and in the second sub-population IT

2 = N2 − Sf
2 − (1 − κ)V, 

where Sf
j , j = 1, 2 are the final numbers of susceptible individuals, Sf

j =

Sj(tf ), j = 1, 2 where tf is time at which Ia1 (t)+ Ia2 (t)+ Is1 (t)+ Is2 (t) < 1. 
The maximal current number of infected individuals in each sub-class 
are defined as the maximum of the function Ii

m(t) = Isj (t)+ Iaj (t), j =

1,2. 
The result of the vaccination strongly depends on its distribution 

between the two sub-populations. If vaccination is applied to the first 
sub-population (κ = 1), it decreases the total number of infected in
dividuals much stronger than if it is applied to the second sub- 
population (κ = 0) (Fig. 9). In this example, k = 0.2 and N1 = 0.2N. 
The percentage of vaccinated individuals is measured with respect to N1. 
So, 30% of vaccination in HT class correspond to 6% of the total pop
ulation N. In this case, the total number of infected individuals at the end 
of epidemic decreases 6 times if the vaccination is applied to the first 
sub-population, compared to the same number of vaccination (6% of 
total population) is applied to the second sub-population. This striking 
difference shows that in the first case vaccination acts to stop epidemic 
progression while in the second case it only protects vaccinated in
dividuals from infection. This difference is even more essential for the 
current maximal number of infected individuals (Fig. 10). 

Table 4 
Best fitted values for the parameters of the full model for Germany (Sharma 
et al., 2020).  

Parameter Best fit values Best fit values Best fit values  
for 1st 30 days for next 12 days upto 95th day  
(95%CI) (95%CI) (95%CI)  
(Sensitivity Index) (Sensitivity Index) (Sensitivity Index) 

β  3.98 (3.92-4.04)(1) 1.77 (1.74-1.79)(1) 1.05 (1.04-1.06)(1) 
p1  0.177 (0.175-0.179) 

(0.2383) 
0.16 (0.158-0.162) 
(0.2204) 

0.34 (0.336-0.344) 
(0.5099) 

p2  0.3 (0.296-0.304) 
(0.4039) 

0.3 (0.296-0.304) 
(0.4133) 

0.05 (0.049-0.051) 
(0.0914) 

p3  0.05 (0.049-0.051) 
(0.0048) 

0.05 (0.049-0.051) 
(0.0049) 

0.05 (0.049-0.051) 
(0.0053) 

p4  0.05 (0.049-0.051) 
(0.0192) 

0.05 (0.049-0.051) 
(0.0196) 

0.05 (0.049-0.051) 
(0.0213) 

δ  1 (0.987-1.013) 
(-0.4039) 

1 (0.987-1.013) 
(-0.4133) 

0.82 (0.811-0.829) 
(-0.0914) 

σ  0.1 (0.099-0.101) 
(0.3314) 

0.1 (0.099-0.101) 
(0.3418) 

0.1 (0.099-0.101) 
(0.342) 

η  0.9 (0.889-0.911) 
(-0.2383) 

0.9 (0.889-0.911) 
(-0.2204) 

0.9 (0.889-0.911) 
(-0.5099) 

ρ1  0.1 (0.099-0.101) 
(-0.0873) 

0.1 (0.099-0.101) 
(-0.0893) 

0.1 (0.099-0.101) 
(-0.0972) 

ρ2  0.07 (-0.0144) 0.07 (-0.0148) 0.07 (-0.0161) 
ζ1  0.07 (-0.0067) 0.07 (-0.0069) 0.07 (-0.0075) 
ζ2  0.1 (-0.0873) 0.1 (-0.0893) 0.1 (-0.0972) 
ζ3  0.14 (-0.0715) 0.14 (-0.0732) 0.14 (-0.0796) 
ξ1  0.14 (-0.00047) 0.14 (-0.00048) 0.14 (-0.00052) 
ξ2  0.1 (0.099-0.101) 

(-0.0043) 
0.1 (0.099-0.101) 
(-0.0044) 

0.1 (0.099-0.101) 
(-0.0048) 

ν  0.05 (-0.0103) 0.05 (-0.0105) 0.05 (-0.0115) 
μ  0.28 (0.277-0.283) 

( − − )  
0.28 (0.277-0.283) 
( − − )  

0.28 (0.277-0.283) 
( − − )   

Fig. 8. Numerical simulations of epidemic progression in Israel with system (3.1)-(3.13). The values of the coefficients βij are as follows: β11 = 2.91,β22 = 0.3,β12 =

β21 = 1.17. The values of other parameters are given in the appendix. The values of k after lockdown changes from 0.1 to 0.3. 
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5. Discussion 

5.1. Actual stage and epidemic waves 

At the end of the first year of the Covid-19 epidemic, some of its 
properties are already sufficiently well understood. Among them, it is 
now clear that the epidemic progression obeys the usual epidemiological 
laws, and it can be described by conventional epidemiological models. 
There is a large body of research devoted to the description of the first 
stage of epidemic with such models, to the determination of the basic 
reproduction number and to related questions, basically with ODE 
models (see Kochanczyk et al., 2020a and the references therein) but 
also with individual based models (Bouchnita and Jebrane, 2020). 

Another important observation is that, due to relatively high mor
tality rate and proportion of severe cases, the epidemic cannot be left to 
follow its natural route to collective immunity and extinction. National 
health systems become rapidly saturated and fail to treat not only 
coronavirus patients but the whole population. Therefore, the only 
available method up to now consists in the introduction of the measures 
of social distancing, confinement, wearing mask and even strict lock
down (Gosce et al., 2020). 

On the other hand, these measures impose a heavy burden on the 
economy, and they are relaxed as soon as the epidemiological situation 
improves. Some time later, the epidemic progression restarts, and it 
becomes necessary to introduce these measures again. We now observe 
the next wave of epidemic spread in different countries, and they will 

certainly continue untill the vaccination will stop them. These oscilla
tions in the epidemic progression can be described by the simple delay 
differential equation 

dI
dt

= β(Id(t − τ)) S
N

I(t) − σI(t) (5.1)  

for the number of infected individuals I assuming that the number of 
susceptible individuals S is constant in the beginning of epidemic and 
β(Id) is a decreasing function of the number of new daily cases Id taken 
with some time delay. This function describes the measures of social 
distancing depending on the epidemiological situation. Since the num
ber of new daily cases is usually taken proportional to the product SI, we 
obtain a closed equation with respect to I(t). During further epidemic 
progression, when S cannot be considered as constant, the combination 
of Eq. (5.1) with the other equations of the epidemiological models will 
describe the interaction of this oscillatory dynamics with collective 
immunity. Let us note that Eq. (5.1) is a particular case of a more general 
information-related SIR model (d’Onofrio and Manfredi, 2009; 2020). 

5.2. Further epidemic progression depends on the structure of the 
population 

At the actual stage of epidemic progression, serological tests in some 
countries show that there are of the order of 10% of population with 
antibodies (Hallal et al., 2020; Vu et al., 2020). We are yet far from the 
collective immunity but we need already to take into account the 

Fig. 9. Total number of infected individuals at the end of epidemic as a function of the number vaccinated individuals applied only to the first sub-population (κ = 1, 
left figure) or only to the second sub-population (κ = 0, right figure). The percentage of vaccinated individuals is counted with respect to N1 in both cases. The lower 
curve shows the total number on infected individuals in the first sub-population, the middle curve in the second sub-population, and the upper curve their sum. 

Fig. 10. Maximal current number of infected individuals as a function of the number vaccinated individuals applied only to the first sub-population (κ = 1, left 
figure) or only to the second sub-population (κ = 0, right figure). The percentage of vaccinated individuals is counted with respect to N1 in both cases. The lower 
curve shows the maximal number on infected individuals in the first sub-population, the middle curve in the second sub-population, and the upper curve their sum. 

V. Volpert et al.                                                                                                                                                                                                                                 



Ecological Complexity 47 (2021) 100940

11

variation of S. Moreover, vaccination changes the number of susceptible 
and, consequently, will influence the pattern of epidemic progression. 

In the beginning of epidemic, observed exponential growth of the 
number of infected individuals can be described for any population 
structure (Aguiar et al., 2020; Giordano et al., 2020; Kucharski et al., 
2020; Yuan et al., 2020). The heterogeneity of the population becomes 
important at the later stages of the epidemic development when it de
viates from the exponential growth and approaches the stage of collec
tive immunity and when it decays approaching the final time, defined as 
time when the number of infected individuals becomes less than 1. 

We study the influence of the heterogeneity of the population with 
the model problem in Section 2. This relatively simple model allows us 
to determine the final size of epidemic, the total and the maximal cur
rent number of infected individuals. The latter is particularly important 
for the estimation of available hospitals beds. The main conclusion here 
is that the data on the initial epidemic stage are now sufficient to predict 
its further progression. In the case of the homogeneous population, 
conventional SIR model allows the determination of the final size of 
epidemic and of the maximal current number of infected individuals 
solely on the basis of the basic reproduction number, that is, on the basis 
of the initial growth rate. However, this is not the case for the hetero
geneous population any more Dolbeault and Turinici (2020). With the 
same initial growth rate, the final size of epidemic and the maximal 
current number of infected individuals strongly depend on the structure 
of the heterogeneous population. Moreover, the total and maximal 
numbers of infected individuals can change several times for realistic 
values of parameters determining the distribution of population into two 
groups. 

5.3. How to estimate the structure of the heterogeneous population 

Thus, we come to the question about the estimation of the structure 
of a heterogeneous population. In the context of COVID-19, it is needless 
to mention that the number of reasonable grouping seems to be greater 
than two but for the simplicity of mathematical modelling we restricted 
oursleves to HT and LT classes only. We use here the data on the COVID- 
19 epidemic for different countries. The main idea of our approach is to 
present the population as a combination of two groups, with high and 
low disease transmission potentials. The first group is related to the 
period before lockdown without measures of social distancing and some 
other control measures, and the second group to the period during 
lockdown when these measures were strict. In a simplified representa
tion, these two groups can be identified by two factors: a) the number of 
interactions with other individuals, b) respect of the measures of social 
distancing (masks, sanitizers, and so on). For example, people who have 
their normal (as before lockdown) average interaction belong to the HT 
group, those who have reduced interaction (as during lockdown) belong 
to the LT group. Certainly, this is a simplified representation of the 
population because each group is heterogeneous itself, and some in
dividuals can change their groups in different time periods. Further
more, we approximate a gradual distribution of interactions by a binary 
function. However, these simplifications allow us to obtain tractable 
analytical results and give a simple description of the population char
acterized by a single parameter k defined as a proportion of the HT group 
to the whole population. 

The population consisting of two groups is characterized by four 
parameters βij, i, j = 1,2 describing the intensity of disease transmission 
in the groups SiIj, i, j = 1, 2. The coefficient β11 for the disease trans
mission inside the HT group is obtained by fitting the data before 
lockdown. The coefficient β22 for the disease transmission inside the LT 
group is obtained by fitting the data during lockdown. However, the 
cross-group coefficients β12 and β21 cannot be determined from the data. 
We impose the assumption that β12 = β21 = (β11 + β22) /2. The justi
fication of this assumption is based on the physical example of two 
groups of particles moving with different speeds, v1 and v2. The number 
of their collisions is proportional to the average speed (v1 + v2)/2. We 

are aware that this representation of the population is too simplified, 
and further analysis of these coefficients is needed. 

Let us note that in the model problem (2.1)-(2.4), only parameters βij 
are unknown, while σj can be estimated from the data on disease 
duration. Therefore, assuming that the population is homogeneous 
before lockdown, that is all βij are equal to each other, we have only one 
parameter β11 to determine by fitting the data. Similarly, a single 
parameter β22 should be determined from the data during the lockdown, 
and the single parameter k from the data after lockdown. A similar sit
uation occurs for a more complete model considered in Sections 3 and 4. 
If we consider more detailed models with different sub-classes inside HT 
and LT groups and the corresponding contact matrices, then there are 
more parameters βij, and they cannot be uniquely determined from the 
data. 

5.4. The influence of heterogeneity on vaccination 

Knowing the structure of the population, we can investigate how its 
heterogeneity influences the results of vaccination. Vaccination is 
modeled as a decrease of the number of susceptible individuals. We 
assume here that vaccinated individuals cannot become infected, that is, 
that vaccination is fully efficient. The results of the vaccination strongly 
differ depending on whether it is applied to the HT group or to the LT 
group. In the first case, a relatively small part of vaccinated individuals 
(5% of the total population) can reduced several times the total number 
of infected individuals at the end of epidemic, and even more, the 
maximal current number of infected individuals. Therefore, vaccination 
of the HT group strongly contributes to stop the epidemic in case of 
limited number of available doses of vaccine. Vaccination of the second 
group has much weaker influence on the epidemic progression. It is 
basically reduced to the protection of vaccinated individuals from 
infection. These results can be qualitatively expected but we need to 
determine first the structure of the population in order to give quanti
tative analysis of the results of vaccination. Future directions of this 
work will include vaccination taking into account age structure and 
comorbidities in order to reduce the death toll. 

Let us also note that vaccination increases the final time of epidemic. 
In the case of vaccination of the HT group with 6% of vaccinated in
dividuals of the total population and k = 0.2, the final time of epidemic 
increases almost 6 times in comparison with the case without vaccina
tion. More complete results of vaccination are presented in Tables 1-3. 
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Appendix A 

The values of parameters used in the simulations presented in Fig. 7 
are given in Table 4. 
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