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Endogenous rhythms influence 
musicians’ and non‑musicians’ 
interpersonal synchrony
Pauline Tranchant, Eléonore Scholler & Caroline Palmer*

Individuals display considerable rate differences in the spontaneous production of rhythmic behaviors 
(such as speech, gait, dance). Temporal precision in rhythmic behavior tends to be highest at 
individuals’ spontaneous production rates; musically trained partners with similar spontaneous rates 
show increased synchrony in joint tasks, consistent with predictions based on intrinsic frequencies 
of coupled oscillators. We address whether partner-specific influences of intrinsic frequencies 
are evidenced in musically trained and untrained individuals who tapped a familiar melody at a 
spontaneous (uncued) rate individually. Each individual then synchronized with a partner from the 
same musicianship group at an initially cued rate that matched the partners’ spontaneous rates. 
Musically trained partners showed greater synchrony in joint tapping than musically untrained 
partners. Asynchrony increased in both groups as the partners’ difference in individual spontaneous 
rates increased, with greater impact for musically untrained pairs. Recurrence quantification analysis 
confirmed that musically untrained individuals demonstrated greater determinism (less flexibility) in 
their tapping than musically trained individuals. Furthermore, individuals with greater determinism 
in solo performances demonstrated reduced synchrony in joint performances. These findings suggest 
that musicians’ increased temporal flexibility is associated with decreased endogenous constraints on 
production rate and greater interpersonal synchrony in musical tasks.

Humans have a refined capacity to synchronize their actions with auditory rhythmic signals. Interpersonal syn-
chrony is a special case of synchronization that refers to temporal coordination between individuals. Interper-
sonal synchrony is crucial for many social contexts such as dance, team sports, and conversational speech. Greater 
synchrony between individuals is associated with increased affiliation between partners1,2 and more cooperative 
behaviour3–5. Music performance is an especially precise form of interpersonal coordination. Performers must 
adapt their production of tone sequences based on auditory information from themselves and their partners 
to achieve synchrony6,7. Previous research showed that endogenous rhythms constrain this process: Greater 
synchrony between partners was predicted by smaller differences in their spontaneous production rates8,9. The 
relationship between interpersonal synchrony and spontaneous rates also extends to larger groups performing 
a rhythmic task: Greater synchronization in individuals’ hand movements was observed in seven-person groups 
among individuals whose spontaneous movement rates were similar10. Spontaneous rates of rhythmic actions 
in locomotion tasks (walking, running) in several species correspond to rates that require minimum energy 
expenditure, reflecting a state of optimal efficiency11,12. Consistent differences in human spontaneous rates are 
evidenced in a variety of rhythmic behaviors including speech13,14, hand clapping15, and finger tapping16–18. The 
relationship between interpersonal synchrony and spontaneous rates has been measured primarily in individuals 
with significant behavioral expertise in the measured tasks. We address whether musically untrained individuals 
show reduced synchrony in a novel musical task when they differ in their spontaneous production rates.

Constraints of spontaneous rates on interpersonal synchrony have a natural explanation in a nonlinear 
dynamical systems theory of internal timing and movement synchronization19. Spontaneous production rates are 
thought to reflect the intrinsic or natural frequency of an oscillator acting as an attractor toward which a system 
will converge over time20,21 and whose signature can be captured at a neural level22. Synchronization between 
interacting individuals has been modelled by the coupling of oscillators that adapt in frequency and relative 
phase23–25. Oscillators with similar intrinsic frequencies will be faster to adjust and more strongly coupled, result-
ing in higher synchronization accuracy. We test this hypothesis by comparing partners’ tapping synchronization 
in a joint musical task with their intrinsic frequencies as measured by their spontaneous rates in a solo task.

OPEN

Department of Psychology, McGill University, 1205 Dr Penfield Ave, Montreal, QC H3A 1B1, Canada. *email: 
Caroline.palmer@mcgill.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16686-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12973  | https://doi.org/10.1038/s41598-022-16686-2

www.nature.com/scientificreports/

Musical training also impacts interpersonal synchrony. Individuals who received musical training show higher 
synchronization accuracy to external auditory rhythms than do untrained individuals26–29. Musicians also show 
lower temporal variability than non-musicians when they produce rhythmic sequences in the absence of an 
external cue30,31. Musically trained individuals adapt their synchronization performance more quickly in response 
to changing auditory rates32,33. Finally, musical training enhances individuals’ flexibility to produce sequences at 
rates other than the spontaneous rate31,34, indicating a reduced attractor strength of intrinsic frequencies during 
adaptation to external auditory signals. We test here the combined influence of spontaneous rates and musical 
training on partners’ asynchronies in a music tapping task that permits non-musicians to produce music without 
any required training.

Two different tasks have measured natural movement rates for rhythmic sequences in previous studies: 
Spontaneous Motor Tempo (SMT) and Spontaneous Production Rate (SPR). The SMT task consists of producing 
temporally regular tapping with one finger of the dominant hand in the absence of auditory feedback, whereas 
the SPR task consists of producing simple melodies (with one or more fingers) in the presence of auditory feed-
back. SMT has been used in numerous studies that investigate human timing, whereas SPR has been used with 
music-evoking movement. Age, physiological arousal, and time of day have been shown to influence SMT16,35,36, 
factors that show reduced influence on SPR31,37. A novel musical task was recently developed to measure SPR in 
both musicians and non-musicians31, making possible the measurement of SPR in untrained individuals. That 
task showed that non-musicians were more rigid and less flexible in their synchronization of music-generating 
finger taps with a metronome, as evidenced by recurring timing patterns measured with Recurrence Quanti-
fication Analysis (RQA). We extend this analysis to test interpersonal synchrony between partners (musician 
pairs and non-musician pairs) who synchronize with their partner; specifically, we test the hypothesis that RQA 
techniques should indicate greater rigidity in non-musicians’ interpersonal timing.

Pairs of musically trained participants (n = 14 pairs) and pairs of untrained participants (n = 14 pairs) partici-
pated in the experiment. Spontaneous rate measures of participants’ SMT and SPR were first collected individu-
ally (Solo tasks), and then Duet measures of synchrony were collected from each pair while they tapped melodies 
together at an initially cued rate that corresponded to the spontaneous rates (SPR) of each partner. Their taps 
were recorded by a force sensor that allowed listeners with or without musical training to produce melodies by 
simply tapping on the sensor (with one finger) to hear the next pitch in the melody31. We hypothesized that SPR 
and SMT reflect the frequencies of different intrinsic oscillations, with SMT measuring a motor (finger) frequency 
and SPR measuring an auditory-motor coupling frequency. Based on previous research with musicians38, we 
expected that the SPR difference between non-musician partners would predict synchronization accuracy and 
leader/follower patterns: Lower accuracy (larger magnitude of asynchronies) should result for both musician 
and nonmusician pairs whose Solo SPRs differ greatly, with the faster-SPR participant in each pair tapping ahead 
of their partner. Finally, we predicted that musically untrained pairs should exhibit larger asynchronies, larger 
temporal variability, and increased determinism (rigidity) in timing their joint synchronization, consistent with 
lower temporal flexibility, compared with musically trained pairs.

Results
Solo tasks: SPR and SMT measures are unrelated.  Figure 1 shows each participant’s mean tapping 
rates in the SPR and SMT tasks, ordered in both plots from fastest to slowest participant in the SPR task. A wide 
range of SPR values were obtained for musician and non-musician groups; the SMT values also showed wide 
inter-individual variation. There was no correlation between the SPR and SMT values across participants (r 
(54) = − 0.1625, p = 0.23) or within groups (Musicians: r (26) = − 0.09, p = 0.63; Non-musicians: r (26) = − 0.29, 
p = 0.13). Furthermore, SMT and SPR values did not differ by musical training or interact with task; overall, par-
ticipants were faster in the SPR task (M = 434, SE = 13.8) than in the SMT task (M = 738, SE = 40), F(1, 54) = 44.99, 
p < 0.001, η2p  = 0.45.

The coefficient of variation which measures temporal variability was compared across SPR and SMT tasks. The 
CV was correlated across the SMT and SPR tasks for all participants (r (54) = 0.50, p < 0.0001) as well as within 
groups (non-musician group, r (26) = 0.40, p = 0.04; musicians, r (26) = 0.36, p = 0.06). The musician group showed 
smaller CVs (M = 0.045, SE = 0.0017) than the non-musician group (M = 0.064, SE = 0.0033), F (1, 54) = 18.57, 
p < 0.001, η2p = 0.26). Thus, temporal variability but not mean rate was correlated across SPR and SMT tasks.

Duet tasks: duet asynchronies are influenced by musical training and partners’ spontaneous 
rates.  The partners’ mean absolute asynchronies in the Duet synchronization task were compared across 
groups. As shown in Fig. 2, musicians synchronized better with their partners (median = 23.94) than did non-
musicians (median = 33.68, U = 150, p < 0.01). Group differences in temporal variability were also observed in the 
Duet condition; the CV was smaller for musicians (M = 0.049, SE = 0.0022) than for non-musicians (M = 0.064, 
SE = 0.0026, F(1, 54) = 19.66, p < 0.0001, η2p = 0.27). Finally, each participant’s CV in Solo and Duet conditions 
were correlated across all participants (r (54) = 0.6345, p < 0.001) as well as within groups (Non-musicians: r 
(26) = 0.55, p < 0.01; Musicians, r(26) = 0.63, p < 0.001), suggesting that temporal variability remained stable 
across Solo and Duet tasks.

We test the dynamical systems prediction that each Duet pair’s signed asynchronies arose from the partners’ 
SPR differences. Figure 3 shows the mean signed asynchronies (cued partner’s onsets–uncued partners’ onsets) 
correlated with the partner’s Solo SPR Difference (cued partner’s rate minus uncued partner’s rate), separately for 
Condition A (metronome = PartnerA’s Solo rate) and Condition B (metronome = PartnerB’s Solo rate). Significant 
positive correlations were observed for all groups and all conditions: Condition A (r (12) = 0.79, p < 0.001 in non-
musicians; r(12) = 0.68, p < 0.01 in musicians; Condition B (r(12) = 0.70, p < 0.01 in non-musicians; r(12) = 0.56, 
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p < 0.05 in musicians). The larger the difference between partners’ SPRs, the larger their signed asynchronies; the 
partner with the faster Solo SPR generally anticipated the partner with the slower Solo SPR.

The regression slopes in Fig. 3 are larger (steeper) for non-musicians than for musicians, suggesting stronger 
constraints of endogenous rates on non-musician partners’ synchronization. To test the slope differences, a mul-
tiple regression analysis predicted the partners’ Duet asynchronies from the SPR differences, group membership 
(Non-musician coded 0; Musician coded 1), and the interaction of SPR differences with group membership. 
That regression was significant for both Condition A (R (24) = 0.77, p = 0.0001) and Condition B (R (24) = 0.65, 
p = 0.0035). The coefficient associated with SPR differences was again significant (Condition A: unstandardized 
coefficient = 0.1568, p = 0.00009; Condition B: unstandardized coefficient = 0.1620, p = 0.0016). Most important, 
the interaction term was significant for Condition A (unstandardized coefficient = − 0.0937, p = 0.0267) and 
showed a similar pattern in Condition B that did not reach significance (unstandardized coefficient = − 0.0655, 
p = 0.3105), indicating that the Non-musician slope was steeper than the Musician slope toward the beginning 
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Figure 1.   Mean Intertap interval in Solo production rate (SPR) task (top) and SMT task (bottom). Participants 
ordered left to right by increasing SPR value (top and bottom). Each bar represents one participant. Asterisk 
indicates an SMT value more than 3 standard deviations above the grand mean (= 2102 ms).
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of the study session, consistent with the non-musicians’ less flexible adjustment to the cued metronome rate. 
Importantly, partners’ SMT differences did not predict duet asynchronies; no correlations between SMT differ-
ences and mean duet asynchronies reached significance (all p’s > 0.3).

Recurrence quantification differs by musical training in solo performances.  Figure  4 shows 
recurrence plots for the intertap intervals from one Solo performance trial by a non-musician (top) and musi-
cian (bottom). The presence of black dots indicates a higher recurrence rate which was found for non-musicians 
(M = 0.1044, SD = 0.0958) than for musicians (M = 0.0529, SD = 0.0482), U = 562.5, p < 0.01). Thus, non-musi-
cians exhibited higher patterning in the timing of their Solo tapping.

Figure 5 shows plots of sample Solo performance trials that demonstrate high determinism (non-musician; 
top graph) and low determinism (musician; bottom graph), indicated by the presence of black dots forming 
diagonal lines that denote similar behavior over consecutive ITIs. The non-musicians’ ITIs exhibited higher 
determinism (M = 0.158, SD = 0.038) than did musicians (M = 0.1316, SD = 0.0268), U = 581, p < 0.001. Figure 5 
(top) also shows the influence of the musical structure on the non-musician’s timing profile, captured by the 
distance between the diagonal lines. The participant’s diagonal lines were separated by distances of exactly 8 
beats or taps, corresponding to the length of a musical subphrase (two metrical bars) in the simple melody 
performed. Thus, the RQA analyses illustrate constraints imposed by the melodic structure on the dynamics of 
nonmusicians’ tapping behavior.

Finally, we compared the temporal variability (CV) of the Solo performance ITIs with the determinism 
measures for the same individuals. As shown in Fig. 6, determinism increased as temporal variability increased 
for non-musicians (r (26) = 0.74, p < 0.0001) but not for musicians (r (26) = − 0.003, p = 0.99). Thus, the non-musi-
cians’ overall increased variability corresponded to greater predictability or rigidity, rather than simply increased 
noise. There was no relationship between the CV and recurrence rate (unadjusted) across groups (r (54) = 0.1385, 
p = 0.31) or within groups (non-musicians: r (26) = 0.014, p = 0.94; musicians: r (26) = 0.079, p = 0.69).

Recurrence quantification differs by musical training in duet performances.  Next, we examine 
recurrence patterns in partners’ asynchronies in the Joint performances. RQA was computed on the signed asyn-
chrony time series (asynchrony defined as Partner X tap onset − Partner Y tap onset, where the cued rate = Part-
ner X’s SPR). Figure 7 shows a sample trial of asynchronies and the corresponding recurrence plot from a non-
musician pair (top) and a musician pair (bottom). The mean recurrence rate was higher overall for non-musicians 
(M = 0.1236, SD = 0.0459; Median = 0.11) than for musicians (M = 0.0997, SD = 0.0268; Median = 0.09), U = 134, 
p = 0.049, indicating that the non-musicians’ asynchronies were more patterned than those of the musicians as 
they synchronized with a partner. Determinism values did not differ between the groups, U = 106, p = 0.14.

We compared the RQA measures of Duet asynchrony with behavioral variability by correlating the recurrence 
rates of each pair’s asynchronies with the standard deviation of that pair’s Duet asynchronies. The recurrence 
rates of the non-musicians’ asynchronies were significantly correlated with the SD of asynchronies for both 
conditions (PartnerA cue: r (12) = 0.6871, p = 0.0066; PartnerB cue: r (12) = 0.612, p = 0.02). The correlations 
were not significant for the musicians (PartnerA cue: r (12) = 0.2097, p = 0.4916; PartnerB cue, r (12) = 0.2101, 
p = 0.4906). Determinism values did not correlate with standard deviations of the joint asynchronies for either 
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group. Similar to the Solo performance timing, non-musicians showed increased temporal variability in Duet 
asynchronies that coincided with increased (non-random) patterning of their asynchronies.

Duet synchrony is predicted by partners’ solo performance recurrence patterns.  Finally, the 
partners’ synchronization in the Duet performances was predicted from the recurrence patterns in each part-
ner’s intertap intervals in Solo performances. Consistent with the directionality of the faster/slower partners’ 
Solo rate influences on the asynchronies (Fig. 3), each pair of partners was coded in terms of which partner had 
the faster/slower Solo rate. A multiple regression analysis predicting the partners’ Duet absolute asynchronies 
from each partner’s Solo recurrence indicated a significant overall fit, R (25) = 0.5020, p = 0.02. Partners with 
higher recurrence patterning (less flexibility) in their Solo timing patterns had greater difficulty synchronizing 
with their partner in Joint performances. The partner with the faster SPR tended to exhibit higher recurrence 
in their intertap intervals that contributed most to the pair’s asynchrony (faster partner: standardized coeffi-
cient = 0.4761, p = 0.01; slower partner: standardized coefficient = 0.1644, p = 0.35). The determinism values from 
the partners’ Solo performances (when recurrence rate was fixed) did not predict partners’ Duet asynchronies.
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Discussion
We examined intrinsic constraints that influence both musically trained and untrained individuals’ auditory 
synchrony as they produced musical sequences. Musicians and non-musicians performed an auditory-motor 
synchronization paradigm that permitted non-musicians to produce music without any required training. Inter-
personal synchrony measures from partners who tapped a melody together showed significant constraints of the 
partners’ spontaneous production rates: Greater synchrony between partners was predicted by smaller differences 
in their individual spontaneous performance rates. The fact that both participant groups showed constraints 
of spontaneous rates on interpersonal synchrony supports the view that spontaneous rates are not learned but 
instead are intrinsic to rhythmic movement32,39. Spontaneous rates of rhythmic actions often correspond to 
movements that require minimum energy expenditure, reflecting a state of optimal efficiency12,40,41. Musically 
untrained adults showed greater constraints of these endogenous rhythms on interpersonal coordination than 
did trained adults, consistent with findings that flexibility increases as individuals achieve task expertise31,34,42. 
Nonlinear analyses of the intertap intervals (Solo) and asynchronies (Duet) confirmed greater recurrence (pre-
dictability) in non-musicians’ tapping, consistent with a multi-dimensional phase space in which movement 
trajectories change as individuals acquire auditory-motor expertise or additional sensorimotor information43.

Spontaneous (uncued) production rates have a natural explanation in nonlinear dynamical systems theory 
that an intrinsic frequency of an oscillator acts as an attractor toward which the system’s behavior will converge 
over time20,21. Synchronization between interacting individuals has been modelled with the coupling of oscil-
lators that adapt in frequency and phase23–25. Oscillators with similar intrinsic frequencies are faster to adapt 
and more strongly coupled, resulting in higher synchronization accuracy, a theoretical prediction supported 
by analyses of partners’ tapping synchronization accuracy as a function of the difference in the partners’ spon-
taneous rates of solo productions. Visuomotor coordination tasks have shown that, as the difference in rate 
between an individual’s oscillatory movements and a rhythmically oscillating stimulus decreases, individuals are 
more likely to spontaneously entrain their movements to the stimulus rate44,45. Temporal variability measures in 
visuomotor coordination tasks have been linked to motor flexibility: Individuals who exhibited some temporal 
variability were more likely to unintentionally synchronize their movements with a wider range of stimulus 
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rates46, consistent with findings in auditory-motor coordination tasks that the same individuals who show better 
synchronization tend to show enhanced flexibility across movement rates31.

Musical training modulated the strength with which the spontaneous rates influence interpersonal synchrony: 
Individuals with musical training showed higher synchronization accuracy to their partner’s intrinsic frequency 
than did untrained individuals26–29. Musicians also showed lower temporal variability than non-musicians when 
producing rhythmic sequences in absence of an external cue, also consistent with previous findings30,31. This is 
the first study to tie the non-musicians’ increased recurrence patterning to the amount of asynchrony, suggesting 
that temporal variability of non-musicians is not simply motor noise but instead reflects repetitive patterns that 
reduce one’s flexibility and adaptation when synchronizing with a partner. The non-musicians’ deterministic 
recurrence analysis also revealed the musical structure of the melody task, based on the spacing between the 
diagonal lines (Fig. 6). Overall, the non-musicians’ tapping was more strongly patterned by the musical structure 
of the time series.

Spontaneous Motor Tempo, a common measure of motor timing in the absence of auditory feedback, did 
not predict performance in the interpersonal synchronization task. SMT also did not correspond to measures 
of SPR, which did predict performance in the synchronization task. Despite large individual differences in both 
SMT and SPR measures (Fig. 1), there was no correlation across the tasks for musically trained or untrained 
individuals. Furthermore, individual SMT measures did not predict Duet performance synchronization, whereas 
individual SPR measures did predict synchronization, consistent with previous findings with musicians9. Thus, 
individuals’ movement rates alone (in both SMT and SPR tasks) did not account for synchronization behavior. 
One explanation is that SMT provides less sensory feedback for error correction than SPR; timing in SPR tasks 
has shown evidence of auditory feedback-related error correction31. This explanation is consistent with current 
and previous findings that musically trained individuals exhibit less temporal variability than untrained indi-
viduals in rhythmic tasks47. SMT and SPR measures may be driven by different constraints; SMT measures are 
modulated by developmental changes18, whereas SPR measures may be modulated more by enhanced auditory 
exposure gained by musical training. The role of musical training in SMT has been documented with incon-
clusive or negative outcomes48,49, and until recently, SPR was only measured in musically trained individuals. 
The potential influence of different mechanisms in SMT and SPR is consistent with an interpretation that they 
reflect different intrinsic movement frequencies, one motoric in origin and the other related to auditory-motor 
coupling, a hypothesis for future investigation.

The study’s reliance on a one-finger tapping task that both musicians and non-musicians could perform is 
one limitation of the current study; extensions to more complex movement sequences are necessary. Another 
limitation is the inclusion of simple familiar melodies, which may not reveal the range of potential influence of 
sequence structure on the synchronization tasks32. For example, the distance between diagonal lines typical of 
high determinism or predictability (Fig. 6 top) may be influenced by the musical structure. Also important, the 
sampling of musically trained and untrained individuals does not address the full scale of auditory expertise that 
individuals obtain. This limitation prevents us from addressing the shift in temporal flexibility that is assumed to 
occur between the endpoints of the expertise scale, as individuals gain motor skills such as producing a melodic 
sequence with temporal regularity. Future designs may include a broader range of participants and melodies to 
track the development of synchronization mechanisms, as well as other novel measurements of rhythmic move-
ment that can be applied to individuals with and without specialized training50.

In sum, partners’ interpersonal synchrony in an auditory-motor task is related to each partner’s endogenous 
rhythms in individual sound production. Consistent with dynamical systems explanations of increased coupling 
between oscillators with similar frequencies, the timing of intertap intervals as well as asynchronies produced by 
musically untrained individuals demonstrated more rigidity and predictability than those of musically trained 
individuals. Both groups of individuals demonstrated constraints of their spontaneous production frequencies 
in the joint synchronization task, as exhibited by the successful prediction of joint synchronization from the 
recurrence measures of the partners’ solo performances. The increased temporal variability in non-musicians’ 
auditory-motor tapping is not simply noise but instead reflects rhythmic patterns that may be overcome with 
training, as motor and auditory systems become coupled. These novel findings point to two mechanisms driving 
musicians’ flexibility in timing tasks: first, a honed ability to use auditory feedback in temporal adaptation; and 
second, an ability to de-couple one’s movement timing from the intrinsic frequencies at which that movement is 
easiest to produce. These mechanisms can be addressed in future studies that compare performance on a wider 
variety of auditory rhythms.

Method
Participants.  Twenty-eight musically trained and 28 untrained adults (18–35 years old) participated. Sam-
ple size was estimated from Zamm et  al.8 findings which used a similar design (2 groups of 20 individuals 
each with repeated measures, treating pair as random variable) that yielded moderate to large effect sizes (par-
tial η2 = 0.25). Inclusion criteria were > 6 years of individual instruction on a musical instrument for musicians 
(M = 10.43 years), and <  = 2 years of instruction for nonmusicians (M = 0.42 years). Participants were randomly 
paired within group (musician/non-musician). All participants exhibited normal hearing (< 30 dB HL) for the 
stimulus frequency range (125–750 Hz), determined by a pure-tone audiometric screening, and had familiarity 
with the experimental melodies, evaluated by accurate humming of the melodies. Participants provided written 
consent and the study was conducted in accordance with the Declaration of Helsinki, the Canadian Tri-Council 
Policy Statement on Ethical Conduct for Research Involving Humans (TCPS2-2018). The study’s experimental 
protocols were approved by the local Research Ethics Board of McGill University (REB #1951018). Informed 
consent was obtained from each participant.
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Materials and equipment.  Two familiar melodies were used: Happy Birthday (in D Major) and Twinkle, 
Twinkle Little Star (in G Major, referred to as “Twinkle”). Happy Birthday served as a practice melody and Twin-
kle served in both practice and experimental trials, chosen for its primarily isochronous rhythmic structure. The 
two partners heard the melody in a different pitch range (one octave apart) for the entire study (for example, 
Partner A’s melody started on pitch G3 and Partner B’s on pitch G4) to differentiate their parts when they per-
formed together. The melody tones were sounded with a marimba timbre (Roland Studio Canvas GM2 sound 
bank; #030) and metronome tones with a woodblock percussion timbre (sound bank #206). A sine tone (sound 
bank #158) signaled the start of trials.

Participants tapped the melody on a force-sensitive resistor connected to an Arduino Uno device that sent 
MIDI timing signals to the computer running FTAP 2.1.07a51. Tones were generated by a Mobile Studio Canvas 
SD-50 and were heard over studio headphones at a comfortable listening level. Identical equipment was used 
for the two partners in all conditions. The two Arduino tapping devices were assigned to different MIDI chan-
nels and were recorded to FTAP on the same computer (synchronized) during the joint performances (see 
Supplemental Materials).

Tasks.  The study used a mixed design with two tasks (Solo and Duet) as within-subject factor and musical 
training as between-subject factor. Solo tasks included a spontaneous motor tempo (SMT) and a spontaneous 
production rate (SPR) task. During the SMT task, participants tapped at a comfortable, steady rate in the absence 
of any auditory feedback. During the SPR task, participants tapped the experimental melody at a comfortable, 
steady rate with auditory feedback. Performances from the SPR task were used to calculate each participant’s 
mean intertap interval for use as a cued rate in the Duet tasks. Solo tasks always occurred in the order SMT then 
SPR, to avoid auditory imagery carryover, and Solo tasks preceded Duet tasks. The Duet task was a synchroni-
zation-continuation task with two Cued Rate conditions. The initial metronome cue was set to Partner A’s Solo 
SPR rate in one condition and to Partner B’s Solo SPR in another condition; the order of cued rates was randomly 
determined. Members of each pair took turns with PartnerA/PartnerB roles.

Procedure.  Each partner completed the Solo tasks in separate testing rooms. First, participants completed 
the familiar melody assessment and an audiometry screening. Participants then completed the SMT task while 
seated at a table with the tapping pad (force sensing resistor). They were instructed to use the index finger of 
their dominant hand to tap at a comfortable, steady rate on the pad. One practice trial and three experimental 
trials were recorded.

Participants then performed the Solo SPR task with the practice melody (Happy Birthday). They were 
instructed to tap the melody at a comfortable steady rate, and that each time they produced a tap, the next 
tone of the melody would sound. Next, they performed the same task with the experimental melody (Twinkle) 
with the same instruction and were told to repeat the melody several times until they no longer heard auditory 
feedback, signaling the end of the trial after 3.5 melody repetitions (one repetition = 48 quarter-note beats). 
They performed a practice trial and three experimental trials. If a participant made gross timing errors (such as 
starting, restarting, or ending a trial at the wrong time), the trial was discarded and the participant performed 
another trial (approximately 8% of trials). The first three error-free experimental trials were used (up to six 
experimental trials were permitted). Participants then completed the musical background questionnaire while 
each participant’s mean Solo SPR value (mean InterTap Interval, ITI) was computed.

Participants then practiced synchronizing the melody with a metronome cue set to the mean of the two 
participants’ Solo SPR values; each participant was instructed to wait for 8 metronome beats and then to start 
synchronizing their taps with the metronome. Then the participants practiced a synchronization-continuation 
task in which they were instructed to listen to the first 8 metronome beats and to start synchronizing taps with 
the metronome, which turned off after 8 additional beats. Participants continued tapping the melody at the cued 
rate until no more auditory feedback was heard (after 3.5 melody repetitions), signaling the end of the trial.

Partners moved to the same testing room for the Duet task where they were seated facing each other over a 
screen that left the partners’ heads visible but occluded the partners’ bodies below the shoulders. Partners took 
turns tapping the experimental melody, synchronizing with a metronome set to the average Solo SPR of the pair, 
so that they became accustomed to the pitch range of each partner (one octave away from their part). Similar to 
Solo trials, Duet trials began with 8 metronome beats, followed by 8 metronome beats with which they synchro-
nized their taps, and then the metronome ended during the continuation phase while participants continued to 
tap the melody at the cued rate until the auditory feedback ended (after 3.5 melody repetitions). Partners then 
completed a practice synchronization trial while the metronome cue was set to PartnerA’s Solo SPR rate, and 
then a practice synchronization-continuation trial at the same rate. Partners then performed 3 experimental 
synchronization-continuation trials at PartnerA’s rate, each lasting 3.5 repetitions. If a trial contained timing 
errors, the trial was ended and a new trial was begun. After three experimental trials were recorded at PartnerA’s 
Solo SPR, the Duet procedure was repeated with the metronome cue set to Partner B’s Solo SPR until 1 practice 
trial and 3 experimental synchronization-continuation trials were obtained in each condition (total of 6 experi-
mental trials per pair). The experiment lasted about one hour and participants received a small remuneration.

Analysis.  The mean Spontaneous Motor Tempo (SMT) was calculated as the mean inter-tap-interval (ITI) 
of the first 30 taps, averaged across trials18. The mean Spontaneous Production Rate (SPR) was calculated as the 
mean ITI of the middle 2 repetitions of each trial, to capture trial positions of maximal stability in performance 
timing38,52, then averaged across trials. Half note ITIs were interpolated, resulting in 96 ITIs per Solo SPR trial. 
Outlier ITIs more than 3 standard deviations from the mean ITI across trials were discarded (less than 1% of 
total ITIs in SMT; 0.007% of musicians’ total ITIs and 1.44% of non-musicians’ ITIs). The coefficient of variation 
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(CV) was calculated for SMT and SPR trials as the standard deviation of ITIs divided by the mean ITI for 30 taps 
(taps 17–46 of the SPR task).

Synchronization in the Duet task was measured by the tap onset time of the partner whose SPR rate was cued 
minus the other partner’s tap onset time. A negative asynchrony means that the partner whose SPR served as the 
cued rate tapped earlier than their partner. Asynchrony outliers 3 standard deviations or more from the mean 
asynchrony were discarded (1.54% of asynchronies in musicians and 1.57% in non-musicians). Solo and Duet 
measures (ITIs and asynchronies) were analyzed with analyses of variance (ANOVA) tests of group differences 
(musician/non-musician) and task differences (SPR/SMT). Pearson correlation coefficients were computed to 
analyze comparisons between behavioral (ITI, asynchrony) and RQA measures (recurrence, determinism) in 
Solo and Duet tasks.

Recurrence Quantification Analyses (RQA) were performed on Solo (ITI) and Duet (asynchrony) meas-
ures. RQA is a non-linear time series analysis that uncovers recurring patterns and is especially useful for 
non-stationary measures31,53. RQA was applied to data from entire trials (without outlier removal) to maximize 
the times series length. RQA analyses of Solo performances included 126 ITIs (excluding the first 16 ITIs that 
included metronome beats and the last 2 ITIs) and Duet performances included 111 asynchronies (the same 
range as the Solo performances, excluding the first 14 asynchronies that included metronome beats and the 
last asynchrony). RQA metrics of recurrence rate (probability that a specific state will recur in the time series, 
indicated by points in the recurrence plot) and determinism (predictability of the behavioral pattern, captured 
by the proportion of recurrent points that form a continuous diagonal line) were analyzed. The RQA minimum 
length parameter was set to = 2 to incorporate all pattern lengths. The delay parameter, estimated from the first 
minimum in mutual information function, was set to = 2. The number of embedding dimensions, which was 
determined by values necessary for the false-nearest neighbor function to approach zero54, was set to 4 for Solo 
analyses and to 3 for Duet analyses. The radius was fixed to = 1 which yielded recurrence rates averaging around 
10%, consistent with recommended values for behavioral data54. Recurrence quantification analyses were based 
on the CRP Toolbox55,56. The nonlinear RQA metrics were analyzed with nonparametric tests of group differ-
ences (Mann–Whitney U).

Ethical approval.  Before the experiment, participants were provided with an information sheet that out-
lined the general purpose of the study and informed them that they could withdraw at any time without penalty. 
All methods were reviewed by the Ethics Research Board of McGill University and were in accordance with the 
Declaration of Helsinki.

Data availability
The datasets generated and analysed during the current study are available from the corresponding author in an 
anonymized format upon reasonable request.
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