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Abstract

In humans, several members of the CEACAM receptor family have been shown to interact

with intestinal pathogens in an inflammatory context. While CEACAMs have long been

thought to be only present in mammals, recent studies have identified ceacam genes in

other vertebrates, including teleosts. The function of these related genes remains however

largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook

the study of a putative member of the family, CEACAMz1, identified in Danio rerio.

Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular

protein containing eleven immunoglobulin domains but revealed no evident orthology with

human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization

experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first

expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the develop-

ing gills. This distribution remains constant until juvenile stage is reached, at which point

CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval

stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial fil-

aments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstruc-

tions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin

epidermis. These cells are embedded within the keratinocytes pavement and we unambigu-

ously identified them as proton-pump rich ionocytes (HR cells). As the expression of cea-

camz1 is turned on concomitantly to that of other known markers of HR cells, we propose

that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish

epidermis.
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Introduction

Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are cell-surface glyco-

proteins that belong to the immunoglobulin (Ig) superfamily [1,2]. They are part of the larger

CEA group of proteins which also contains pregnancy-specific glycoproteins (PSGs) [1–3].

CEACAMs are only found in higher eukaryotes. For a long time, they were believed to be

mammal-specific but more recent studies have identified orthologues in amphibians and tele-

osts, suggesting that these proteins are widespread among vertebrates [4,5]. CEACAM5, the

prototype of the family initially termed CEA, was discovered in 1965 by Gold and Freedman

in carcinomas from human colon, as well as in some digestive fetal tissues [6,7]. It was origi-

nally thought to be absent from adult normal tissues, therefore acting as a specific antigen for

tumor cells in humans, which led to the generic name for the whole CEA family. In the early

1970s, the discovery of both CEACAM5 and other members of the family in non-cancerous

tissues allowed to propose that CEACAM proteins have broader functions in the human body

besides their role as tumorigenic factors [8–11]. To date, twelve CEACAM genes, all clustered

on the q13.2 region of chromosome 19, have been identified in humans [2]. They encode

twelve distinct membrane-associated glycoproteins, several of which being expressed as multi-

ple isoforms (Fig 1) [12]. CEACAMs are mostly expressed on epithelial cells, as well as endo-

thelial and myeloid cells (granulocytes, monocytes) [2]. Tissue distribution varies from one

protein to the other but most CEACAMs are highly expressed in the gastrointestinal tract or in

the bone marrow [2,13]. CEACAM1, CEACAM5 and CEACAM6 have the broadest expres-

sion pattern and are present in various human tissues, including skin, lung, liver, kidney or

reproductive organs depending on the CEACAM protein considered [13–15].

The extracellular domain of all CEACAMs is composed of a single N-terminal Ig-domain

of variable type (Ig-V) followed by none or up to six constant Ig-domains of C2 type (Ig-C2)

[12,16]. It is anchored in the plasma membrane either through glycosylphosphatidylinositol

(GPI) or via a single-pass transmembrane helix followed by a short cytoplasmic tail containing

immunoreceptor tyrosine-based activation/inhibition motifs (ITAM/ITIM) (Fig 1) [12]. The

sole exceptions to this general description are CEACAM20, which only bears a partial Ig-V N-

terminal domain, and CEACAM16, a secreted protein which contains two Ig-V domains on

both its N- and C-termini [12,16]. All CEACAMs are heavily glycosylated, mainly on aspara-

gine residues, and the carbohydrate structures can constitute up to 60% of their total molecular

weight [17–19]. CEACAMs primary function resides in cell adhesion and intercellular com-

munication [20,21]. As their extracellular domain is exclusively composed of Ig domains,

CEACAMs tend to self-associate through homophilic interactions or to engage in heterophilic

contacts with other Ig-containing cell-surface proteins [21–23]. In the tumor microenviron-

ment, these properties are thought to shape the communication between cancer, stromal and

immune cells, thereby influencing numerous cellular processes during cancer progression

such as cell proliferation, motility, angiogenesis, metastasis or immune responses [2,16]. In

both normal and cancer tissues, intercellular contacts mediated by epithelial members of the

CEACAM family have also been implicated in apoptosis [24], cell migration [25,26], vascular

remodeling [27] and morphogenesis. Interestingly, a number of CEACAMs present in the

digestive tract are also used as anchoring points by several intestinal pathogens including path-

ogenic Escherichia coli [28,29], Moraxella catarrhalis [30,31], Haemophilus influenzae [31],

Helicobacter pylori [32] and several neisserial strains [33]. These interactions have been linked

to intestinal inflammation and have deleterious effects in patients suffering from inflammatory

bowel diseases [34]. Clearly, the presence of CEACAM molecules on the epithelium from vari-

ous organs, and their uniform composition with Ig-domains prompt to engage in protein-pro-

tein interactions, make them attractive platforms for extracellular microorganisms, and even
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more so for human pathogens. As CEACAM orthologues have been found in more than

twenty distinct vertebrate species representing various taxonomic classes [4,5], it is tempting

to speculate that this role as a platform for host-pathogen interactions may be conserved

among higher vertebrates. However, the function of these putative CEACAM orthologues has

not been studied so far in non-mammal species.

Zebrafish is a widely used animal model originally set up by developmental biologists and

geneticists. Over the last decades, it has emerged as a powerful tool to study human pathophys-

iology [35,36]. A a broad repertoire of disease models has been generated in this organism,

either through genetic manipulation or via exposure to causing agents, including infection

models for various human pathogens such as pathogenic E. coli [37], mycobacteria [38,39], sal-

monella [40] or Pseudomonas aeruginosa [41]. The close homology between zebrafish and

human innate/adaptive immune systems, as well as the classical advantages inherent to this

model (ease of manipulation, genetic amenability, fast generation and abundant progeny,

transparency of the larvae) make it a remarkable model to study immune responses elicited by

host-pathogen interactions [42]. Zebrafish therefore appears as an attractive alternative to

mouse models to deeper study the pathophysiological consequences of CEACAM-pathogen

Fig 1. Schematic representation of the domain organization of the 12 human CEACAM receptors and of zebrafish CEACAMz1. Immunoglobulin

domains composing the CEACAM ectodomains are displayed as oval spheres (in red for Ig-V domains; in light or dark grey for A-type or B-type Ig-C2

domains, respectively). Single-pass transmembrane helices are represented by blue, rounded rectangles. GPI anchors are shown in cyan. Cytoplasmic ITIM

(Immunoreceptor Tyrosine-based Inhibitory Motif) and ITAM-like (Immunoreceptor Tyrosine-based Activation Motif) motifs are highlighted in green and

orange, respectively. Purple arrows indicate the CEACAMs for which several isoforms have been characterized.

https://doi.org/10.1371/journal.pone.0254533.g001
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interactions on intestinal homeostasis. However, no functional analysis of the putative CEA-

CAM orthologues identified in Danio rerio has been conducted so far. In fact, only one zebra-

fish gene is currently annotated in the genomic database as a ceacam gene and further

characterization still awaits. Here we present a detailed sequence analysis of this gene and its

product, that we renamed CEACAMz1. Using RT-PCRs, in situ hybridization and fluorescent

reporter lines, we further show that at early developmental stages, CEACAMz1 is mainly

expressed on the zebrafish skin epidermis, in cells intercalated between keratinocytes. Co-

localization experiments using specific markers for the different types of epidermal cells reveal

that CEACAMz1 is expressed in ionocytes enriched in H+-ATPase, which are predominantly

found in the gill epidermis at adult stage. These findings lead us to propose that CEACAMz1

may serve as a novel marker for proton pump-rich cells on the fish epidermis and may possibly

be involved in communication with the extracellular environment.

Materials and methods

Ethics statement

All animal experiments described in the present study were conducted at the University of

Montpellier according to the European Union guidelines for handling of laboratory animals

(http://ec.europa.eu/environment/chemicals/lab_animals/home_en.htm). All experiments

were approved by the Direction Sanitaire et Vétérinaire de l’Hérault and by the Comité d’Ethi-

que pour l’Expérimentation Animale under the references CEEA-LR-B4-172-37 and APA-

FIS#5737-2016061511212601 v3. Animal studies reported in this paper are in compliance with

the ARRIVE guidelines 2.0 [43].

Zebrafish lines and maintenance

Fish and embryo maintenance, staging and husbandry were as described previously [44].

Experiments were performed using the AB and golden zebrafish strains (ZIRC) or the follow-

ing transgenic lines: Tg(ceacamz1:mCherry-F) ump9Tg (this study), Tg(il1b:eGFP-F) ump4Tg
to label keratinocytes [44], and Tg(kdr:eGFP) s843Tg to visualize blood vessels [45]. Adult zeb-

rafish were housed in 3.5 L polycarbonate tanks connected to a recirculating system (Tecni-

plast), at a density of 5–6 fish per liter and in the following conditions: salinity of 0.4%,

conductivity of 400 μS, temperature of 28 ± 1˚C, and 12h/12h light/dark cycle. Adult fish were

fed twice a day with Gemma Micro (Skretting, USA). Embryos were obtained from pairs of

adult fish by natural spawning. They were collected in Petri dishes containing zebrafish water

at 28˚C. From 5 dpf to juvenile stage, they were raised in water tanks and larvae were fed thrice

a day with Gemma Micro and once a day with Artemia salina nauplii (NovoTom, JBL GmbH,

Germany; from 10 dpf stage). Embryos and larvae were staged as described previously [46].

RNA isolation and RT-PCRs

To determine the expression pattern of CEACAMz1 mRNA during development, 25–50 wild-

type AB embryos/larvae ranging from 1-cell stage to 30 dpf stage were pooled and their total

RNA was isolated with the NucleoSpin RNA kit (Macherey-Nagel). For tissue-specific distri-

bution of CEACAMz1 mRNA, selected organs of 2–3 male or female adult zebrafish (AB

strain) were dissected, pooled and their total RNA was extracted using TRIzol reagent (Gibco)

[47]. cDNAs were then synthesized by reverse transcription of 500 ng of total RNA per reac-

tion using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems). RT-PCRs

were performed with a cDNA amount equivalent to 5 ng total RNA using the following set of

CEACAMz1-specific primers: 5’-CGTCTGAGGTCTGAGGAAGAAG-3’ (forward) and 5’-
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GGTGAAGTACACGGTGTCGTTC-3’ (reverse). The expected size for the amplified frag-

ment is 474 bp. The mRNA of the constitutively expressed Receptor for Activated C Kinase

(RACK1) was used as a positive control in RT-PCR with primers: 5’-CCTCGCCAAAATGACC
GAGC-3’ (forward) and 5’-GGTGTACTTGCAGACTCCCAG-3’ (reverse) (expected size of the

amplified fragment: 433 bp).

Cloning of ceacamz1 open-reading frame and sequence analysis

The full-length DNA sequence coding for CEACAMz1 was amplified by PCR from 7 dpf zeb-

rafish cDNA using the forward primer CEAz1fl_Fw1 (5’-CGTCTGAGGTCTGAGGAAGAAG-3’)

and the reverse primer CEAz1fl_Rv1 (5’-GCCTGAGAGCAGTCTCAGAATTAC-3’) (see S1 Fig

for their position on CEACAMz1 cDNA). The 3.1 kb PCR product was then inserted into

pCR4Blunt-TOPO vector using the Zero Blunt TOPO PCR cloning kit for sequencing (Invi-

trogen) and fully sequenced (Eurofins, see S1 Fig for sequencing primers). The sequence of the

corresponding protein, CEACAMz1, was then analyzed for secondary structure, sorting sig-

nals and post-translational modifications with the following prediction servers and software:

SignalP 5.0 [48] for peptide signal prediction, PredGPI [49] for GPI-anchorage, TMHMM 2.0

[50] for membrane topology, NetNGlyc 1.0 for identification of glycosylation sites (http://

www.cbs.dtu.dk/services/NetNGlyc/), HMMER 3.2.1 [51] to predict secondary structure

motifs. Sequence alignments were performed with Clustal Omega [52] and analysis of the

sequence conservation was done with ALINE [53].

Whole-mount in situ hybridization (ISH) on zebrafish embryos and larvae

A fragment of ceacamz1 cDNA ranging from the beginning of Exon 6 to the beginning of

Exon 13 (S1 Fig) was amplified by PCR using primers 5’-TAGTGTGACCTTCAGCTGTT-3’ and

5’-TGGAATCTGTCAGCTGCGTT-3’ and cloned into pCR2.1 TOPO vector (Invitrogen) in

either forward or reverse direction. The resulting plasmids were linearized with Kpn I and

digoxigenin (DIG)-labeled (Roche, France) sense and antisense RNA probes were obtained by

in vitro transcription using T7 RNA polymerase (Biolabs, France). Whole-mount ISH were

performed according to the Thisse & Thisse protocol [54]. Briefly, embryos and larvae at the

desired developmental stage were fixed in 4% paraformaldehyde, dehydrated in ethanol,

digested with proteinase K (New England Biolabs) after rehydration, and fixed again. Pre-

hybridization was performed at 65 ˚C in HM+ buffer (50% formamide, 5X saline sodium cit-

rate buffer, 10 mM citric acid pH 6, 0.1% Tween 20, 0.5 mg/ml yeast tRNA, 0.05 mg/ml hepa-

rin) and followed by hybridization with 0.5 mg/ml DIG-labeled RNA probe (sense or

antisense) in HM+ buffer. The probes were detected with alkaline phosphatase-conjugated

anti-DIG antibodies (dilution 1/5000; Roche Applied Science) using nitro blue tetrazolium

chloride/5-bromo-4-chloro-3-indolyl-phosphate, toluidine-salt (Roche Applied Science).

After staining, embryos were mounted in 90% glycerol prior to imaging with an Olympus

MVX10 epifluorescence stereomicroscope equipped with a digital color camera (Olympus

XC50). For each stage and probe, ISH were performed on at least 5 distinct embryos/larvae.

Generation of a CEACAMz1 fluorescent reporter line

The Tg(ceacamz1:mCherry-F) ump9Tg transgenic reporter line was generated following previ-

ously reported procedures [44]. A 7 kb fragment of the ceacamz1 promoter was amplified

from zebrafish genomic DNA using forward primer CEAz1P0 (5’-GAACCACTTAAGGCTA
CCACA-3’) and reverse primer CEAz1E1N2 (5’- ATATGCGGCCGCCAAGAACTTTAAATCC
CATTTTGGAA-3’), which extends 20 bp downstream ceacamz1 AUG. The 7284 bp PCR frag-

ment was then phosphorylated, digested with Not I and ligated in pTol2BNmCherry-F vector,
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just upstream of the reading frame of farnesylated mCherry (mCherry-F) protein so that the

ceacamz1 start codon would be in frame with the downstream mCherry-F open reading

frame. The plasmid was injected into one-cell stage embryos (wild-type AB zebrafish line)

together with the Tol2 transposase RNA [55]. F0-microinjected embryos/larvae were screened

for transgene expression at 2 and 5 dpf, and stable lines were established.

Immunocytochemistry

Immunocytochemistry was performed on 4 or 22 dpf larvae from the Tg(ceacamz1:mCherry-
F) transgenic reporter line. For co-staining with concanavalin A (conA), live larvae were incu-

bated for 2 hours in fish water supplemented with 50 μg.ml-1 of Alexa Fluor 488-conjugated

conA (Fisher Scientific) (4 larvae per well containing 500 μl fish water ± conA, in 24-well

plates). Larvae were then washed thrice in fish water to remove unbound conA (10 min incu-

bation for each wash), and they were anesthetized with 0.016% (w/v) tricaine before being

immobilized in low melting-point agarose for imaging by confocal microscopy. For co-label-

ling with anti-Na+/K+-ATPase or anti-vH+-ATPase antibodies, at least 10 larvae per condition

were first fixed with 4% paraformaldehyde in PBS at 4˚C overnight. Fixed larvae were then

washed thrice in PBS with 0.1% Tween 20 (PBT) and incubated for 10 min at room tempera-

ture with 0.3% (v/v) Triton X100 in PBT for permeabilization. After washing again in PBT, the

larvae were incubated for 5 hours at room temperature in blocking solution (1% BSA, 1%

DMSO, 2% lamb serum in PBS) and then for 24 to 48 hours at 4˚C with an antibody against

the α subunit of eel (Anguilla japonica) Na+/K+-ATPase (polyclonal, produced in rabbit [56])

diluted 1:1000 in blocking solution or with an antibody against the B subunit of dace (Tribolo-
don hakonensis) vacuolar-type H+-ATPase (polyclonal, produced in rabbit [57]) diluted 1:500

in blocking solution. These antibodies were a generous gift from Prof. Shigehisa Hirose and

Dr. Nobuhiro Nakamura (Tokyo Institute of Technology, Yokohama, Japan). Following exten-

sive washes in PBT, the larvae were then incubated overnight at 4˚C with goat anti-rabbit IgG

antibody conjugated with Alexa Fluor 488 (Invitrogen, diluted 1:500 in blocking solution).

After washing again extensively in PBT, larvae were immobilized in low melting-point agarose

for imaging by confocal microscopy.

Confocal microscopy and image analysis

Prior to live imaging using confocal microscopy, larvae were anesthetized with 0.016% (w/v)

tricaine, mounted in 35 mm glass-bottom dishes (FluoroDish, World Precision Instruments,

UK) and immobilized with 1% low-melting point agarose. Fluorescence stacks and bright-

field images were acquired at 28˚C using a spinning disk Nikon Ti Andor CSU-W1 micro-

scope (10x/0.25 Air, 20x/0.75 Air or 40x/1.15 Water objectives). Images were processed with

Fiji (Image J software) and compressed into maximum intensity Z-projections. 3D-reconstruc-

tions were generated with IMARIS software (https://imaris.oxinst.com/). Image acquisition

and processing were performed on the Montpellier RIO Imaging microscopy platform (MRI).

Results

Sequence analysis of CEACAMz1

To date, up to ten distinct CEACAM putative genes have been identified in zebrafish based on

genomic sequence comparisons [4,5]. Nine of these genes appear to be clustered on chromo-

some 16 whereas the remaining gene is located on chromosome 19. Most of these genes have

however not been further validated and data on gene expression are still lacking. Only one of

these genes is currently annotated as a CEACAM orthologue in the ZFIN database and is
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referred to as ceacam1 or ceacam5, based on its closest sequence similarity with these two

human CEACAMs. Nevertheless, sequence identity with any of the human genes remains

quite low (see below). We therefore decided to adopt a distinct nomenclature for zebrafish

genes and we renamed this gene ceacamz1 to avoid confusion with the human genes. Interest-

ingly, synteny mapping revealed that on zebrafish chromosome 16, the ceacamz1 gene is sur-

rounded by orthologs of atp1a3 (Na+/K+-ATPase subunit alpha3), grik5 (glutamate ionotropic

receptor kainate type subunit 5), rabac1 (prenylated Rab acceptor 1), gsk3a (glycogen synthase

kinase 3 alpha), dedd1/2 (death effector domain-containing 1/2), znf574 (zinc finger protein

574), cnfn (cornifelin), ethe1 (persulfide dioxygenase) and pafah1b3 (platelet activating factor

acetylhydrolase 1b catalytic subunit 3) [4,58]. These genes are all found in the q13.2 region of

human chromosome 19 which encodes all twelve human ceacam genes. Ceacamz1 thus shares

the same genomic context as its human counterparts.

The ceacamz1 gene is 35 kb long and contains 13 exons (Fig 2A). To further characterize

this gene and its product, CEACAMz1, we first cloned its full-length coding DNA sequence

from a cDNA library prepared from total RNAs of 7 days post-fertilization (dpf) zebrafish lar-

vae. The complete ceacamz1 cDNA sequence is shown in S1 Fig and the corresponding protein

sequence is displayed in Fig 2B. We observe a few variations in our CEACAMz1 protein as

compared to the sequence reported in the database but most of these lead to conservative or

semi-conservative amino acid replacements and reflect the polymorphism of the laboratory

zebrafish strains. Similarly to the human CEACAMs, CEACAMz1 is predicted to be exclu-

sively composed of Ig motifs with an N-terminal Ig-V domain followed by ten Ig-C2 domains

alternating between A and B types (Fig 1). Large genes containing several Ig-modules have

been generated by gene duplication/transfer throughout evolution, according to the exon shuf-

fling theory proposed by Gilbert [59]. These processes have been facilitated within the Ig

superfamily due to the fact that Ig domains are generally encoded by a single, symmetrical

exon, i.e. introns placed at the boundaries of each Ig-coding exon are in the same phase [60].

Such property indeed allows for efficient exon shuffling without introducing a frame shift in

the downstream sequence of the modified gene, in accordance with the phase-compatibility

rule [61,62]. In agreement with this principle, each Ig domain of the CEACAMz1 protein is

encoded by a single exon and all introns appear to be phase 1 introns (S1 Fig).

Analyses with various prediction servers indicate that CEACAMz1 is a secreted protein

anchored in the plasma membrane via GPI. The CEACAMz1 secretory signal is most probably

cleaved after residue Cys18, with an alternative cleavage site proposed between residues Val20

and Asn21 (Fig 2B). The ω-site for GPI-anchoring is unambiguously identified as Asn999. The

mature CEACAMz1 protein is therefore predicted to be 981 residues long, which represents a

molecular weight of 106 kDa in its bare form. The native protein is however expected to be

much larger since its ectodomain should be heavily glycosylated, as observed for human CEA-

CAMs, with up to 38 potential glycosylation sites identified. CEACAMz1 is thus much larger

than any of the human CEACAM proteins.

Traditionally, the N-terminal domain of receptors belonging to the Ig superfamily is

thought to bear the main binding site(s) for specific ligands. Although this concept starts being

questioned in light of recent studies demonstrating the role of constant domains in ligand rec-

ognition for Ig-containing receptors, including CEACAMs [63], the comparison of CEA-

CAMz1 N-terminal domain with that of human CEACAMs may still reveal informative to

predict functions for the zebrafish receptor. As shown in Fig 2C, sequence alignment of CEA-

CAMz1 N-terminal domain with the corresponding domain of all twelve human CEACAMs

shows a weak degree of conservation, with a maximal sequence identity of 27% reached with

human CEACAM3. CEACAMz1 N-terminal domain also contains important insertions and

deletions as compared to its human counterparts. In fact, purely based on sequence analysis,
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Fig 2. Sequence analysis of the ceacamz1 gene and its product. A. Organization of ceacamz1 coding region. The 35 kb-long ceacamz1
transcription unit is composed of 13 exons (red and grey boxes). The length in base pairs of the different exons and introns is indicated on

the scheme. Each single Ig domain is encoded by a single exon (color-coded as in Fig 1). B. Protein sequence of CEACAMz1. The putative

signal peptide is highlighted in orange and the green arrowhead indicates the most probable cleavage site (after Cys18). The Ig-V N-

terminal domain is indicated in red. The Ig-C2 domains are highlighted in light grey (A-type) or dark grey (B-type). The ω-site for GPI-

anchoring (Asn999) is displayed in purple. The residues highlighted in blue are cleaved off in the mature protein. C. Sequence alignment

of the N-terminal Ig-V domain of CEACAMz1 with that of the twelve human CEACAMs. Amino acids are shaded from black to light grey

according to their degree of conservation.

https://doi.org/10.1371/journal.pone.0254533.g002
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CEACAMz1 N-terminal domain does not appear to be a canonical variable domain. It may

rather belong to the I-type of Ig domains (intermediate fold between variable and constant

domains), an Ig subset encountered in several cell adhesion molecules [64]. Without structural

information on the protein, the classification in either V- or I-type remains however uncertain

for this domain. In any case, no strict orthology can be established between CEACAMz1 and

any of the human CEACAMs.

Temporal and tissue-specific distribution of CEACAMz1 mRNA in

zebrafish

As we could not get hint on CEACAMz1 function based on its sequence comparison with the

human receptors, we first analyzed the distribution of its mRNA in larvae and adult zebrafish.

Using RT-PCR, we evaluated the presence of CEACAMz1 mRNA in various tissues of adult

zebrafish. Expression was predominantly detected in gills whereas low expression levels were

also measured in several tissues including genital organs, brain, heart, muscle, and possibly

kidney and intestine (Fig 3A). In comparison, mRNA from the ubiquitous RACK1 protein

was expressed in high amounts in all tissues studied. Next, we determined CEACAMz1

mRNA expression during embryogenesis. A CEACAMz1-specific RT-PCR product could be

detected starting from 18 hours post fertilization (hpf) and thereafter (Fig 3B). No CEA-

CAMz1-specific fragment was amplified at 14 hpf or before, suggesting that ceacamz1 expres-

sion is not turned on before the end of the first day.

Expression profile of CEACAMz1 in zebrafish larvae

Gills are formed quite tardily in zebrafish. They do not become fully functional for oxygen

uptake and ionic exchanges until at least 14 dpf, their full maturity being reached after 21 dpf

[65]. Since its mRNA already appears at the end of the first day, we wanted to determine in

which tissue(s) CEACAMz1 expression occurs at early larval stages, before gills development is

complete. For this purpose, we performed whole-mount in situ hybridization (ISH) on zebra-

fish embryos and larvae ranging from 1 to 6 dpf (Fig 4). In agreement with the RT-PCR experi-

ments, a specific signal for CEACAMz1 mRNA is readily detected at 1 dpf stage (Fig 4A and

4B). CEACAMz1-positive cells accumulate on the surface of the embryos, mainly around the

yolk sac and on the most rostral part of the yolk extension (Fig 4B). In contrast, no signal is

detected using a sense RNA probe (Fig 4C). At later stages (Fig 4D–4K), CEACAMz1-positive

cells are still predominantly visible on the ventral side of the larvae and on the yolk extension,

with labelled cells extending further towards the tail. From 3dpf and later on, CEACAMz1-po-

sitive signal also appears increasingly around the forming gills (Fig 4G–4K). In all these experi-

ments, CEACAMz1-expressing cells seem to be localized in the upper epidermal layers of

zebrafish skin.

To further investigate the localization and nature of CEACAMz1-expressing cells, we gen-

erated a transgenic reporter line expressing the red fluorescent protein mCherry under the

control of the ceacamz1 promoter. For this purpose, a 7 kb DNA fragment, upstream of the

CEACAMz1 coding region, was amplified by PCR from zebrafish genomic DNA and was used

to direct mCherry expression in zebrafish. Similarly to what we observe in our ISH experi-

ments, CEACAMz1-expressing cells localize on the ventral region of the zebrafish epidermis

(Fig 5A). At 4 dpf, these cells are mostly present on the yolk sac and yolk extension, they are

also present to a lesser extent around the gill region (Fig 5A). Within our transgenic line, the

expression of the mCherry protein is driven to the membrane thanks to the addition of a farne-

sylation motif at the carboxyl terminus of the protein. This allows us to directly visualize the

contour, and therefore the morphology, of the fluorescent cells. CEACAMz1-positive cells
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have an irregular shape, some being quite roundish while others display sharper edges (Fig

5B). Several cells also possess thin extensions resembling dendrites. They do not form a contig-

uous patch on the fish surface. Instead, they are well separated from each other and no cell-cell

contacts can be observed within this population (Fig 5B).

RT-PCRs revealed that at the mRNA level, ceacamz1 expression is turned on sometime

between 14 and 18 hpf. To evaluate at which stage ceacamz1 expression can be detected at the

protein level, we monitored the apparition of the mCherry signal in our Tg(ceacamz1:

mCherry-F) reporter line by imaging zebrafish larvae every hour starting from 14 hpf stage. As

depicted in S2 Fig, mCherry signal can be readily detected at 17 hpf (16 somites stage). Know-

ing that there might be one or two hours delay between mRNA apparition and actual protein

translation, and taking into account that early fluorescence signal may not be intense enough

to be detected by confocal microscopy, these observations allow us to narrow down the appari-

tion of ceacamz1 mRNA to a time frame most probably comprised between 14 and 16 hpf.

Fig 3. Spatial and temporal distribution of ceacamz1 mRNA. A. RT-PCR analysis of ceacamz1 expression in various tissues of adult zebrafish. S: Skin; O:

Ovary; I: Intestine; K: Kidney; B: Brain; T: Testis; H: Heart; M: Muscle; L: Liver; G: Gills. B. RT-PCR analysis of ceacamz1 expression during development. The

developmental stages analyzed are indicated in hpf above each lane. “A” refers to adult stage (> 30 dpf). The constitutive rack1 gene was used as control in both

sets of experiments.

https://doi.org/10.1371/journal.pone.0254533.g003
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This also suggests that very rapidly, if not right from the beginning of its expression, CEA-

CAMz1 localizes in the same type of cells from the ventral epidermis as those identified later

on during development (Fig 5A).

At larval stage, the zebrafish epidermis adopts a bilayered structure [66]. The most superfi-

cial layer is composed of a continuous pavement of keratinocytes, between which are interca-

lated mucous cells and ionocytes (Fig 5C). The stratum just below is formed by

undifferentiated basal cells. To evaluate in which epidermal layer the CEACAMz1-expressing

cells are anchored, we crossed our Tg(ceacamz1:mCherry-F) line with the Tg(il1b:eGFP-F) line

that expresses green fluorescent protein under the control of the interleukin 1B-specific pro-

moter [44]. It was previously shown that keratinocytes express high levels of IL1B at early lar-

val stages [44]. Imaging of 4dpf Tg(ceacamz1:mCherry-F)xTg(il1b:eGFP-F) larvae indeed

allowed us to visualize the pavement-like network of keratinocytes on the zebrafish skin (Fig

5D). We also observed that CEACAMz1-expressing cells are generally present at the junction

between two or three contiguous keratinocytes (Fig 5D). To assess whether CEACAMz1-posi-

tive cells are contained in the same layer as keratinocytes or whether they are deeper buried

within zebrafish epidermis, we generated a 3D-reconstruction with the IMARIS software. As

Fig 4. Whole mount in situ hybridization with specific zebrafish ceacamz1 RNA probes. Larvae at 1 dpf (A-C), 2 dpf (D-F), 3 dpf (G-I) or 6 dpf

(J-L). Ceacamz1 mRNA signals are detected in discrete cells around the yolk sac and yolk extension readily from 1 dpf stage (as indicated by black

arrows). They also appear around the forming gills after 3 dpf stage. Scale bars: 1 mm.

https://doi.org/10.1371/journal.pone.0254533.g004
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seen in Fig 5E and 5F, mCherry-labelled cells are embedded directly within the layer of kerati-

nocytes and they protrude on both sides of this layer. In conclusion, CEACAMz1-expressing

cells are present in the uppermost stratum of the larval zebrafish epidermis, between keratino-

cytes from the ventral region, and they are in direct contact with the external environment.

Identification of the cell population expressing CEACAMz1

Two different types of cells intercalate between keratinocytes on zebrafish skin: mucous cells

and ionocytes (Fig 5C). Mucous cells have a quite widespread distribution all over the fish skin

[67]. The restricted expression profile of CEACAMz1-positive cells suggests that they rather

belong to the ionocyte category. Five different subtypes of ionocytes have been characterized in

zebrafish [68]. They all display specific expression patterns. At larval stages, K+-secreting iono-

cytes (KS cells), ionocytes expressing the Na+/Cl- co-transporter (NCC cells) and ionocytes rich

in Na+/K+-ATPase (NaR cells) have a relatively uniform distribution over the zebrafish

Fig 5. Expression profile of CEACAMz1 on the zebrafish epidermis using the fluorescent reporter line Tg
(ceacamz1:mCherry-F). A. Live imaging of a 4 dpf Tg(ceacamz1:mCherry-F) zebrafish larva using spinning disk

confocal microscopy. B. Zoom on the ventral region of the 4 dpf transgenic larva as indicated in panel A. C. Schematic

representation of the cell composition of zebrafish skin epidermis at early larval stages. D. Z-projection of a portion of

the ventral skin of a 4 dpf double-crossed Tg(ceacamz1:mCherry-F) x Tg(il1b:eGFP-F) zebrafish larva.

CEACAMz1-expressing cells intercalate within the pavement of keratinocytes. E. and F. 3D-reconstructions of the Z-

projection shown in panel D using IMARIS. Top view (E) and lateral view (F). CEACAMz1-expressing cells are

embedded within the same layer as keratinocytes and they protrude on both sides of this layer.

https://doi.org/10.1371/journal.pone.0254533.g005
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epidermis [69–71]. In contrast, ionocytes expressing the solute carrier 26 (SLC26 cells) localize

mainly in the heart, mesonephros, neuromast and gills [72], while ionocytes rich in H+-ATPase

(HR cells) restrict to the ventral side of the larvae [73]. Both NCC, NaR and HR cells are present

around the yolk sac and the forming gills but NCC ionocytes seem to appear more tardily than

the others in these regions [70]. CEACAMz1-positive cells are readily visible on the yolk sac

before the end of the first day, suggesting that they belong to either the NaR or the HR subtype

of ionocytes. To verify this hypothesis, we performed immunolabelling on 4 dpf Tg(ceacamz1:

mCherry-F) larvae using either an antibody against the α-subunit of eel Na+/K+-ATPase (label-

ling of NaR cells) or an antibody against the B subunit of dace, vacuolar-type H+-ATPase (label-

ling of HR cells) [73]. Cells labelled by the anti-Na+/K+-ATPase antibody are clearly distinct

from the CEACAMz1-positive cells (Fig 6A–6C). In contrast, the epidermal cells expressing

CEACAMz1 are all labelled by the anti-vH+-ATPase antibody (Fig 6D–6F). To confirm these

findings, we also performed co-immunostaining with concanavalin A (conA). This lectin was

shown to preferentially label the apical membrane of HR cells [73,74]. We indeed observed a

perfect co-localization of the red fluorescent signal arising from our mCherry-labelled CEA-

CAMz1 cells with the green fluorescent signal of Alexa Fluor 488-conjugated conA (Fig 6G–6I).

All CEACAMz1-positive cells were labelled with both anti-vH+-ATPase antibody and conA.

None of them displayed co-labelling with anti-Na+/K+-ATPase antibody. Taken together, these

data suggest that CEACAMz1 is expressed exclusively in HR ionocytes.

Localization of CEACAMz1-expressing ionocytes in the gills at late larval

stages

Our RT-PCR experiments revealed that CEACAMz1 is no longer detected in the skin by adult

stage. Instead, it is almost exclusively present in the gills (Fig 3A). To determine when the tran-

sition from skin to branchial expression occurs, we imaged our Tg(ceacamz1:mCherry-F) line

at different developmental stages ranging from 4 to 32 dpf (Fig 7). As shown previously, CEA-

CAMz1 expression restricts mainly to the ventral portion of the zebrafish skin at 4 dpf, with

almost no signal detected in the gill region (Fig 7A and 7B). At 8 dpf, CEACAMz1 expression

is still predominant on the ventral epidermis (Fig 7D), but labelling around the branchial

arches is also clearly visible (Fig 7C). At later stages, CEACAMz1-positive cells become more

and more abundant in the gills (Fig 7E, 7G and 7I). From 21 dpf and later on, they accumulate

mainly along the gill filaments and possibly the branchial arches (Fig 7G–7I). Expression of

CEACAMz1 on the ventral epidermis remains important at 15 dpf (Fig 7F). In contrast, the

number of CEACAMz1-positive cells decreases significantly on the skin at 21 dpf (Fig 7H) and

these cells have almost totally disappeared from the ventral region at 32 dpf (Fig 7J). This sug-

gests that the transition from cutaneous to branchial expression of CEACAMz1 occurs some-

time between 21 and 32 dpf. Co-immunostaining on 22 dpf Tg(ceacamz1:mCherryF) with

conA revealed again a perfect overlap between CEACAMz1-expressing cells and the cells

labelled by the lectin (Fig 6J–6L). These results demonstrate that later stage expression of CEA-

CAMz1 in the gills still occurs predominantly in HR-ionocytes.

At late larval stages, CEACAMz1-positive ionocytes have a radial distribution which seems

to follow the gill filaments (Fig 7G and 7I). To characterize the localization of these cells within

gills in more details, we crossed our Tg(ceacamz1:mCherry-F) line with the Tg(kdr:eGFP) line

which drives the expression of GFP in the zebrafish vasculature [45]. We then imaged double-

transgenic larvae at 22 dpf stage, focusing on the most posterior part of the gills (Fig 8A). As

seen in Fig 8B, GFP fluorescence allows to clearly visualize blood vessels in the branchial arch

as well as filament and lamellar arteries. CEACAMz1-ionocytes are distributed mostly along

the filament arteries and to a minor extent, along the branchial vessels. To confirm these
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Fig 6. Identification of the ionocyte subtype that expresses CEACAMz1 on zebrafish epidermis. A-C. High magnification view of the yolk sac surface of a 4

dpf Tg(ceacamz1:mCherry-F) larva (A) immunolabelled with anti-Na+/K+-ATPase antibody (B); merge of A and B (C). D-F. High magnification view of the

yolk sac surface of a 4 dpf Tg(ceacamz1:mCherry-F) larva (D) immunolabelled with anti-vH+-ATPase antibody (E); merge of D and E (F). G-I. High

magnification view of the yolk sac surface of a 4 dpf Tg(ceacamz1:mCherry-F) larva (G) co-stained with Alexa Fluor 488-conjugated conA (H); merge of G and

H (I). (J-L) High magnification view of the gill region of a 22 dpf Tg(ceacamz1:mCherry-F) larva (J) co-stained with Alexa Fluor 488-conjugated conA (K);

merge of J and K (L). At all stages analyzed, CEACAMz1-expressing cells perfectly co-localize with cells labelled by the vH+-ATPase antibody or by conA. They

do not overlap at all with the cells labelled by the Na+/K+-ATPase antibody.

https://doi.org/10.1371/journal.pone.0254533.g006
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Fig 7. Evolution of CEACAMz1 expression in gills and on ventral skin at late larval stages. Live imaging of larvae from the Tg(ceacamz1:mCherry-F)
reporter line using spinning disk confocal microscopy at various developmental stages: 4 dpf (A-B), 8 dpf (C-D), 15 dpf (E-F), 21 dpf (G-H), 32 dpf (I-J).

Visualization around the gill region (A,C,E,G,I) or on the ventral skin region (B,D,F,H,J).

https://doi.org/10.1371/journal.pone.0254533.g007
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observations, we performed a 3D-reconstruction of the last branchial arch at 22 dpf stage (Fig

8C). This 3D model clearly shows that the cells expressing CEACAMz1 are mainly located

alongside the filament arteries. They do not appear to distribute within the lamellae, at least

not at this stage. Interestingly, the 3D model also reveals that CEACAMz1-ionocytes concen-

trate on the inner side of the gill filaments, along the afferent blood vessels (Fig 8C and 8D). In

conclusion, CEACAMz1-positive cells start to appear within the gills between 4 and 8 dpf

stage, first in the branchial arches and later on in the gill filaments, whereas they disappear

from the ventral skin between 21 and 32 dpf stage, when juvenile stage is reached.

Discussion

In this paper, we provide the first description of a putative member of the CEACAM receptor

family in zebrafish, CEACAMz1. Our analysis of the ceacamz1 gene product predicts a large,

Fig 8. Distribution of CEACAMz1-positive ionocytes with respect to vasculature in the gills at late larval stages. A. Schematic representation of a juvenile

zebrafish larva to highlight the part of the gills on which imaging was performed. B. Live imaging of a 22 dpf double-crossed Tg(ceacamz1:mCherry-F) x Tg(kdr:
eGFP-F) larva using spinning-disk confocal microscopy. Z-projection centred on the most posterior arch of the gills. CEACAMz1-ionocytes (red) distribute

along the branchial blood vessels (green), mainly the filament arteries at this stage. C. 3D reconstruction of the most posterior branchial arch using IMARIS

software. The two distinct views are rotated by 60˚. CEACAMz1-expressing cells are localized along the filament arteries on the inner side of the branchial arch,

i.e. along the afferent arteries. D. Schematic representation of the 3D reconstruction visualized in C. Blood vessels are color-coded according to their oxygen

content (efferent arteries in red, afferent arteries in blue). HR ionocytes expressing CEACAMz1 are displayed in yellow. The direction of water flow is indicated

with blue arrows and is opposite to blood flow (white arrows).

https://doi.org/10.1371/journal.pone.0254533.g008
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GPI-anchored extracellular protein composed of eleven Ig domains. Sequence comparison

with the human proteins does not reveal any direct orthology with a specific member of the

CEACAM family in humans, not even for the N-terminal Ig-V domain which is highly con-

served among the human receptors. To assess whether CEACAMz1 could still display func-

tional orthology with the human CEACAMs, we analyzed its spatial and temporal distribution

in zebrafish larvae and adults. Using a fluorescent zebrafish reporter line for ceacamz1 expres-

sion, ISH experiments and RT-PCR analyses, we showed that CEACAMz1 is first expressed on

the ventral skin of the fish at early larval stages, mainly on the yolk sac surface and along the

yolk extension. CEACAMz1-positive cells readily appear on the skin at 17 hpf. After a few days

of development, CEACAMz1-positive cells are also detected in the forming gills. Expression

on the skin remains important until juvenile stage, at which point there is no more detectable

ceacamz1 expression in this tissue. After one month age, CEACAMz1 is almost exclusively

present in the gills and this is still the case during adulthood. We further show that the cell

population expressing CEACAMz1 corresponds to ionocytes intercalated between pavement

cells, on the uppermost layer of the zebrafish epidermis. We unambiguously identified them as

HR ionocytes, using immunolabelling with anti-vH+-ATPase antibody and conA lectin.

Finally, we observe that at late larval stages, when CEACAMz1 expression is predominantly

branchial, CEACAMz1-positive ionocytes accumulate on the inner face of the gill filaments,

along the afferent arteries.

In adult fish, gills perform a variety of functions to allow for survival in an aquatic environ-

ment, including gas and ionic exchanges, maintenance of the acid-base balance and excretion

of nitrogen waste [75,76]. Gills form however quite tardily during zebrafish development

[46,65]. Primary gill filaments only appear at 3 dpf and gills do not become functional for both

oxygen uptake and ionoregulation until at least 14 dpf [46,65,77]. In absence of a fully mature

respiratory organ, gas and ion exchanges take place on the larval skin [78,79]. Zebrafish larvae

completely rely on cutaneous respiration until at least 7 dpf. The shift to fully branchial respi-

ration then gradually occurs until around 21 dpf, at which stage the gill respiratory surface has

increased to a maximal size [80,81]. Ion exchanges are orchestrated by different subtypes of

mitochondria-rich cells (MRCs), or ionocytes, that express different sets of transmembrane

transporters to insure ion homeostasis [68,82,83]. As a consequence, the localization of these

ionocytes coincides with the active sites for ionoregulation and respiration throughout devel-

opment, i.e. they are first present on the skin and later on in the gills [74,84,85]. Interestingly,

although it has long been assumed that gills developed in fish due to the pressure for an oxygen

uptake function, it was more recently shown that ionoregulation is the first function to take

place in the developing gills [65,86]. In fact, ionocytes are already detected in the forming gills

even before secondary lamellae, the final structure for gas exchange, start differentiating [87].

The evolution of the expression profile of CEACAMz1 that we report during development is

fully consistent with these data and agrees with an expression in epidermal ionocytes. Indeed,

we first observe a cutaneous expression of CEACAMz1, from 1 dpf stage. Branchial expression

appears at 3–4 dpf and becomes more and more preponderant from this stage, until detectable

skin expression totally disappears after 21 dpf, i.e. when gills have reached their full maturity.

Zebrafish epidermal ionocytes derive from non-neuronal ectoderm [88]. They share a com-

mon progenitor with keratinocytes and possibly with mucous cells [88–90]. The different cate-

gories of epidermal cells start to specify after gastrulation. This process is controlled by Delta-

Notch signaling and by Forkhead-box transcription factor class I (foxi3a, foxi3b)-dependent

pathways [88,90]. From 11-somite stage, the five subtypes of ionocytes undergo differentiation

from the ionocyte progenitor. Although this process is not yet fully understood, ionocyte dif-

ferentiation seem to occur again under the control of foxi3 and Delta-Notch signaling

[88,90,91]. HR cell specification is also dependent on transcription factor gcm2 (glial cell
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missing 2) [92]. Atp6v1a, the gene coding for the A subunit of H+-ATPase, is turned on at

15-somite stage and ca2a (carbonic anhydrase 2a) appears after 18-somite stage [88,90]. The

detection of these two robust markers of HR cells indicate that differentiated HR ionocytes

start appearing sometime between 16 and 18 hpf. Finally, at 24 hpf, Na+/K+-ATPase and H+-

ATPase proteins can be weakly detected using immunocytochemistry [88,90]. The differentia-

tion process is therefore fully completed by the end of the first day. Based on RT-PCR experi-

ments and analysis of our ceacamz1 transgenic reporter line, we concluded that ceacamz1

expression is turned on sometime between 14 and 16–17 hpf, similarly to other HR cell mark-

ers. This suggests that ceacamz1 is not expressed in the ionocyte progenitor nor in earlier pre-

cursor cells, but is instead only detected in fully differentiated HR cells. In consequence, we

propose that ceacamz1 may serve as a novel marker of mature HR ionocytes on zebrafish

epidermis.

In various fish species, gill ionocytes have been found to locate mainly along the afferent

side of the filaments and intra-lamellar space [82,93,94]. They are tightly associated with the

arteriovenous circulation (filament veins and central venous sinus from the inter-lamellar

space). This allows them to participate in reversible gill remodeling and modulate the blood-

to-water distance according to the ionic conditions imposed by the external environment [94].

In agreement with these observations, we also found our CEACAMz1-expressing HR iono-

cytes to be localized mainly along the afferent filament arteries at juvenile stage (Fig 8B–8D).

No CEACAMZ1-positive cells were observed along the lamellae. Although we could not visu-

alize the central venous sinus (CVS) in our 3D-reconstructions of the gill vasculature, iono-

cytes expressing CEACAMz1 appeared to align on the lateral side of the afferent filament

arteries, from which the lamellar arteries protrude (Fig 8C). This localization suggests that HR

ionocytes may also be present in the inter-lamellar space and associate with CVS in zebrafish.

The main function of epidermal HR cells resides in acid secretion and Na+ uptake [68,83]. It is

comparable to the function of proximal tubular cells in mammalian kidneys [95]. Several stud-

ies have allowed to elucidate the molecular mechanisms at play in these processes

[73,74,96,97]. Carbon dioxide present as HCO3
- in the external environment is first dehy-

drated into CO2 and then taken up on the apical side of HR cells. Inside the cells, it is rehy-

drated into HCO3
- by carbonic anhydrase 2a (CA2a). This reaction liberates H+ ions that are

in turn secreted outside the cells by apical H+-ATPase and Na+/H+-exchanger NHE3. This

triggers the simultaneous uptake of Na+ ions within the cells. Those are further excreted on the

basolateral side of the HR cell membrane through Na+/K+-ATPase, while trans-epithelial

secretion of HCO3
- is mediated by the basolateral anion exchanger AE1b. As the physiological

function of HR cells is tightly connected to HCO3
- transport, it is not surprising that they con-

centrate along afferent arteries, which carry deoxygenated blood with high carbon dioxide

pressure [82].

From our current data, we cannot tell whether CEACAMz1 may be involved in the ionore-

gulatory function of HR cells. A direct participation in ion transport seems rather unlikely

since the receptor does not possess a transmembrane domain. On the other hand, its Ig

domains may promote contacts with neighboring cells through homo- or heterophilic associa-

tion with other Ig-containing cell surface proteins. Membrane-anchored proteins from the

immunoglobulin superfamily are often involved in cell adhesion processes [98]. CEACAMz1

could therefore help shaping the communication between HR cells and adjacent pavement

cells or other basal cells, including pillar cells in the inter-lamellar space or other cells from the

filament epithelium [94]. Why CEACAMz1 expression would restricts to HR cells in that case

remains unclear. But CEACAMz1 can evidently not induce intracellular signaling since it

lacks a transmembrane segment. To transmit information within the cells, it therefore needs

to act in concert with a co-receptor, as this has been postulated for the human CEACAMs that
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are GPI-anchored. One possible explanation for the presence of CEACAMz1 in the sole HR

cells may therefore be that its co-receptor is only present in this sub-type of ionocytes.

An alternative function for CEACAMz1 may be to serve as a platform towards the external

environment. We clearly observe that CEACAMz1-expressing ionocytes display an apical

exposure towards the external medium, at the junction between pavement cells (Fig 5). Our

current data do not allow us to conclude as to whether CEACAMz1 expression on the HR cell

membrane is apical or basolateral. In case of an apical localization, CEACAMz1 would be in

good position to interact with the surrounding environment. Zebrafish epidermis has a more

complex cellular composition than human epidermis to insure efficient protection against the

more aggressive aquatic environment. In particular, the intermediate layer underlying the sur-

ficial network of keratinocytes contains mucous cells that resemble goblet cells from the mam-

malian intestine and secrete different gel-forming mucins. In that respect, zebrafish epidermis

resembles a mucosal epithelium such as the one encountered in mammalian intestine. Thus,

although CEACAMz1 is not expressed by the same type of cells as human CEACAMs in the

intestine, it lies in the same pathophysiological context as its human counterparts, i.e. it is

embedded in an epithelium that is separated from the external environment by a mucus layer.

The presence of CEACAMz1 in such an epithelium may therefore parallel the presence of

human CEACAMs on the intestinal epithelium. Whether this may reflect a parallelism in

physiological function, including possible interaction of CEACAMz1 with zebrafish patho-

gens, remains to be determined. In conclusion, further studies await to characterize the physio-

logical function of this putative member of the CEACAM receptor family but our data provide

evidence that CEACAMz1 constitutes a novel marker of HR ionocytes on the zebrafish

epidermis.
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