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Abstract

Background: The aim of the study was to develop a deep learning
(DL) algorithm to evaluate the pathological complete response (pCR) to neo-
adjuvant chemotherapy in breast cancer.

Methods: A total of 302 breast cancer patients in this retrospective study were
randomly divided into a training set (n = 244) and a validation set (n = 58).
Tumor regions were manually delineated on each slice by two expert radiologists
on enhanced T1-weighted images. Pathological results were used as ground truth.
Deep learning network contained five repetitions of convolution and max-
pooling layers and ended with three dense layers. The pre-NAC model and post-
NAC model inputted six phases of pre-NAC and post-NAC images, respectively.
The combined model used 12 channels from six phases of pre-NAC and six
phases of post-NAC images. All models above included three indexes of molecu-
lar type as one additional input channel.

Results: The training set contained 137 non-pCR and 107 pCR participants. The
validation set contained 33 non-pCR and 25 pCR participants. The area under
the receiver operating characteristic (ROC) curve (AUC) of three models was
0.553 for pre-NAC, 0.968 for post-NAC and 0.970 for the combined data, respec-
tively. A significant difference was found in AUC between using pre-NAC data
alone and combined data (P < 0.001). The positive predictive value of the com-
bined model was greater than that of the post-NAC model (100% vs. 82.8%,
P = 0.033).

Conclusion: This study established a deep learning model to predict PCR status
after neoadjuvant therapy by combining pre-NAC and post-NAC MRI data. The
model performed better than using pre-NAC data only, and also performed bet-
ter than using post-NAC data only.

Key points

Significant findings of the study.

It achieved an AUC of 0.968 for pCR prediction. It showed a significantly greater
AUC than using pre-NAC data only.

What this study adds

This study established a deep learning model to predict PCR status after neo-
adjuvant therapy by combining pre-NAC and post-NAC MRI data.
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Introduction

Neoadjuvant chemotherapy (NAC) has been established as the
first-line treatment of locally advanced breast cancer (LABC),
in order to reduce tumor size, downstage the disease, control
the potential metastases, and potentially increase the chance of
breast-conserving surgery." Pathologic complete response
(pCR), defined as complete resection of breast tissue without
invasive tumor cell remnants, is the ideal result of NAC which
could predict a good prognosis.*® Accurate determination of
the achievement of pCR is of great significance to improve
patients’ treatment enthusiasm, increase breast-conserving con-
fidence, reduce anxiety and improve quality of life.

Multiple studies have shown that dynamic contrast-enhanced
magnetic resonance imaging (DCE-MRI) has higher predictive
power in predicting residual tumor size after NAC, compared
with the conventional methods including clinical breast exami-
nation, mammography, and ultrasound.”® Recent developments
in radiomics have shown potentials in the prediction of patho-
logical results by radiological data.>'® Deep learning makes it
possible to automatically extract features from an image without
the necessity of feature predefinition.'"'

In previous studies, only pre-NAC MRI data were used
and the area under receiver operating characteristic (ROC)
curve (AUC) ranged from 0.78 to 0.86.>'*'* Actually, the
structural and functional change in tumor microenviron-
ment after NAC can reflect the therapeutic response effect
of patients.">'* Therefore, we suspected that more accurate
prediction could be achieved after NAC when post-NAC
MRI data were also available, but no relevant literature has
been found.

In this study, we combined pre-NAC and post-NAC
DCE-MRI images of LABC into a convolutional neural
network for better prediction of pCR status after NAC.
The network was designed with inclusion of molecular
types into fully connected layer. The DL model was trained
on 244 participants and tested on 58 participants.

Methods

Patients

An institutional review board-approved retrospective review of
our database from January 2015 to December 2016 identified
316 locally advanced breast cancer patients who had
(i) undergone breast MRI prior to the initiation of NAC and
surgery, called baseline (pre-NAC) and after treatment (post-
NAC), (ii) successfully completed adriamycin/taxane-based
NAGC, and (iii) undergone surgical resection with available final
postoperative pathology data. Patients were excluded if they
had one of the following conditions: (i) history of other malig-
nancy; (ii) insufficient MRI image quality; (iii) unilateral
multifocal cancers; and (iv) incomplete immunohistochemical
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information. We enrolled 302 consecutive patients into the
study. All participants were randomly divided into a training
set (n = 244) and a validation set (1 = 58). All patients received
a schedule MR examination within seven days before NAC,
called pre-NAC and a post-NAC examination within
three days after NAC cycles.

MRI scanning

MRI examinations were performed with a 1.5-T MR scanner
using a dedicated four-channel phased array breast coil
(Echospeed Plus with EXCITE II, GE Medical Systems, Mil-
waukee, USA). MRI protocols included a sagittal, 3D Vibrant
SPGR sequence for dynamic imaging (TR = 64 ms,
TE = 3.0 ms, TI = 7.0 ms, flip angle = 10°, slice thickness =
4 mm without any interslice gap, matrix size = 256 X 256,
field of view = 20-22 cm, NEX = 1, ZIP2, and scan time per
acquisition = 68 seconds); and an axial, fat-suppressed,
T1-weighted pulse sequence with enhancement. The Vibrant
sequence was continuously repeated six times, with one phase
before and five phases after contrast enhancement for
dynamic acquisition. The contrast agent (Gd-DTPA) was
injected into the antecubital vein by a power injector at a rate
of 2.0 mL/second based on patient body mass (0.2 mmol/kg),
followed by a saline flush. An initial fat-saturated T'1-weighted
precontrast scan was first collected. A first postcontrast scan
was collected two minutes after contrast agent injection. Four
subsequent postcontrast images were acquired at intervals of
90 seconds, resulting in five postcontrast images for each
patient (t = 2, 3.5, 5, 6.5, and 8 minutes).

Immunohistochemical analysis

Standard histopathological analysis was processed for the
pathologic assessment of the response to NAC. Surgically
resected specimens were fixed in 10% neutral buffered for-
malin and processed overnight in standard tissue proces-
sors. Slides were cut at 5mm and stained using an
automated staining system. The histopathological examina-
tion and analysis were performed by a pathologist (with
eight-years experience in breast pathology) who was blind
to the radiological information. pCR was defined as an
absence of invasive cancer in the breast surgical specimen
and no cancer was found in the ipsilateral sentinel lymph
node or resected nodes during axillary lymph node dis-
section (yPT0/isN0).'>'

Neoadjuvant treatment regimens

Human epidermal growth factor receptor 2-negative
(HER2—) patients received doxorubicin and cyclophospha-
mide every two weeks for four cycles followed by four
cycles of paclitaxel. All HER2+ patients received treatment
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with docetaxel and trastuzumab every three weeks for six
cycles. The HER2+ treatment regimen was also sup-
plemented with pertuzumab and/or carboplatin on a
patient-by-patient basis, depending on disease severity and
availability at the time of treatment.

Radiologist annotations

Pre- and post-NAC MRIs were reviewed and analyzed by
two experienced radiologists (one with 23-years experience,
one with five-years experience) who were both blinded to
the pathological results. The regions of interest (ROIs)
were drawn manually with a 3D-slicer (Version 4.8.1)
(https://www.slicer.org) on each slice of tumor. On pre-
NAC MR image, ROIs were delineated along the contour
of the tumor, containing the surrounding chords and burrs
as visualized by the second phase of T1-weighted images
with Gadolinium enhancement. If a highly suspicious
tumor signal was still visible on the second phase of
enhancement (the early enhancement area), the post-NAC
delineation principle was the same as pre-NAC. If no
tumor signal was seen on the second phase of the
enhanced scan (iso-intensity signal compared with the nor-
mal breast parenchyma, no enhancement area), the ROIs
were placed on the primary tumor region determined by
the second phase of pre-NAC enhancement.

Inter- and intraobserver reproducibility
evaluation

Inter- and intraobserver reproducibility of ROI delineation
was evaluated by dice similarity coefficient (DSC). DSC
was defined as: DSC = 2|XNY|/(|X| + |Y|), where X and Y
were two different volumes. It equalled twice the number
of elements common to both sets divided by the sum of
the number of elements in each set. Interobserver repro-
ducibility was evaluated on 30 randomly selected partici-
pants blindly delineated by Dr Cao and Dr Qu,
respectively. To assess intraobserver reproducibility, Dr Qu
repeated the ROI delineation on the 30 participants twice
at two-month intervals following the same procedure. A
DSC greater than 0.85 was considered a good agreement.

Deep learning and model construction

We resized all the lesion patches to a fixed size of
128 x 128 X 16 by zero-padding. Augmentation was per-
formed in the training set to increase the samples. Rotation
by i/n X 360° (i = 1,2,...,n) was performed in the sagittal
plane. N = 80 was used for pCR data and n = 60 was used
for non-pCR data, respectively to keep a balance between
two classes. Signal normalization was performed in the six
phases, scaling the maximum signal of enhancement to
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one and the minimum signal to 0. The smallest box that
contained the whole lesion with 6 mm margin on each
direction was created and inputted into the network.

DL network was constructed using Python (V3.6) based
on Keras (2.15) with TensorFlow (V1.4.0). It contained five
repetitions of convolution and max-pooling layers (CMC
unit) and ends with three dense layers. In order to extract
useful features and information from multiple phases of
contrast enhancement before and after NAC treatment, we
designed and trained a multipath convolutional neural net-
work. The pre-NAC model and post-NAC model inputted
six phases of enhancement from pre-NAC and post-NAC
images, respectively. The combined model used 12 channels
from six phases of pre-NAC and six phases of post-NAC
images. All models above include three indexes of molecu-
lar type as one additional input channel. Figure 1 shows
the structure of the network.

Each channel of image input was processed indepen-
dently by a feature extraction unit and combined with
molecular subtypes at the full-connected layer. The feature
extraction unit was composed of five repetitions of convo-
lution/max-pooling and cropping. While the max-pooling
layer downsampled the image, the cropping layer extracted
the central part of the image. The concatenation of max-
pooling and cropping made it possible to extract features
from different scales. The last layer was a Softmax layer
which would output a class probability. Pathological results
were used as ground truth.

The training set was split into four subgroups. Cross-
validation was performed by using three out of the four
subgroups as training and the fourth one as validation to
determine the hyperparameters, such as learning rate
(selected from le—3, 3e—4, le—4, 3e—5, le—5),decay rate
(selected from 0.1, 0.01, 0.001, 0.0001) and epochs (less
than 10 000). After cross-validation in the training set, the
model with all four subgroups was trained with fixed
hyperparameters. The model was finally tested on the vali-
dation set.

Results

As indicated in Figure. 2, 316 patients were enrolled con-
secutively and 14 patients were excluded according to the
exclusion criteria. A total of 302 patients were finally
included in this study and the characteristics of the
patients are summarized in Table 1. No significant differ-
ences were found between the training set and validation
set in terms of pCR prevalence (43.9% and 43.1% in the
training and validation sets, respectively, P = 0.918). There
were no significant differences between the pCR group and
non-pCR group in terms of age (P < 0.05). Additionally,
some characteristics were significantly different between
two groups, including pathological type, ER and PR status,
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Figure 1 A multipath deep convolutional neural network architecture.

-~

Excluded with followed
reasons (n=14):

History of other malignancies
(n=2)

Insufficient MRI quality (n=3)

Biopsy proven primary invasive breast cancer without
distant metastasis
Underwent NAC and surgery
Available pCR status confirmed by postoperative pathology
Available MRI data of pre- and post-NAC (n=316)

> Unilateral mutifocal
v cancers(n=3)
Insufficient
Eligible for this study (n=302) immunohistochemical

data(n=6)

-

Training set

Validation set

(n=244) (n=58)
‘[ l \ 2 v
pCR Non-pCR pPCR Non-pCR
(n=107) (n=137) (n=25) (n=33)

/

Figure 2 The inclusion and exclusion flowchart. There were 316 participants enrolled into this study and 14 were excluded.
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Table 1 Characteristics of participants in the training and validation sets. A t-test was used for continuous variables and chi-square test for categori-

cal variables
Training set Validation set
pCR Non-pCR pCR Non-pCR
Characteristics (n=107) (n=137) P-value (n =25) (n=33) P-value
Age (mean =+ SD, years) 4897 +10.43 49.34 +10.25 0.781 50.68 + 8.87 47.82 +10.28 0.271
Pathological type (%) 0.015 0.026
Invasive ductal carcinoma, stage | 5 12 0 4
Invasive ductal carcinoma, stage |l 64 96 15 21
Invasive ductal carcinoma, stage Il 37 24 10 6
Invasive papillary carcinoma 1 3 0
Invasive lobular carcinoma 0 2 0 2
ER (%) 0.000 0.002
Positive 54 106 8 24
Negative 53 31 17 9
PR (%) 0.000 0.014
Positive 63 110 11 25
Negative 44 27 14 8
HER2 (%) 0.000 0.604
Positive 68 36 10 11
Negative 39 101 15 22
both in the training and validation set. Meanwhile, pCR 1.0 7 o | ] .

was found associated with HER2 status in the training set,
but not in the validation set. The results suggested that the
pPCR prevalence were related to hormone receptor status
and pathological type, which is consistent with previous
studies.'”'® The interobserver DSC was 0.92 for pre-NAC
ROI delineation and 0.88 for post-NAC ROI delineation.
The intraobserver DSC was 0.95 for pre-NAC ROI delinea-
tion and 0.90 for post-NAC ROI delineation.

After cross-validation, we used the learning rate = 3e—5,
decay rate = 0.01 and epochs = 2000 to train the whole training
set. Probability of pCR was predicted on the validation set with
a score between 0 and 1. Receiver operating characteristic
(ROC) curve was plotted using the pathological result as the
ground truth. Figure 3 shows the ROC curve of the three
models. The area under the ROC curve (AUC) was 0.553 for
pre-NAC, 0.968 for post-NAC and 0.970 for the combined
model. A significant difference was found in AUC between
using pre-NAC data alone and using combined data (Z = 5.297,
P < 0.0001). If the channel molecular type was excluded from
the network, the accuracy of the combined model was slightly
lower without significance (AUC = 0.942). Models containing
molecular type channel were used in the following calculation.

The largest Youden index was used to set the cutoff value.
The sensitivity (SEN), specificity (SPE), positive predictive
value (PPV) and negative predictive value (NPV) are summa-
rized in Table 2. Although the combined model had a similar
AUC value with the post-NAC model, the specificity of the
combined model (SPE = 100%, 95% CI: 89.4-100.0) was
larger than that of the post-NAC model (SPE = 84.9%, 95%
CL: 68.1-94.9). The positive predictive value of the combined
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Figure 3 Receiver operating characteristic (ROC) curves of pre-NAC,
post-NAC and combined model. The area under curve (AUC) was
0.553 (0.416-0.683) for the pre-NAC model, 0.968 (0.885-0.997) for
the post-NAC model and 0.970 (0.887-0.997) for the combined
model. The largest Youden index was used to set the cutoff value.
( ) Pre-NAC model (AUC = 0.553), (——) post-NAC model
(AUC = 0.968), (——) combined model (AUC = 0.970), (®) pre-NAC
model (balanced performance), (@) post-NAC model (balanced perfor-
mance), (®) combined model (balanced performance).

model (PPV = 100%, 95% CI: 85.8-100.0) was greater than
that of the post-NAC model (PPV = 82.8%, 95% CI:
64.2-94.2) (x2 = 4.569, P = 0.033).

Figure 4 shows the ordered predicted score minus the cutoff
value. The red color indicates non-pCR and blue color indi-
cates pCR proven by pathological ground truth. The bars
above the horizontal line indicates pCR and the bars below

© 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd 655
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Table 2 Performance of pCR prediction of 58 participants with locally advanced breast cancer in the validation set

SPE % PPV % NPV %

AUC SEN %
Pre-NAC 0.553 (0.416-0.683) 72.0 (50.6-87.9)
Post-NAC 0.968 (0.885-0.997) 96.0 (79.6-99.9)
Combined 0.970 (0.887-0.997) 96.0 (79.6-99.9)

48.5 (30.8-66.5)
84.9 (68.1-94.9)
100 (89.4-100.0)

51.4 (34.0-68.6)
82.8 (64.2-94.2)
100 (85.8-100.0)

69.6 (47.1-86.8)
96.6 (82.2-99.9)
97.1(84.7-99.9)

NPV, negative predictive value; PPV, positive predictive value; SEN, sensitivity; SPE, specificity.

Predicted Score

Figure 4 Predicted scores of 58 par-
ticipants with locally advanced breast

cancer in the validation set. Blue color
indicates pCR proven by pathological
analysis. Red color indicates non-pCR
proven by pathological analysis. Bars
above 0 are pCR predicted by DL
models. Bars below 0 are non-pCR
predicted by DL models.

0.4 A pre-NAC model
|||IIIII||||||“||“||
- Ill“lllllllllm.--_ ..|||||
—-0.2 A I
0.4
post-NAC model
il
™"
<=+ M
—0.4 | I | ' T T T
0.4 comblned model
il
e
I“l““"“"“llll||IIIII
-0.4
T i | | | |
0 10 20 30 p” . )

Subjects

the horizontal line indicates non-pCR predicted by the DL
model.

Decision curve analysis (DCA) was performed to study
the benefit of deep learning in Figure 5. The y-axis mea-
sured the net benefit. The red line represents the deep learn-
ing model. The blue line represents the assumption that all
patients achieved pCR after NCRT. The horizontal green
line represents the assumption that no patients achieved
pCR after NCRT. The net benefit was calculated by sub-
tracting the proportion of all patients who were false posi-
tive from the proportion who were true positive, weighting
by the relative harm of forgoing treatment compared with

656 Thoracic Cancer 11 (2020) 651-658

the negative consequences of an unnecessary treatment.
Standardized net benefit scaled the net benefit into the range
between 0 and 1. Here, the relative harm was the ratio of
the harm of false positive and the harm of false negative. A
95% confidence interval (dashed line) was determined by
1000 bootstraps. The results shows that deep learning pro-
duced increased benefit in the whole range of risk threshold.

Discussion

Accurate prediction of therapy response may change the
treatment plan of LABC during NAC or before surgery.

© 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd
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Figure 5 Decision curve analysis of deep learning model. The y-axis
measures the net benefit. The red line represents the deep learning
model. The blue line represents the assumption that all patients achieved
pCR after NCRT. The horizontal green line represents the assumption
that no patients achieved pCR after NCRT. The net benefit was calcu-
lated by subtracting the proportion of all patients who were false positive
from the proportion who were true positive, weighting by the relative
harm of forgoing treatment compared with the negative consequences
of an unnecessary treatment. Here, the relative harm was the ratio of
the harm of false positive and the harm of false negative. It was calcu-
lated by Pt/(1 — Pt). Pt (threshold probability) is where the expected ben-
efit of the treatment was equal to the expected benefit of avoiding
treatment. A 95% confidence interval (dashed line) was determined by
1000 bootstraps. (——) Combined DL model, (——) all and (——) none.

For example, if a bad response to a certain medicine could
be predicted, the NAC plan of the patient may be changed
as early as possible. If pCR could be predicted, more con-
servative treatment or surgery could be adopted. Several
methods have been proposed by using radiomics or DL on
pre-NAC MRI data to predict pCR before the initiation of
NAC. In several studies, the AUC ranged from 0.78 to
0.86.>''* Unfortunately, to date, no radiomics or DL
models have been used in clinical practice to change the
clinical decision-making of neoadjuvant therapy. This is
probably due to the low accuracy that is still beyond an
acceptable level in the clinic. In this study, we constructed
a DL model by combining pre-NAC and post-NAC data
and achieved an AUC of 0.98 and a PPV of 100%, which is
much higher than previous studies for both traditional and
functional MR imaging analysis.'>** It shows great poten-
tial in clinical application for pCR prediction after NAC.
This accurate prediction may also have a positive impact
on patients’ morale for the following treatment and their
confidence in breast conserving surgery.

Three models were compared in this study; pre-NAC
model, post-NAC model and combined model. The com-
bined model produced a significantly greater AUC than
the pre-NAC model (P < 0.0001). Although the AUC of
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the combined model was the same as that of the post-NAC
model, the 100% PPV of the combined model was signifi-
cantly higher than that of the post-NAC model (P =
0.033). PPV is an important index to evaluate the pCR pre-
diction model. Results in this study suggested that the
combination pre-NAC and post-NAC model was more
accurate than either of them alone. The changes inside the
tumor, including the changes in volume and enhancement
features, are obviously reflected and should be taken into
consideration.

The combined model misidentified one responder as
non-pCR. We found that case was ductal carcinoma in situ
with residual tumor confirmed by postoperative pathology.
The pre- and post-NAC MRI images of the patient were
again analyzed by the radiologist. In the post-MRI images,
no mass was found, but small patches of enhancement
were still seen in the position of the original tumor bed,
with the inflow pattern time signal curve, which may have
been the cause of the model miscalculation.

Compared with radiomics, deep learning makes it possi-
ble to automatically extract features from an image without
the necessity of feature predefinition. Studies solely based
on pre-NAC data show no significant difference between
radiomics and DL for pCR prediction. As both pre-NAC
and post-NAC data were included in this study, we
suspected that DL might show advantages for its capability
to extract a more sophisticated relationship between two
sets of data. Although the inclusion of molecular type
showed an insignificant increase in the AUC value for pCR
prediction, it was reasonable to keep it as an input channel
because molecular type has been proven as an indispens-
able index in clinical practice. To utilize molecular infor-
mation, a deep convolutional neural network was designed
to integrate molecular type inside the network structure.
As the weights molecular type is optimized during training,
this structure could be better than separating molecular
information outside the network.

One limitation of our study was the use of a single imag-
ing protocol for DCE MR imaging of pre- and post-NAC.
We considered that the TIWI and T1+C sequences of
breast MRI were the most characteristic, and the multi-
parameter MRI deep learning model may require more
training data. Another limitation of this study was that it
was retrospective and single center. A prospective and mul-
ticenter study may help to construct a generalized predic-
tion model appropriate for different clinical situations.

In conclusion, this study established a deep learning
model to predict PCR status after neoadjuvant therapy by
combining pre-NAC and post-NAC MRI data. The model
showed a significantly larger AUC than using pre-NAC
data only, and also showed a significantly larger positive
predictive value than using post-NAC data only.
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