

Article A Comparative Analysis of *Bombyx mori* (Lepidoptera: Bombycidae) β-fructofuranosidase Homologs Reveals Different Post-Translational Regulations in *Glyphodes pyloalis* Walker (Lepidoptera: Pyralidae)

Yue Zhao ^{1,2,†}, Liangli Yang ^{1,2,†}, Yu Chen ^{1,†}, Xinwei Zhang ^{1,3}, Jing Li ¹, Dan Liang ^{1,2}, Song Jiang ^{1,2}, Junshan Gao ^{1,2} and Yan Meng ^{1,2,*}

- ¹ School of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China; zhaoyue180421@163.com (Y.Z.); yliangli2019@163.com (L.Y.); 17356403916@163.com (Y.C.); 18725515051@163.com (X.Z.); lljj0617@163.com (J.L.); liangdanmolecule@163.com (D.L.); jiangsong2111@126.com (S.J.); gaojsh@ahau.edu.cn (J.G.)
- ² Anhui International Joint Research and Development Center of Sericulture Resources Utilization, 130 West Changjiang Road, Hefei 230036, China
- ³ Department of Pathology, Henan Provincial People's Hospital, 7 Weiwu Road, Zhengzhou 450003, China
- * Correspondence: mengyan@ahau.edu.cn; Tel./Fax: +86-551-65786967
- + These authors contributed equally to this work.

Simple Summary: The β -fructofuranosidase (β -FFase) encoding gene *BmSuc1* regulates the glycometabolism of silkworm larvae, and it participates in the resistance of mulberry alkaloids. However, there is no molecular or biochemical information available about the mulberry pest *Glyphodes pyloalis* Walker β -FFase homologs. In this paper, we have obtained five β -FFase homologous genes in *G. pyloalis* and characterized the expression and the localization of GpSUC1a in the midgut. The β -FFase activity in the midgut of *G. pyloalis* larvae and GpSUC1a were both confirmed, while recombinant GpSUC1a displayed little activity as compared with the higher activity of BmSUC1. Some putative Nglycosylation sites were found in GpSUC1a but none in BmSUC1, while there was more methylation in BmSUC1 than in GpSUC1a. The results indicate that such post-translational modifications (PTMs) are differentially supporting that β -FFase are active in these two mulberry feeding caterpillars, and the activation of GpSUC1a may be controlled by a more complex post-translational regulatory system in *G. pyloalis* larvae. This is the first report on the characterization of β -FFase genes from *G. pyloalis* and the first comparison of expression regulation between two mulberry feeding insects *B. mori* and *G. pyloalis*. Moreover, this research may provide new ideas for the management of mulberry borers.

Abstract: The silk-spinning and Lepidopteran model insect Bombyx mori (Bombycidae) is a mulberry specialist. The *BmSuc1* gene is the first β -fructofuranosidase (β -FFase) encoding gene identified in animals, and β -FFase acts as an essential sucrase for glycometabolism modulation in the silkworm larvae, involved in resistance to mulberry alkaloids. Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is an important mulberry pest leading to heavy economic loss of sericulture. However, no molecular or biochemical information is available about G. pyloalis β-FFase homologs. In this study, five β-FFase homologous genes in G. pyloalis were obtained. The genes GpSuc1a and GpSuc2c were expressed in the midgut; *GpSuc2c* encodes a truncated polypeptide. The expression and the localization of GpSUC1a in the midgut was characterized. Whereas recombinant GpSUC1a expressed in both Escherichia coli and BmN cells displayed little activity as compared with higher activity of BmSUC1, β -FFase activity in the larval midgut of *G. pyloalis* and GpSUC1a purified from the midgut were both confirmed. The data suggested that the activation of GpSUC1a is probably controlled by a more complicated post-translational regulation system in G. pyloalis larvae than that of BmSUC1 in B. mori. To study post-translational modifications (PTMs), GpSUC1a and BmSUC1 were purified from larval midguts using immunoprecipitation and subjected to LC-MS to perform PTMs analysis. Some putative N-glycosylated sites were found in GpSUC1a but none in BmSUC1, while there was

Citation: Zhao, Y.; Yang, L.; Chen, Y.; Zhang, X.; Li, J.; Liang, D.; Jiang, S.; Gao, J.; Meng, Y. A Comparative Analysis of *Bombyx mori* (Lepidoptera: Bombycidae) β -fructofuranosidase Homologs Reveals Different Post-Translational Regulations in *Glyphodes pyloalis* Walker (Lepidoptera: Pyralidae). *Insects* **2022**, *13*, 410. https:// doi.org/10.3390/insects13050410

Academic Editor: Qisheng Song

Received: 11 March 2022 Accepted: 17 April 2022 Published: 26 April 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). more methylation in BmSUC1 than in GpSUC1a, indicating that such PTMs were supporting the differential β -FFases activities in these two mulberry feeding caterpillars.

Keywords: β -fructofuranosidase; *Glyphodes pyloalis* Walker; mulberry feeding; N-glycosylation

1. Introduction

Many plant species produce toxic compounds that serve as a defense mechanism against insect herbivores and pathogens [1–4]. Plant latex often contains a variety of toxic compounds, such as alkaloids and proteases, which provide a defense against insect herbivory [5–8]. Mulberry latex contains high concentrations of alkaloidal sugar mimics such as 1,4-dideoxy-1,4-imino-D-arabinitol (D-AB1) and 1-deoxynojirimycin (DNJ) [9,10]. Sugar-mimic alkaloids adversely affect the growth of non-mulberry phytophagous insects with low dose, such as the Eri silkworm, by interfering with sugar metabolism [11–13]. However, the silkworm *Bombyx mori* (Lepidoptera: Bombycidae), which is adapted to feeding on mulberry leaves, is unaffected by these toxins. *B. mori* has evolved mechanisms to avoid the toxicity of sugar-mimic alkaloids. These mechanisms enable it to use mulberry leaves for growth, probably by using a β -fructofuranosidase (β -FFase)-triggering enzymatic adaptation system [12,14,15].

Sucrose hydrolases can be divided into α -glucosidase (EC 3.2.1.20) and β -FFase (EC: 3.2.1.26) according to the enzyme hydrolyzing an α -glucosyl or β -fructosyl residue of the substrate. The former is found in essentially all the organisms, while β -FFase is rarely found in animals [16–18]. Although they do not exhibit inhibitory activity against β -FFase, D-AB1 and DNJ are strong inhibitors of α -glucosidase [9,14]. The first β -FFase gene discovered and cloned in macroscopic animals, *BmSuc1* is specifically expressed in the *B. mori* larval midgut and in the silk gland. The activity of BmSUC1 is not affected by DNJ, and it may play an important role in the silkworm mulberry enzyme adaptation system [14]. Our further study proved that BmSUC1 acts as an essential sucrase for glycometabolism modulation in the silkworm larvae [19].

Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a widely distributed mulberry pest. This caterpillar not only causes serious reductions in mulberry leaf yields [20,21] but also damages sericulture by transmitting viruses to the silkworm [22]. Currently, using conventional insecticides are the principal means to control G. pyloalis populations. However, the excessive use of insecticides in mulberry growing regions has caused silkworm poisoning and environmental pollution, as well as increased G. pyloalis resistance to a variety of chemical insecticides [23]. As G. pyloalis has the same mulberry-feeding habit as *B. mori*, identification of *BmSuc1* homologous genes and functional characterization in *G. pyloalis* may provide a better understanding of the role of insect β -FFases and their regulation mechanism. This research analyzed the expression and the activity of β -FFases in the midgut of G. pyloalis larvae. We also expressed the recombinant proteins in E. coli and BmN cells and investigated their enzymatic properties in vitro. In addition, we made a polyclonal antibody to GpSUC1a, and we used it to study GpSUC1a expression by western blotting and immunofluorescence experiments. Immunoprecipitation and LC-MS analyses revealed the difference in the expression of GpSUC1a and BmSUC1 in vivo. To our knowledge, this is the first report on the characterization of β -FFase genes from G. pyloalis and the first comparison of expression regulation between two mulberry feeding insects, B. *mori* and *G. pyloalis*. Moreover, this research may provide new ideas for the management of mulberry borers.

2. Materials and Methods

2.1. Insects, Vectors, and Cell Lines

B. mori strain p50 was used in this study. *G. pyloalis* was collected in the mulberry field of Anhui Agricultural University. Larvae were reared on fresh mulberry leaves at

25–26 °C under a 12:12 h (L:D) photoperiod with 70% relative humidity. The silkworm ovary-derived BmN cells were routinely maintained at 27 °C in TC100 medium (Ximeijie, China) supplemented with 10% fetal bovine serum (ExCell, Shanghai, China) and 1% penicillin-streptomycin (Solarbio, Beijing, China) in our laboratory. The expression vector pET-24b was purchased from Invitrogen. The pET24b-*BmSuc1* recombinant plasmid and the pFastBac-dual vector are always reserved in our laboratory. The *E. coli* strain BL21 (DE3) cells and DH10Bac (BmNPV) cells were purchased from Transgene Biotech (Beijing, China).

2.2. Enzymatic Determination of β -FFase in Larval Tissues

To determine β -FFase activity, the final instar larvae of *G. pyloalis* and *B. mori* (day 3 of fifth instar) were dissected in phosphate buffer saline (PBS, pH 7.4) on ice. The PBS was purchased from Sangon Biotech (item number: B040100-0005) (Beijing, China). Total proteins were extracted from the larval midgut and the silk gland by using a One Step Animal Tissue Active Proteins Extraction Kit (Sangon Biotech, Shanghai, China). Protein concentrations were measured using the BCA Proteins Assay Kit (Sangon Biotech, Shanghai, China). The β -FFase activity was detected using the 3,5-dinitrosalicylic acid (DNS) method as described by Gan et al. (2018) [19]. The methods of dealing with tissues referred to Gan et al. (2018) [19]. The standard 200 µL reaction mixture contained 80 µg of total tissue proteins, 100 mM sucrose or raffinose, and 10 mM Britton–Robinson buffer (pH 7.0). In the case of using sucrose as a substrate, 100 mM DNJ was added in the reaction mixture to inhibit α -glucosidase activity. The sucrose substrate was incubated with Britton-Robinson buffer for 10 min at 30 °C, following the method of measuring enzyme activity described by Gan et al. (2018) [19].

2.3. Degenerate Polymerase Chain Reaction (Degenerate PCR)

The genomic DNA of *G. pyloalis* was extracted from larval midguts by the phenolchloroform method. To isolate identical genes in the genome, two sets of degenerate primers (Table 1) were designed based on the consensus regions among the deduced amino acid sequences of BmSUC1 and BmSUC2 [14], and several β -FFases of other organisms obtained from GenBank (http://www.ncbi.nlm.nih.gov, accessed on 1 October 2018). To amplify a portion of the gene fragments, genomic-degenerate PCR was performed using a thermal cycling program of 94 °C for 10 min and 40 cycles of 94 °C for 1 min, 50 °C for 30 s and 72 °C for 1 min, followed by an additional extension at 72 °C for 7 min.

2.4. Reverse Transcription PCR (RT-PCR) and Rapid Amplification of cDNA Ends (RACE)

Total RNA was extracted from the whole body or from various tissues of *G. pyloalis*, using the Animal Total RNA Isolation Kit (Sangon Biotech, Shanghai, China). To profile the transcriptional patterns of *GpSuc1a*, *GpSuc1b*, *GpSuc2a*, *GpSuc2b*, and *GpSuc2c*, first-strand cDNA was synthesized from 1 μ g of total RNA extracted from different tissues in a 20 μ L reaction mixture using the M-MuLV First Strand cDNA Synthesis Kit (Sangon Biotech, Shanghai, China). Semiquantitative RT-PCR was carried out using the 18S as the control to normalize mRNA expression levels. The PCR reactions were performed as follows: denaturation at 94 °C for 5 min, 28 cycles of 94 °C for 1 min, 53 °C for 50 s, and 72 °C for 1 min. Primers are listed in Table 1. PCR products were separated on 1% agarose gels. To amplify the cDNA ends of five genes, 3 μ g of total RNA extracted from the whole body was subjected to RACE with the SMARTerTM RACE cDNA Amplification Kit (Clontech, Shanghai, China) as recommended by the manufacturer. The gene-specific primer and the nest gene-specific primer used for the 5'- and 3'-RACE were designed based on their genomic DNA sequences shown in Table 1.

SUCdgpFl TGGATLANGAYCCLANGG Degenerate SUCdgpR1 GTGGATCANGAACTC YCR SUCdgpR2 TGGGGCATATCCAYTGGGGCA SUCdgpR2 GCRITARAARICTICGYTGGGCA GpSucle3RAppp AGCACCACCGGAGAACACATTTCTT GpSucle3RAppp AGCACCACCGGACACGTGGCCCCATG GpSucle3RAppp AGCACTACACGGGAACCACATTCTT GpSucle3RAppp AGCACTACACGGGAACCACATTCT GpSucle3RAppp AGCACTGACACAGGGAACCACATTCT GpSucle3RAppp ATGCGCTCACACTGAGGATGCCCCTGA GpSucle3RAppp ATGCGCTCACACTGAGGTGCCCCATGAGGAACACGTA GpSucle3RAppp GATGCCCCACATGAGCACATTCCAGGTA GpSucle3RAppp GATGCCCCCATGAGCTACATGTGAGGTGCCCCTGA GpSucle3RAppp GATGCCCTCACTGCAGATAGAACTTATGCAGG GpSucle3RAppp CTGCGATACACTGGGCAGTACCCTAGGGTAGGGA GpSucle3RAppp CTGCGACAACTGCCACGGAT GpSucle3RAppp CTGCGACACACTGCCCCCCTCAGGGCACTACCG GpSucle3RAppp CTGCGACACTGCCCACTACGGGGCCCCCTACACGT GpSucle3RAppp CTGCGCTCACTGCACATGCCCGGGACTACGC GpSucle3RAppp CTGCGCCTCACTGCACACTGCCGGCGCCACTACCC GpSucle3RAppp CTGCGCCTCACTGCCCGCCCTACACCC	Assay	Primer Name	Primer Sequence (5' to 3')
Degenerate PCR SUCdippR CTGICTIGCRTARAATC CGUIDER CPS SUCdipPR2 CGCRTARAARCRTGCCCRACC GCRTARAARCRTGCCCRACCCAACCTGCAT GpSuid-BRAypp ACCACCACCGCGAGAAACACATTCCT GpSuid-BRAypp CGCCTTGGACACGTGCACCCAACGTGCAT GpSuid-BRAypp CGCATGCCCAACGTGCCCCATCCAT GpSuid-BRAypp CGCATGCCCAACGCCAACGCGCCCATCCAT GpSuid-BRAypp CGCATGCCCAACGCCAACGCCCAACGCCTACGCT GpSuid-BRAypp CGCATGCCCAATGCCCTAACGCTACCCTA GpSuid-BRAypp CGCATGCCCAATGCCCAACGCCTACGCAGT GpSuid-BRAypp CGCATGCCCAATGCCATTCCAATGCTT GpSuid-BRAypp CGCATGCCCAATGCCATTCCAAGTT GpSuid-BRAypp CGCATGCCCAATGCCATGCCAAGGA GpSuid-BRAypp CGCATGCCCAATGCCAATGCCAAGGA GpSuid-BRAypp CGCATGCCCAATGCCAAGGAACGAAGCGAAGGA GpSuid-BRAypp CGCATGCCAATGCCAAGGAACGGAAGGA GpSuid-BRAypp CGCATGCCAATGCCAAGGAACGGAAGGA GpSuid-BRAypp CGCATGCAATGCCAAGGAACGGAAGGA GpSuid-BRAypp CGCACTGCAATGCCAAGGAACGGAAGGA GpSuid-BRAypp CGCACTGCAATGCCAAGGAACGGAAGGAA GpSuid-BRAypp CGCACTGCAATGCCAAGGAACGGAATGGCAGGAGGAGGAGGAAGGA		SUCdgpF1	TGGATIAAYGAYCCIAAYGG
TCR SUCdgpP2 TGGGGICLATGCATTGGGICA SUCdgpP2 GRIANGAARCCATGCATGCGTGAA GRIANGAARCACATTGCGTGAA GpSucla-SRAgsp AGCACCACCGGAGAAACACATTTCTT GpSucla-SRAgsp GGCTGGACACCTGGCCCCTTA GpSucla-SRAgsp GGCTGGACACCTGGCCCCTGA GGSGCTGGACACCCCCAAAGGCGCTGGTT GGSGCTGGACACCCCCAAAGGCGCTGGTT GpSucla-SRAgsp GCCCTGGACAGTGCCCCTGA GGSGCTGCCCCAAAGGCGCTGCCCTGA GGSGCTGCCCCCAAGGGCACCCCTGA GpSucla-SRAgsp GCCCTGCAGCGACACCTGGGGATGCCCTGA GGSGCTGCCCGAAGGGCACCCGCAAGGGCAAGGGGTGCCCCTGA GpSucla-SRAgsp GCCCCCCAAGGTCACCCTGAGGGATGCCCTGAG GGSGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	Degenerate	SUCdgpR1	GTGIGTIGCRTARAAITC
SUCd@pk2 CCRIARAARTCRIGCCRRRIC GpSucla-SRAppp ACCACCACCGCACACCTCACACATTCT GpSucla-SRAppp CGCTGACACCTGGCCCCACTCCAT GpSucla-SRAppp CCCACTGCACACCTGCCCCACTCCAT GpSucla-SRAppp CCCACTGCACACCTGCCCCATGCCTT GpSucla-SRAppp CCCACTGCACACCTGCCCATGCCCATGCCCATGCGCCCATGCGCCCATGCGCCCATGCGCCCCATGCCCCATGCGCCCCATGCCCCATGCGCCCCATGCGCCCCATGCGCCCCATGCGCCCCATGCGCCCCATGCGCCCCCATGCGCCCCCATGCGCCCCCATGCGCCCCCCATGCGCCCCCATGCGCCCCCCATGCGCCCCCCCC	PCR	SUCdgpF2	TGGGGICCIATGCAYTGGGGICA
GpSuda-SRAsgp AGCACCCCGAGAAACAATTICTT GpSuda-SRAsgp GGCCTCGGACACCCGAGTCCAT GpSuda-SRAsgp ACAGTITACATGGGGAACCCCAGTCCAT GpSuda-SRAsgp GCCATGGAACCCCAAGCCCATGCGT GpSuda-SRAsgp GCCATGGAACCCCAAGCCCAGTCCAT GpSuda-SRAsgp GCCATGGAACCCCAAGCACAGCAT GpSuda-SRAsgp GCCGTGGACGATGCCCCCAAGCAACCAT GpSuda-SRAsgp ACCCCCCCAATGACCTTCCAAGCAACGAA GpSuda-SRAsgp ACCCCCCCAATGACCTTCCAAGCAAGCAA GpSuda-SRAsgp CCCCCCCAATGACCTTCCCACGGT GpSuda-SRAsgp CCCCCCCAATGACCTACAGCAA GpSuda-SRAsgp CCCCCCCAATGACCTACAGCAAGCAA GpSuda-SRAsgp CCCCCCCAATGACCTATAGCCTTCCC GpSuda-SRAsgp CCCCCCCAATGACCTATGCCAGGAT GpSuda-SRAsgp CCCCCCCAATGACCCTATGCCCCGAGAC GpSuda-SRAsgp CCCCCCCAATGACCTTCCCCTT GpSuda-SRAsgp CCCCCCCAAGGCAATGCCATTCCCCCT GpSuda-SRAsgp CCCCCCCAAGCGATGCCCCCCGACACCACGCT GpSuda-SRAsgp CCCCCCCAAGCTACACCCCGCACACCACCT GpSuda-SRAsgp CCCCCCCACCATTCCCCCCCGATTCCCCCTT GpSuda-SRAsgp CCCCCCCACCATTCCCCCCCCCCCCCCCCCCCCCCCCC		SUCdgpR2	GCRTARAARTCRTGICCRTRRTC
GpSuch=8RAngsp GGGCTGGACACCTGGCCCCAGTGCAT GpSuch=8RAgsp GCGCTGGACACCTGGCCCGCAGTGCCGT GpSuch=8RAgsp GCCCTGGACGCCCCAAGCCGCGTGA GpSuch=8RAgsp GCCCTGGACGGACGCCCCCAAGCCGTGA GpSuch=8RAgsp ATGGGTACATGGCGCGAGTGCCCTGA GpSuch=8RAgsp ATGGCGTACATGTGGGAGTGCCCTGA GpSuch=8RAgsp AGCAATTGGTAGATGCTTCCAAGGAT GpSuch=8RAgsp CCCCCCAAGTGCATAGATGCAACGGA GpSuch=8RAgsp CCCCCCAAGTGCATAGATCGGAAGTGCCCCCAAGGAT GpSuch=8RAgsp CCCCCCAAGTGCATAGACCGGAAGGA GpSuch=8RAgsp CCCCCCAAGTGCATAGACCGGAAGGA GpSuch=8RAgsp CCCCCCAAGTGCATAGACCGGAAGAA GpSuch=8RAgsp CCCCCCAAGTGCATAGACCGGAATTGCCGGAATTGCGGAAGTTCCCAGGT GpSuch=8RAgsp CCCCCAAGTGCAACCTGCAGTGCAGAAGAA GpSuch=8RAgsp CCTGCAACTGCGGAATGCCCAGATT GpSuch=8RAgsp CCTGCAACTGCGGCAATTGCATGGGAAGAA GpSuch=8RAgsp CCTGCAACTGCGGCAATTGCATGCAGAA GpSuch=8RAgsp CCTGCAACTGCATTCGATCGAAGCAACTTGCATGCAGAAGAA GpSuch=8RAgsp CCTGCAACTGCATTGCATGCAGAGAA GpSuch=8RAgsp CCTGCGCAATTGCATTGCATGCAGAA GpSuch=8RAgsp CCTGCGCAATTGCATTGCAATGCGCATTGCATGCAGCAACACTTGCAG		GpSuc1a-5RAgsp	AGCACCACCGGAGAAACACATTTCTT
		GpSuc1a-5RAngsp	GGGCTGGACACGTGGCCCCAGTGCAT
G [*] psuch-BRAngep GGCATGGAAGCCCAAGCGCATGGCTT G [*] psuch-BRAgep TCCACTECCCGAGCAAGTGCCCCCATCCAT G [*] psuch-BRAgep ACCCATECCCCAAGGCACCACTCCCATCCAT G [*] psuch-BRAgep ACCCATECCCCAAGGCACCACTCCCATCCAT G [*] psuch-BRAgep ACCATTECCCAAGGCACCCCATCCATGGAA G [*] psuch-BRAgep ACCATTECCCAAGGCACCCCATCCATGGAA G [*] psuch-BRAgep ACCCCCAATGCACCCATCCAAGGAA G [*] psuch-BRAgep CGCCCCCAATGCACCCAATGCACCCAATGGAA G [*] psuch-BRAgep CGCCCCCAAGGCATAGGAAAGGAA G [*] psuch-BRAgep CGCCCCCAGGTATAGACCCAAAGGAA G [*] psuch-BRAgep CTCCACTTTTCCATTCCCAATGCAAGGAA G [*] psuch-BRAgep CTCCACTTTTCGATCCCAATGCCCCCCCTTCC G [*] psuch-BRAgep CTCCACTTTTCGATCCCAATT G [*] psuch-BRAgep CTCCACTTTTCGATCCCAATT G [*] psuch-BRAgep CTCCCCTAGGTGTAGCACCTTCCAGGT G [*] psuch-BRAgep CTCCACTTTCCTGCAACTTCCAGGT G [*] psuch-BRAgep CTCCCCAAGGTGTGAAACCTCAAGGAA G [*] psuch-BRAgep CTCCCCCAAGGTGTGAACCTTCAAGGAA G [*] psuch-BRAgep CTCCCTCAGGTGTGAACCTTCAAGGAA G [*] psuch-BRAgep CTCCCTCAAGGTGTGAACACTCAAGGAA G [*] psuch-BRAgep CTCCCTCAAGGTGTGAAC		GpSuc1a-3RAgsp	ACAGTTTACATGTGGGAATGCCCTGA
Gysulb-SRAgsp GGSGCGCCCCCCATGCCCCCCATCCCT Gysulb-SRAngsp GGCGCGCCCCCCATGCGCCCCCAATGGGCACGGTA Gfsulb-SRAngsp GGAAGGCACCTCAGGGGCCCCCCAATGGGCACGGTA Gfsulb-SRAngsp GGAAGGCACCTCAGGGGCCCCCAATGGGCACGGTA Gfsulb-SRAngsp GGAAGGCACCTCAGGGGCACGGTA Gfsulb-SRAngsp GGACGCCCAATGGTGGAGGCACCGCAAGGCACGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCGCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCAAGGCCCCCC		GpSuc1a-3RAngsp	GGCATGGAACCCAAAGGCGATCGGTT
G [*] psuch-BRAngsp GCGCTGGACGAGTGCCCCATGCAT GpSuch-BRAgsp AGGGGTACAGTGCGCCATGCATG GPSuch-BRAgsp GGAATGGCACCTCAGGGTGACAGGTA GPSuch-BRAgsp AGCAATTGGCACCTCAGGGTGACAGGTA GPSuch-BRAngsp AGCAATTGGTAGACTATCCAGGTA GPSuch-BRAngsp AGCAATTGGTAGGCTATTCCAAGGTA GPSuch-BRAngsp CGCCCCAAGGTATAGAACCGGAAGGA GPSuch-BRAngsp CGCCCCCAGGTATAGAACCGGAAGGA GPSuch-BRAngsp CGCCTCCAGGTATAGAACCGGAAGGA GPSuch-BRAngsp CGCCTCCAGGTATGCAAGGAGGA GPSuch-BRAgsp CTTGCATATAGACCGGAAGGAA GPSuch-BRAgsp CTTGCACTATAGTGCCAATGTCCAGGT GPSuch-BRAgsp CTTGCGAATGCCGAAGGAAGGAAGGAAGGAAGGAAGGAAG		GpSuc1b-5RAgsp	TCCACTGCCCGAGAAGCACTGTTCTT
Gysuch-3RAgsp GAATGGGGTACATCHGGGGGTGGCCTGA Gysuch-3RAngsp GGAATGGCACCTCAGGGTGACAGGTA RACE Gysuch-3RAngsp GAAATGGCACCTCAGGGTGACAGGTA Gpsuch-3RAngsp GAATGGCACCTCAGGGTGACAGGTA Gpsuch-3RAngsp GACAATGGCACCTCAGGATGCAGGA Gpsuch-3RAngsp GCCCTCAGGGTATAGAACCGAAGGA Gpsuch-3RAgsp CCCTCCAGGTATAGAACCGAAGGA Gpsuch-3RAgsp CCCCTCATGGTGGGAATGCCAGAGT Gpsuch-3RAgsp CCCCTCATGGGGAATGCCAGAGT Gpsuch-3RAgsp CCCCTCATGGGGAATGCCAGAGT Gpsuch-3RAgsp CCCCTCATGGGGAATGCCCAAGT Gpsuch-3RAgsp CCCTCATGGGGAATGCCCAAGT Gpsuch-3RAgsp CCCTCAAGGTAAACCCAATGCCAAATCCCTG Gpsuch-3RAgsp CTTGGAATATGTCGGAATGCCAAGAA Gpsuch-3RAgsp CTTGGAATATGTCCCAAATGCCAGAT Gpsuch-BRAGSP CTTGGAATATGTCCCAAATGCCGGATGAA Gpsuch-BRAGSP CTTGGAATTATGTCCCAAATGCCGAAGAA </td <td></td> <td><i>GvSuc1b</i>-5RAngsp</td> <td>GCGCTGGACGAGTGCCCCCAATGCAT</td>		<i>GvSuc1b</i> -5RAngsp	GCGCTGGACGAGTGCCCCCAATGCAT
Gisub-BRANgsp GGAMTGGCACCTCAGGGTGAAGGTA GPSud2-SRAgsp AGCAATTGGTAGATGCTTCAAGGAA GPSud2-SRAgsp AGCCAATTGGTAGATGCTTCCAGGT GPSud2-SRAgsp CATGGCCCAATGACATGGAA GPSud2-SRAngsp CATGGCCTCATAGAAAGTGTCGGG GPSud2-SRAngsp CCCCCAGGGTATAGAACGGAAGGA GPSud2-SRAngsp CTCCACTTTGTCATATGCCTTGTCC GPSud2-SRAngsp CTCCGCTCATGGTGCAAAAGCAAGGA GPSud2-SRAngsp CTCGGATACATGTGGGAAGGA GPSud2-SRAngsp CTCGGATACATGTGGGAAGGA GPSud2-SRAngsp CTTGGATACATGTGGGAATGCCAATGC GPSud2-SRAngsp CTTGGATACATGTGGGGAATGCCAAATGCT GPSud2-SRAgsp CTTGGATACATGGCGAATGCCAGAT GPSud2-SRAgsp CTTGGATACATGGCGAATGCCAGAT GPSud2-SRAgsp CTTGGATACATGGCGAATGCCAGAT GPSud2-SRAgsp CTTGGAGGCGTCCAAGGGGAAC GPSud2-SR CGCACCATGCAAACCAAACGAAACGAAACGAAACGAAAC		GpSuc1b-3RAgsp	ATGGGGTACATGTGGGAGTGCCCTGA
		<i>GvSuc1b</i> -3RAngsp	GGAATGGCACCTCAGGGTGACAGGTA
RACE GF\$uc2=RANgsp GpSuc2=RANgsp ATGCCCCCAATGACATATCACGGT GpSuc2=RANgsp GATGGCCTCACTACTAAAAAGTATCGG GpSuc2=SRAngsp CGCCTCAGGGTATAGAACCGCAGGA GpSuc2=SRAngsp GF\$uc2=SRAngsp CTCCACTTTGTCATATGCCTTGTC GPSuc2=SRAngsp GPSuc2=SRAngsp CTCGACTGTGCACGGTGGAAATGCCAAGGA GpSuc2=SRAngsp GPSuc2=SRAngsp CTCGGATGCCAATGCCAAATGCCAAGGA GPSuc2=SRAngsp GPSuc2=SRAngsp CTTGGATACATGCGCAAATGCCAAGGA GPSuc2=SRAngsp GPSuc2=SRAngsp CTTGGATGCCATTCTCATCGGT GPSuc2=SRAngsp GPSuc1=Re CGCCCCACGCGCAAATGCCAAATGCCAAGA GPSuc1=Re GPSuc1=Re CGCAGCGAGGTGTCCCAAAT GPSuc1=Re CGCAGCACCCACCACCATTGTGCCAGT GPSuc1=Re CGCAGCACCCACCCACCTTGTGCCAGT GPSuc1=Re CGCAGCACCCACCCACCTTGTGCGAGGA GPSuc2=Fw CGCAGCACCCACCCACCTTGGGAGAC GPSuc2=Re CTGATGCAGGGCCCTTATGCGGCGCCT GPSuc2=Re TGCTGCAGGGCCCCTATGGGGGCCCCTAGG GPSuc2=Re TGCATGCAAACCGAACCCGGCC GPSuc2=Re CGCCAGCAGGGCCCCTAAGGCACACGGCC GPSuc2=R CCCCTCCAGGCCCCTTATCCATCGGCGCC GPSuc2=R CCCCCTCGAGCACCACGCGCCCCACACCCGCGCC GPSuc2=R CCCCCTCGAGCACCACCGCGCCCACACCCCCCCCCACACCCGCACACCC <td></td> <td>GPSuc2a-5RAgsp</td> <td>AGCAATTGGTAGATGCTTCCAATGGAA</td>		GPSuc2a-5RAgsp	AGCAATTGGTAGATGCTTCCAATGGAA
RACE CpSuc2a-3RAgep GATGGCGTCACTACTAAAAAGTATCGG GPSuc2b-3RAngep CGCCTCAGGGTATAGAACCGAACGGA GPSuc2b-SRAngep CTCCACTITTGTCAAATGCCTGGCGCTTTTC GPSuc2b-SRAngep CTCGACTACTGTGGCAACTGCGGCGTTTTG GPSuc2b-SRAngep CGCCTCAAGGTGTGAAACCTGAACCGGA GPSuc2b-SRAngep CTGGATACATGTGGGAATGCCAAATGCG GPSuc2b-SRAngep CTGGTATACTATGTGGGAATGCCCAGATT GPSuc2b-SRAngep CTGGTATACTATGTGGGAATGCCCAGATT GPSuc2b-SRAngep CTTGGMTATGTGGGAATGCCCAGATT GPSuc2b-SRAngep CTTGGMTATGTGGGAATGCCCAGATT GPSuc2b-SRAngep CCTTGGMTATGTGGGAATGCCCAGATT GPSuc2b-SRAngep CTTGGMTACAAAACAAATGGCAAGAA GPSuc2b-SRAngep CTTGGATACGCTTGGGACATTGCCAGATT GPSuc2b Fw CGCACGTACTACACTGGGCGACTAACC GPSuc2b Fw CGCACGACCACCACCACCACTGCAGTGGG GPSuc2b Fw CGAAGGCACCCATTCCAATGGCGCACTGAG GPSuc2b Fw CGCAGGGAACCCAAGCCTGGACT GPSuc2b Fw CGGACCCATTCCAAGGCGACCACAC GPSuc2b Fw CCGACTCCAATGGGGCCCCAAGCGC GPSuc2b Fw CCGACTCCAATGGGGCCCCAAGCGGCGAAA BmSuc1 Fw CCGCACGCACCCAGGCGCCCCCGGAA GPSuc2b Fw CCGCACTCCAATGGCGCCCCTGAACGGC		GpSuc2a-5RAngsp	ATGCCCCCAATGAGCTATTCCAGGTT
G [*] psuc2a-3RAngsp CCCCTCAGGGTATAGAACCGGAAGCA Gpsuc2b-SRAgsp CTCCACTTITGTCAITGCCATGTCC Gpsuc2b-SRAgsp CCCCTCAGGGTATGCCATGTCC Gpsuc2b-SRAgsp CTGGATACATGGGGATGTCCAAGTT Gpsuc2b-SRAgsp CTGGATACATGGGGATGTCCAAATGCCATT Gpsuc2b-SRAgsp CTGGATACATGGGGATGTCCAAATGCCATT Gpsuc2b-SRAgsp CTGGMTAYATGTGGAAAGTCCAAATGCCAATT Gpsuc2b-SRAgsp CTGGMTAYATGTGGAAAACTGGCAAGT Gpsuc2b-SRAngsp CTGGGMTAYATGTGGGAATGTCCAGATT Gpsuc2b-SRAngsp CTGGGAATGCCATAACTGGCAAGT Gpsuc2b-SRAngsp CTGGGAATGCCAAACTGGCAAGTA Gpsuc2b-SRAngsp CAATGACAAACTGGGGAAGTCAGGTA Gpsuc2b-SRAngsp CCAATGCAAAACTGGGGAGTAGTG Gpsuc2b-SR CGGGGCCACAAACTGGGGAGTAGTG Gpsuc2b-Rw CGGCACCACAACTGGGGAGTGGAT Gpsuc2b-Rw CGGACGACCACCAACTCGGGGAGTGGAT Gpsuc2b-Fw CGGAAGCACCCCACACCTCTGGGGAGT Gpsuc2b-Fw CGACGAGCACCACAACCTGGGGCACCACACGACGACGACGACGGACG	RACE	GpSuc2a-3RAgsp	GATGGCGTCACTACTAAAAAGTATCGG
Gpsuc2b-SRAgsp CTCCACTTTTGTATATCCCTTGTCC Gpsuc2b-SRAgsp TCGCTGATCATGGTGGGGCTTTTTG Gpsuc2b-SRAgsp CGCCTCAAGGTGGAAACTGGGAACTTGCAGATT Gpsuc2b-SRAgsp CGCCTCAAGGTGTGAAACTGGGAAGCTGAACCGGA Gpsuc2b-SRAgsp CTTGGATACATGGGAATGCCAAGTT Gpsuc2b-SRAgsp CTTGGATACATGGGAATGCCAAGTT Gpsuc2b-SRAgsp CTTGGATACAAGGAAAGCCAATT Gpsuc2b-SRAgsp CTTGGATACAACGGAATGCCAAGTT Gpsuc2b-SRAgsp CTTGGATACAACGGAATGCCAAGTT Gpsuc2b-SRAgsp CTTGGATACAACGGAATGCCAAGT Gpsuc2b-SRAgsp CTTGGATACAATGGGGGAAGTCCACGCACAAC Gpsuc2b-SRAgsp CTTGGATACATGGGGGAAGTCCACGCACAAC Gpsuc2b-SRAgsp CTTGGATACATGGGGGGACTAACC Gpsuc2b-SRAgsp CTTGGATCACGACGACAACAACAATC Gpsuc2b-SR CGCAGTGACCACTACGGGGGCACTAACC Gpsuc2b-SR CGGACCCATTGACGAGGGGGAGATGAT Gpsuc2b-SR CGCATTGAAAACCCTTGGTGGAGGGAGAGACCAAGAAGGACCGAACAAGGACCGAACAAGGACCGAACAGGACCGAAACGGAACCAGACGAACAGAACAGAACAGAACAGAACAGAACAGAACAAC		GvSuc2a-3RAngsp	CGCCTCAGGGTATAGAACCGGAAGGA
Gisuc2b-5RAngsp TCGCTGCTCATGTGGGGGCTTTTTG GpSuc2b-3RAgsp CTIGGATACATGTGGGAATCCCAGATT GpSuc2b-5RAgsp CCGCTCAAGGTGGAAACCTGAAGGA GpSuc2b-3RAgsp TCGGTGGGATGCCAAGGT GpSuc2b-3RAgsp CTTGGATTACTGTGGAAATCCTGACGAT GpSuc2b-3RAgsp CTTGGMTAYATGTGGGAATGCCAGATT GpSuc2b-3RAgsp CTTGGMTAYATGTGGGAATGCCAGATT GpSuc2b-3RAgsp CAAATGACAAAACGGGGATGGGCAGGAAGAA GpSuc2b-3RAgsp CAAATGACAAAACGGGGGGGGATGACC GpSuc2b-Rew CGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG		GpSuc2b-5RAgsp	CTCCACTTTTGTCATATGCCTTGTCC
GPSuc2b-3RAgsp GpSuc2b-3RAgsp GpSuc2b-3RAgsp GpSuc2b-3RAgsp CGCCTCAAGGTGTGGAACCGAAGT GpSuc2b-3RAgsp CGCCTCAAGGTGTGGAACCGAAGT GpSuc2b-3RAgsp CTTGGMTAYTGTGGAAAGTGCAAGT GpSuc2b-3RAgsp CAAATGACAAAACAAACTGGCCAAGAA GpSuc2b FW GPSuc2b FW GCCAGGTACAGGTGGGGACTAGG GPSuc2b FW GPSuc2b FW GCCAGGCACTTGGGGACTTGGGGGACTAGG GPSuc2b FW GCCAGGGACTTGGGGACTTGGGGGACTAGG GPSuc2b FW GCCAGGGACTTGGGGACTTGGGGGACTAGG GPSuc2b FW GCCAGGGACTTGGGGACTTGGGGACT GPSuc2b FW GCCACGGGACATTGGGGACT GPSuc2b FW GCGACGGGACTTGGGGACT GPSuc2b FW CGCAGGGACTTGGGGACT GPSuc2b FW CGCACCGGTTGAAAGGGACGCACC GPSuc2b FW CGCACCGGTTGAAAGCGACCAGGC GPSuc2b FW CGCACCGGTTGAAAGCGACCAGC GPSuc2b FW CGCACCGGTTTAACAAGGAACTGGAC GPSuc2b FW CGGACCCGTTTAACAAGGAACTGGAC GPSuc2b FW CGGACCGGTTTACAAGGAAC GPSuc2b FW CGGACCCGTTGAGAGACTGGAC GPSuc2b FW CGGACCCGTTGAGAGACGCGAC GPSuc2b FW CGGACCCGTTTACAAGGAGACTGGAC GPSuc2b F GPSuc1a F GPSuc1a F CCGCTCGAGGTTCAGGGATACTGGGGAT CCGCTCGAGGTAACCGGAACTGGGAT CCGCTCGAGGTTCAAGGTAACCTGAC GPSuc2b F CGGGGTCCAAGGGGCAACAACGGAACTGGG GPSuc2b F CGGGGGTCCAAGCGGGCAACAACGGAACGTTCAGG GPSuc2b R CCGCTCGAGGTTCAGGGGCAACAACGGAACGTTCAGG GPSuc2b R CCGCTCGAGGTGCAGAACACGAACGTTCAGG COnstruction PFB-GPSuc1a R CCGCTCGAGATGGTGAGCACACCC GFP R CCGCTCGAGATGGTGAGCAAGGCC CCCAAGCTTTAATGGATCCGCGGGACACACC CCCAAGCTTACTGATGATGAGGCGCGC CCCAAGCTTACTGATGATGATGAGGCGCG CCCAAGCTTACTGATGATGATGATGCGCGGACACC CCCAAGCTTTAATGGATCGATGATGCGCGGACAACCGC CCCAAGCTTTAATGGATCGATGATGCGCGGACAACCGG CCCAAGCTTTAATGGATGCATGATGCGCGGACAACCGC CCCAAGCTTACTGATGATGATGCGCGGACAACCGCGCGAACACCGGGACAACCGCGC CCCAAGCTTACTGATGATGATGATGCGCGGACAACCGCGCAAATGCGCGCGAAATGCGCGCGAATGCCGCGGACAACCGCGCCAAACCGCGCGACAACCACCACC		<i>GnSuc2b</i> -5RAngsp	TCGCTGCTCATGGTCGGGCTTTTTG
GpSuc2b-3RAngsp CGCCTCAAGGTGTGAAACCTGAAGGA GpSuc2-5RAgsp TTAGGGCATGCCATATGTGCCAAATGCTG GpSuc2-3RAngsp CAAATGACCAAAACGGAAGAA GpSuc2-3RAgsp CAAATGACAAAACGAAACGGAAGAA GpSuc2-3RAgsp CAAATGACAAAAACGAAACGGCAGAA GpSuc1a Fw ATGGTGAGTGGTGGGAGGATGACCAGAA GpSuc1a Fw CGCCACCACCACTTGGGCGACTAACC GpSuc1b Fw CCCACGCATGGGGGGGGGAGAACA GpSuc1b Fw CGCAGCACCACCACCACTTGGGCGAGGGGGGGGGGGGGG		GpSuc2b-3RAgsp	CTTGGATACATGTGGGAATGTCCAGATT
^C opSuc2c-SRAgsp GpSuc2c-SRAgsp TTAGGGAAAGCCAAATGCTG GpSuc2c-SRAgsp CTTGGMTAYATGTGGGAAAGTCCAGATT GpSuc2c-SRAgsp CAAATGACAAAACAAACTGCAGATT GpSuc2c-SRAgsp CAAATGACAAAACAAACTGGCAAGAA GpSuc2c-SRAgsp CAAATGACAAAACAAACTGGCAAGAA GpSuc2c-SRAgsp CAAATGACAAAACAAACTGGCAAGAA GpSuc2b Rw GGACTGACCACGAGCTGAACC GpSuc1b Fw GGACGACCACCACCATTGGGGGAGAGG GpSuc2b Re CCGACGCACCACCACTTGGGGGAAGA GpSuc2b Fw GGACGCCTTGGGGGAAGAC GpSuc2b Fw GGCATTGAAAAATACTTTTGGCGACT GpSuc2b Re GCCATTGAAAAATACTTTTGGCGACT GpSuc2b Re GCCATTGAAAAATACTTTTGGCGACT GpSuc2b Re GCCATTGAAAAATACTTTTGGCGACT GpSuc2b Re GCCATTGAAAATACCTTGGGTGGAAC GpSuc2b Rw CGGACCCCTTGGTGGGGACTGGAC GpSuc2b Rw CGGACCCCTTTAAGACCAGAAC BmSuc1 Fw CGGACCCCTTTAAGGCACCAGCACCACC BmSuc1 Re CACGTAGGAAGACCAAGCTTCTGGAT GpSuc1a F CACGTAGGAAGACCGAACGGACTGGAT BmSuc1 Re CCGCCCCCAGTTGAGGAAGACTTGAACTGG GpSuc1a F CCGCCCCCAGTGGGGCTCTAAGGCATTCACTGG GpSuc1a F CCGCCCCCAGTGGAGCATACTGGCGCTCTAAGGCAGCATTCACTGG GpSuc1b F CCGCGCAGAAACGAAACCGAACGCATGGGG GpSuc2b F GGACTTCCATATGGGCGCAAAAACGAACCGTTGAG GpSuc2b R TATCAAATGCGGCGCAAAAACGAACCGTTCAG GpSuc2b R TATCCCGAGGCAAAACGAACCGCTTGAG GpSuc2b R TATCCAAATGGCCGATTACTTCTTTTACGCCCCTTGAG GpSuc2b R TATCAAATGCGGCGCAAAAACGAACCGTTCAAGCCACC GPF R CCGCCTCGAGAGGCGAAAACCGAACCGCCTTCAG GPSuc2b R TATCCAATGGGCGCAAAAACGAACCGCTCCACC GPFP R		<i>GvSuc2b</i> -3RAngsp	CGCCTCAAGGTGTGAAACCTGAAGGA
GpSue2c-SRAngsp TTAAGGGAATGCCATTCTCATCCGTT GpSue2c-3RAngsp CTAATGCAAAAACAAACTGCCAAGAA GpSue2a-SRAngsp CAAATGCAAAACTGCCAAGAA GpSue2b CAATGCACAAACTGCCAAGAA GpSue2b GPSue2b GpSue2b CAATGCACAAACTGCCAAGAA GpSue2b GFSue2b GpSue2b GCCATTGCACACGGGGGAGATG GpSue2b GPSue2b GpSue2b GCCATGCACGGGGACTGGGGACTGGGGAGATG GpSue2b GCCATTGCACAGGGGGACTCGGGGGAGAGT GpSue2b GCCATGCAAAACACTTGGGGGACTCGGGGGAGAGT GpSue2b GCCATGCAAAGCAACCACAAGCTCTGGGGGGCGGAGAGAGGACTGGGAGAGGACTGGGAGAGGACTGGGAGAGGACTGGGGGGGG		GpSuc2c-5RAgsp	TCTGTGACTTATGTGCCAAAATGCTG
Opsiliz2-3RAgsp CTTGGMTAYATGTGGGAATGTCCAGATT GpSuc2c-3RAgsp CAAATGACAAACAAACAACAGAGAA GpSuc1a Fw ATTGTTGTACACTGGCGAGCAACC GpSuc1a Re CGGACGATGAACAACTGAGGGG GpSuc1a Re CGGACGATGAACAACTGGGGGGGGGGGGGGGGGGGGGGG		<i>GvSuc2c</i> -5RAngsp	TTAAGGGAATGCCATTCTCATCCGTT
GpSuc2c-3RAngsp CAAATGACAAAACAAACTGGCAAGAA GpSuc1a Fw ATTGTTGTACACTGGGCGACTAACC GpSuc1a Re TGGTGAGTCGTTCGGAGTGTAACGA GpSuc1b Fw CGCACCTATGAACAACTTGAGGC GpSuc2a Fw GATGGTACACGGGGGATGAGG GpSuc2a Fw GATGGTACAGGTGGGATGAGG GpSuc2b Re CACGTGCTCTATTCCATCATG GpSuc2b Re GCCATTGAAAACTTTGGGCACT GpSuc2b Re GCCATTGAAAACTTTGGGCGACT GpSuc2b Re GCCATTGAAAACTGGCGACT GpSuc2b Re GCCATTGAAACTGGCGACT GpSuc2b Re GGCACCTATGAAACTGGCGACT GpSuc2b Re CGGACGCGTTTACAACGGAA BmSuc1 Re CACGTAGGAGAGGAGCGCAA CGSuc2b R CGGACTCCGATGGGGCTCCAAGGCAAACGGA GpSuc2b F CGGACTCCATGGGCGCAAACGGAA GpSuc1a F CACGTAGGACAACGGATACTGG GpSuc1a R CCCGCTCGAGCAAACGGAAACGGATACTGG GpSuc1a R CCCGCTCCAAGCATTACTCACTGAGG GpSuc1a R CCGCCTCCAAGCATTACTGAGCAAACGGA GpSuc2b F CAGGATCCCATGGCAAAACGGAAACGGTAACTGG GpSuc2b F CCGCACTCCATGGGCAAACGGAAACGGTCAATGGGCATGAGCAGGC GpSuc2b F CCGCGCTCCAAACCAAAACG		GpSuc2c-3RAgsp	CTTGGMTAYATGTGGGAATGTCCAGATT
GpSucla Fw ATTGTTGTACACTGGCGACTAACC GpSucla Re TGGTGAGTCGTTCGGAGGTGACGTA GpSuclb Fw CGCACGTAGACAACTTGAGGC GpSuclb Re CTGACCACCACCACCACTGGGCG GpSuclb Re CGAGCTATGAACAACTTGGCGG GpSuclb Re CGAGCACCACCACCACCACGACG GpSuclb Re CGCATGAAAATACTTTTGGCGGT GpSuclb Re GCCATTGAAAAATACTTTGGGTGG GpSuclb Re GCCATTGAAAAATACTTTGGGTGG GpSuclb Re GCCATTGAAAAATACTTTGGTGTG GpSucla R CGCAAGAACACGCTTGGGTGAA BmSucl Fw CGGAAGCACGAGGGTCTTAACGCAA BmSucl Re CGAAGGAGACGGGTCTCAAAGCTAACTGG GpSucla F CAGCTAGGAGAGGGCTCTTAAAGGGAT GpSucla F CCGCCTCGAGATCAGGGGTCTCTAAGGAAATGT GpSucla F CCGCCTCGAGATCGATGAGGAAAATGTGGGGGTCTCAAGGC And pET-24b GpSucla R CCGCTCCGAGACGAAACGGAACGGATTACTG GpSucla R TATCTCAAGGGAAAACCGAAACGGACTCAAG Vectors GpSucla R TATCTCAATGAGGGCAAAACGGAACGGCTCAAG GpSucla R TATCAAAAGGGCCAGAAAACGGACTCAATG GpSucla R TATCCAAAACGGCAAAACGGACTCAATG GpSucla R TATCCAAATGCGGCCAAAACGGACA		<i>GpSuc2c</i> -3RAngsp	CAAATGACAAAACAAACTGGCAAGAA
GpSucla Re GpSucla Re GpSuclb Fw GpSuclb Fw GpSucla Fw GpSucla Fw GpSucla Re GpSucla Re GpSucla Re GpSucla Re GpSucla Re GpSucla Re GpSucla Re GpSucla Re GpSucla Fw GCATGAACACGTGGGGATGATG GpSucla Fw GCATGAACACTCGGTGAAC GpSucla Fw GCAAGAGCACCAAGCTGGGTGAAC GpSucla Re GCAAGAGCACCAAGCTGGTGGAAC GpSucla Re CGAAGAGCACCAAAATACTTTTGGCGACT GpSucla F GpSucla F GpSucla F GpSucla F GpSucla F GpSucla R CCGCTCGAGGAGGGCTCTAAGGCTAATCG GpSucla R CCGCTCGAGGAGGGCTCTCAAGGCTAATCG GpSucla R CCGCTCGAGCAATGTTGGGGTCTCACATCACTG GpSucla R CCGCTCCGAGCAATGTTGGGATACTGG GpSucla R CCGCTCCGAGCAATGTTGGGATACTGG GpSucla R CCGCTCCAGCAATGTTGGGATACTGG GpSucla R CCGCTCCAGCAATGTTGGGATAACTGG GpSucla R CCGCTCCAGCAATGTTGGGATAACTGG GpSucla F GACTTCCATATGATGACGAGAGAGATTTACTGAGGC And pET-24b GpSucla R CCGCTCCAGCAATGTTGGGATAACTGG GpSucla F GACTTCCATATGATGACGAGAGAGATTTACTGAGGC Construction GpSucla F CGCGCTCGAGCAAAACGAACGCTTGAG BmSucl F CCGCTCGAGATTACTTCTTGCCAACGCC CGGTCCGAGAACCACAAACAGAACGCTTCAATG CCCCAGCCTACATAAACTTTTTTACGGCC GFP F CCGCCTCGAGATTACTTCTTGCCAGGCACACA BmSucl F CCCCAGCCTACAAACAGAACGACTCCAACGC GFP F CCCCAGCCTACTATTACTTCTTGCCAGGCC CCCAAGCTTTACTATGTGCAGCACACC GFP R CCCCAAGCTTTACTGCATGATGATGATGATGAGCGGG Vectors GFP F CCCCAAGCTTTACTGCATGAGCGCACACAC BmSucl F CCCCAAGCTTTACTGCATGATGATGATGATGATGATGATGATGATGATGATGATGA		GpSuc1a Fw	ATTGTTGTACACTGGGCGACTAACC
$ \begin{array}{c} & G_{p}Suc1b \ Fw & CGCAGCTATGAACAACTTGAGGC \\ & G_{p}Suc2b \ Re & CTGACCACCACCACTTTGTGCCCAGT \\ & G_{p}Suc2a \ Re & CAGTGCTACCAGGTGGGGATGATG \\ & G_{p}Suc2b \ Re & GCATTGAACAGGTGGGGATGATG \\ & G_{p}Suc2b \ Fw & TGTCAGGGAACTTCGGTTGAAC \\ & G_{p}Suc2b \ Fw & CGAAGAGCACCAAGCTCTGGTGTG \\ & G_{p}Suc2c \ Fw & CGAAGAGCACCAAGCTCTGGTGTG \\ & G_{p}Suc2c \ Re & TTGATTCATATAGTAGAACCTGAC \\ & BmSuc1 \ Fw & CGGACCCGTTTTACAACGAA \\ & BmSuc1 \ Re & CACGTAGGAGAGGACTGGAT \\ \end{array} $		GpSuc1a Re	TGGTGAGTCGTTCGGAGTGTACGTA
$ \begin{array}{c} \begin{array}{c} G \\ g \\ FT-PCR \\ \hline G \\ G \\$		GpSuc1b Fw	CGCAGCTATGAACAACTTGAGGC
$ \begin{array}{c} G_pSuc2a \ Fw & GATGGTACAGGTGGGGATGATG \\ RT-PCR & GpSuc2a \ Re & CAGTGCTCCTTATTCCATCATGG \\ GpSuc2b \ Fw & TGTCAGGGAACTTCGGTTGAAC \\ GpSuc2b \ Fw & CGAAGAGCACCAAGCTCTTGGTGTG \\ GpSuc2c \ Re & GCCATTGAAAATACTTTTGCGCGACT \\ GpSuc2c \ Re & TTGATTCATATAGTAGAACTGG \\ GpSuc2c \ Re & CACGTAGGAGGCCCGAT \\ \\ BmSuc1 \ Fw & CGACCGTTTTACAACGAA \\ BmSuc1 \ Re & CACGTAGGAGGACTGGAT \\ \end{array} $, GvSuc1b Re	CTGACCACCACCATTTGTGCCAGT
RT-PCRGpSuc2a Re GpSuc2b FwCAGTGCTCCTTATTCCATCATGG GpSuc2b FwGpSuc2b Re GpSuc2b ReGCCATTGAAAATACTTTTGGCGACT GpSuc2c ReGpSuc2c Re BmSuc1 FwCGAAGAGCACCAAGCTCTTGGTGG GpSuc2c ReBmSuc1 FwCGGACCGATGGGGCTCCTAAGGCAA CACCTAGGAGGACTGGATGpSuc1a FATAGGATCCGATGGGGCTCCTAAGGCTAATCG GpSuc1a RGpSuc1b FCTAGATCTCATATGATGAGACTGGG GpSuc1b FGenomic PCR GpSuc1a FGpSuc1a FGenomic PCR GpSuc2b FWCGGCTCGAGGCAAATGTGGGGATACTGG GFSuc1b RGenomic PCR GpSuc2a FGGACTTCCATATGATGGAGAAACTGG GGSuc2a RGenomic PCR GpSuc2b FGpSuc2a RGenomic PCR GpSuc2b FGpSuc2b FGpSuc2b FCCGCGGAGCGAAAACGGAAACGGTAACTGG GGSuc2b FGenomic PCR GpSuc2b RGpSuc2b FGpSuc2b FCCGCGGATCCGAAGAATGATGGGGCGCAAAACGGAACGCTTCAG GpSuc2b FConstructionGpSuc2c FGpSuc2b RTATCAAATGCGGCGCAAAAACGAAACGGAACGCTTCAG GpSuc2c RGCGCTCGAGAATGATCCGATGAACGCTTGCAATG GpSuc2c RCCGCTCGAGAATGATCCCGAAGCACCACAACAACAACAGAACCTGCAATG GGSuc2c RCGFP RCCGCCTCGAGATGGTGAGCAAGGGC GGFU RCGFP RCCGCCTCGAGATGGTGAGCAAGGGC CCCAAGCTTTACTTGTTCCCTGGAGCAACC GFP RCCCCAAGCTTTACATGATGATGATGATGATGATGAGGGGG VectorsTACACTConstructionpFB-BmSuc1 RCCCCAAGCTTTAATGATGATGATGATGATGATGATGATGATGATGATG		, GpSuc2a Fw	GATGGTACAGGTGGGGATGATG
RI-PCRGpSuc2b FwTGTCAGGGAACTTCGGTTGAACGpSuc2b ReGCCATTGAAAATACTTTGGCGACTGpSuc2c FwCGAAGAGCACCAAAGCTCTTGGTGTGGpSuc2c ReTTGATTCATATAGAAACCTGAABmSuc1 FwCGGACCCGTTTTACAACGAABmSuc1 ReCACGTAGGAGAGGAGGACTGGATGpSuc1a FATAGGATCCGATGGGGCTCCTAAGGCTAATCGGpSuc1a FCTAGATTCATATAGTGAGGGGTCTCACATTGGpSuc1b FCTAGATCTCATATGATGGCGGTCTTCACATTGGpSuc1b FCTAGATCTCATATGATGGCGGATAACTGGGpSuc1b RCCGCTCGAGCAATGTTGGGATAACTGGGpSuc2b FCGGACTTCCATATGATGACGAGAGAGATTACTGAGGCAnd pET-24bGpSuc2a FGpSuc2b FCGGGATTCCGATGAGAGAGAGATTACTGAGGCVectorsGpSuc2b FConstructionGpSuc2b RTATCAAATGCGGCCGCAAAACAGAAACGGCTTCAGVectorsGpSuc2c FATAGGATCCGATGACTAAAACTTTTTTAGGCCGFP FCCGCTCGAGAATGATCGCAGGCACACACGFP FCCGGCTCGAGAATGATCGCAGGCAACACACACACACACAC		, GpSuc2a Re	CAGTGCTCCTTATTCCATCATGG
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RT-PCR	GpSuc2b Fw	TGTCAGGGAACTTCGGTTGAAC
GpSuc2c FwCGAAGAGCACCAAGCTCTTGGTGTGGpSuc2c ReTTGATTCATATAGTAGAAACCTGACBmSuc1 FwCGGACCCGTTTTACAACGAABmSuc1 ReCCACGTAGGAGGACTGGATGpSuc1a FATAGGATCCGATGGGGCTCCTAAGGCTAATCGGpSuc1b FCTAGATCTCATATGATGGCGGCTCTCACATTCACTGGpSuc1b FCTAGATCTCATATGATGGCGGTCTTCACATTCACTGGpSuc1b FCCGCTCGAGCAATGTTGGGATAACTGGGpSuc2a FGGACTTCCATATGATGCGAGAGAATTACTGAGGCAnd pET-24bGpSuc2a FGpSuc2b FCGCGGGATCCGATGATGATGACGGACACGCTTGAGVectorsGpSuc2b FConstructionGpSuc2b FGpSuc2c RCCCCTCGAGATGACAACAGAACGGTCCAATGConstructionGpSuc2c RGFSuc2 RCCGCTCGAGATGGTGAGCAACACGCGpSuc2 RCCGCTCGAGATGGTGAGCAACGCGpSuc2 RCCGCTCGAGATGGTGAGCAACACBmSuc1 FCAGCTGTACATATGTTCGCCTGGAGCACACBmSuc1 FCCGGCTCGAGAGCGGGTACACTTCTTCTCAATCCFP FCCGGCTCGAGAGCGGACACACBmSuc1 FCCGGCTCGAGATGGTGAGCAAGGCCCGFP RCCGGCTCGAGAGCGGACACCPF8-BmSuc1 FCCCCAAGCTTTTACTTGTACAGCCCpF8-BmSuc1 FCCCCAAGCTTTTAATGATGATGATGATGATGAGGGGACVectorsTACACTConstructionpFB-GpSuc1a FATGGATCCGATGGGCGCTCCTAAGGCCAATGTGVectorsTACACTConstructionpFB-GpSuc1a FATGGATCCGATGGGGCTCTCAAGGCCTAATCGPFB-GpSuc1a RCCCCAAGCTTTTAATGATGATGATGATGATGAGGGGATACTTCTTTAAATGCTCCTTTCTTAAATGConstructionpFB-GpSuc1a R <tr <td="">CCCCAAGCTTTCAATGGATGATGATGATGATGAGGG</tr>		GpSuc2b Re	GCCATTGAAAATACTTTTGGCGACT
GpSuc2c ReTTGATTCATATAGTAGAACCTGACBmSuc1 FwCGGACCCGTTTACAACGAABmSuc1 ReCACGTAGGAGAGGACTGGATGpSuc1a FATAGGATCCGATGGGGCTCCTAAGGCTAATCGGpSuc1a FCTAGATCCAATTGATGGCGGTCTTCACATTCGGpSuc1b FCTAGATCTCATATGATGGCGGTCTTCACATTCACTGGpSuc1b FCCGCTCGAGCAAGTGTGGGATAACTGGGpSuc2a FGGACTTCCATATGATGACGAGAGAGTTTACTGAGGCAnd pET-24bGpSuc2a FGpSuc2b FCCGGGATCCGATGATGATCGGAGCCTTCAGVectorsGpSuc2b FConstructionGpSuc2c FATAGGATCCGAGGGCAACAACGTGTTGGAGCCGFP RCCGCTCGAGAGCGGGAACACTTTTTTAGGGCGFP RCCGCTCGAGAGCGGGCACACCABmSuc1 RCCGCTCGAGAGCGGGGCACACCACCBmSuc1 RCCGCTCGAGAGCGGGGACACCACCGFP RCCGCTCGAGAGCGGGGACACCACCGFP RCCGGCTCGAGAGCGGGGACACCACCGFP RCCGCCTGAGAGCGGGGACACGGCGFP RCCGCCTGAGAGGGGAGCAGCACCGFP RCCGCCTGAGAGCGGGGACACGCCGFP RCCGCCTGAGAGGGGAGAGGCCGFP RCCGCCTGAGAGGGGAGAGAGGCCGFP RCCCCAAGCTTTTAACAGATGATGATGATGAGGGGGGVectorsTACACTConstructionpFB-BmSuc1 FATAGGATCCGATGGGGCCCCCTAAGCTAAGGCTAATGGAGGGGGGVectorsTACACTConstructionpFB-GpSuc1a FATAGGATCCGATGGGGCCCCTAAGGCTAATGGATGATGATGATGATGATGATGATGATGATGATGA		GpSuc2c Fw	CGAAGAGCACCAAGCTCTTGGTGTG
BinSuc1 FwCCGGACCCGTTTTACAACGAA BmSuc1 ReGpSuc1a FATAGGATCCGATGGGGCTCCTAAGGCTAATCG GpSuc1a RGpSuc1a FCTAGATCCGATGGGGCTCCTAAGGCTAATCG GpSuc1b FGpSuc1b FCTAGATCTCATATGATGGCGGTCTTCACATTCACTGG GFSuc1b RGenomic PCRGpSuc1b RCCCCTCGAGCAATGTTGGGATAACTGG GpSuc2a FGGACTTCCATATGATGACGAGAGAGATTTACTGAGGC AAnd pET-24bGpSuc2b GpSuc2b FCGGGGCCCGAAAACGGAACGCTTGAG GpSuc2b FVectorsGpSuc2b FConstructionGpSuc2c FATAGGATCCGAGGGCGCAACAACAGAAACGTGTCAATG GpSuc2c RCCGCTCGAGATTTACTTCTTGCCAGTTG BmSuc1 FGFP FCCGCCTCGAGATGGTGAGCAAGCC CGGGTACCTAATTGTTCGCCTGGAGCACAC BmSuc1 RCCGCTCGAGATGGTGAGCAAGGCG GFP RGFP RCCGCTCGAGATGGTGAGCAAGCC CGFP RCGGGTACCTTACTTGTACAGGCC CCCAAGCTTTTAATGATGATGATGATGATGATGAGCGGG VectorspFastBac DualpFB-BmSuc1 FATTGCGGCCGCTTTTAATGATGATGATGATGAGCGGGG VectorspFB-GpSuc1a FATAGGATCCGATGGAGCATGATGATGATGAGCGGG TACACTConstructionpFB-GpSuc1a FATAGGATCCGATGGATGATGATGATGATGATGATGATGATGATGATGAT		<i>GpSuc2c</i> Re	TTGATTCATATAGTAGAACCTGAC
BmSuc1 ReCACGTAGGAGAGGACTGGATGpSuc1a FATAGGATCCGATGGGGCTCCTAAGGCTAATCGGpSuc1a RCCGCTCGAGTTCAGGTATACTTCTTCTTAAATGGpSuc1b FCTAGATCTCATATGATGGCGGCTCTCACATTCACTGGpSuc1b RCCGCTCGAGCAATGTTGGGATAACTGGGpSuc2a FGGACTTCCATATGATGACGAGAGAGATTACTGAGGCAnd pET-24bGpSuc2a RTATCTCGAGGGCCAAAACGGAACGCTTGAGExpressionGpSuc2b FCGCGGATCCGATGACTAAACGGAACGGTTCAGVectorsGpSuc2b RTATCAAATGCGGCCGCAAAACGGAACGGTGCAATGConstructionGpSuc2c RCCGCTCGAGATTTACTTCTGCCAGTTGABmSuc1 FCAGCTGTACATATGTTCGCCTGGAGCACACBmSuc1 RCGGCTCGAGATGGTGAGCAAGGGCGFP FCCGCTCGAGATGGTGAGCAAGGGCGFP RCGGGGTACCTTACTTGTACAGCTCPFastBac DualpFB-BmSuc1 FATTTGCGGCCGCTATGTTCGCCTGGAGCVectorsGFP FCOnstructionpFB-GpSuc1a FATTTGCGGCCCCTAAGGGGCTCTCAAGCGGGVectorsTACACTConstructionpFB-GpSuc1a FATTGCAGAGCCCCTAAGGGGCTCTAAGGGGCTCCTAAGGATGATGATGATGATGATGATGATGATGATGATGAT		BmSuc1 Fw	CGGACCCGTTTTACAACGAA
GpSuc1a FATAGGATCCGATGGGGCTCCTAAGGCTAATCGGpSuc1a RCCGCTCGAGTTCAGGTATACTTCTTCTTAAATGGpSuc1b FCTAGATCTCATATGATGGCGGTCTTCACATTCACTGGpSuc1b FCCGCTCGAGCAATGTTGGGATAACTGGGpSuc2a FGGACTTCCATATGATGACGAGAGAGTTTACTGAGGCAnd pET-24bGpSuc2a RTATCTCGAGGGGCAAAACGGACGCTTGAGExpressionGpSuc2b FCCCCGCGCAACAACAGAACGGCTTCAATGConstructionGpSuc2c RGpSuc2c FATAGGATCCGATGATGATCGCAGAGACGCTTCAGBmSuc1 FCCGCTCGAGAATTACTTGCCAGGTTGBmSuc1 FCCGCTCGAGAATGTGCGCACACAGFP FCCGCCTCGAGATGGTGAGCAAGGCGFP RCGGGGTACCTTACTTGTTGCCCTGGAGCFastBac DualpFB-BmSuc1 FATTGCGGCCGCTATGTCGCCTGGAGCVectorsGFP FCCCAAGCTTTTAATGATGATGATGATGAGGGGGGVectorsTATGCGGCCGCTATGTTCGCCTGGAGCFFB-GpSuc1a FATAGGATCCGATGGTGAGCAAGGGCVectorsTACACTConstructionpFB-GpSuc1a FATAGGATCCGATGGGGATCAATGGTGATGATGATGATGATGATGATGATGATGATGATG		BmSuc1 Re	CACGTAGGAGAGGACTGGAT
GpSuc1a RCCGCTCGAGTTCAGGTATACTTCTTCTTAAATGGpSuc1b FCTAGATCTCATATGATGGCGGTCTTCACATTCACTGGenomic PCRGpSuc1b RGpSuc2a FGGACTTCCATATGATGACGAGAGATTACTGAGGCAnd pET-24bGpSuc2a RTATCTCGAGGGCAAAACGGAACGCTTCAGExpressionGpSuc2b FConstructionGpSuc2c FGpSuc2c FATAGGATCCGATGACAACAGAACGGTTCAATGConstructionGpSuc2c FGpSuc2 RCCGCTCGAGATTACTTCTTCTCCAATCGpSuc2 RCCGCTCGAGATTACTTCTTCTCCAATCGpSuc2 RCCGCTCGAGAGCGCGCACACAGpSuc2 RCCGCTCGAGAGCGGGACACACBmSuc1 FCAGCTGTACATATGTTCGCCTGGAGCACACBmSuc1 RCGGGGTACCTTACTTCTTCTCAATCGFP FCCGGCTCGAGATGGTGAGCAAGGGCGFP RCCGGCTCGAGATGGTGAGCAAGGGCGFP RCCCCAAGCTTTACTTCTCCCCTGGAGCVectorsTATCACATGATGATGATGATGATGAGCGGGVectorsTACACTConstructionpFB-BmSuc1 FATTGGGGCCCCTTAAGGCTCAAGCGGGVectorsTACACTConstructionpFB-GpSuc1a FATAGGATCCGATGGGGCTCCTAAGGCTAATCGPFB-GpSuc1a RCCCCAAGCTTTTCAATGATGATGATGATGATGATGATGATGATGATGATGATG		GpSuc1a F	ATA GGATCC GATGGGGCTCCTAAGGCTAATCG
$ \begin{array}{c} GpSuc1b \ F & CTAGATCTCATATGATGGCGGTCTTCACATTCACTG \\ GpSuc1b \ R & CCGCTCGAGCAATGTTGGGATAACTGG \\ GpSuc2a \ F & GGACTTCCATATGATGACGAGAGAGTTTACTGAGGC \\ And pET-24b & GpSuc2a \ R & TATCTCGAGGGCCAAAACGGAACGCTTGAG \\ Expression & GpSuc2b \ F & CGCGGATCCGATGAATTGATCGGAACGGCTTCAG \\ Vectors & GpSuc2b \ R & TATCAAATGCGGCCGCAACAACAGAACGGTGTCAATG \\ Construction & GpSuc2c \ R & CCGCTCGAGATTTACTTGCCAGTTG \\ GpSuc2c \ R & CCGCTCGAGATTTACTTGCCAGTTG \\ BmSuc1 \ F & CAGCTGTACATATGTTCGCCTGGAGCACAC \\ BmSuc1 \ R & CGGCTCGAGATGGTGAGCAAGGGC \\ GFP \ R & CGGCTCGAGATGGTGAGCAAGGGC \\ GFP \ R & CCGCTCGAGATGGTGAGCAAGGGC \\ GFP \ R & CGGGTACCTTACTTGTACAGCTC \\ \hline pFastBac Dual & pFB-BmSuc1 \ R & CCCAAGCTTTAATGATGATGATGATGAGGGGG \\ Vectors & TACACT \\ Construction & pFB-GpSuc1a \ F & ATAGGATCCGATGGGGGCTCCTAAGGCTAATCG \\ Vectors & TACACT \\ Construction & pFB-GpSuc1a \ R & CCCAAGCTTTTCAATGATGATGATGATGATGATGATGATGATGATGATGATG$		GpSuc1a R	CCG CTCGAG TTCAGGTATACTTCTTCTTAAATG
Genomic PCR And pET-24bGpSuc2a FGGACTTCCATATGATGACGAGAGATTTACTGAGGCAnd pET-24bGpSuc2a RTATCTCGAGGGGCAAAACGGAACGCTTGAGExpressionGpSuc2b FCGCGGATCCGATGAATTGATCCGAACGGCTTCAGVectorsGpSuc2b RTATCAAATGCGGCCGCAACAACAGAACGTGTCAATGConstructionGpSuc2c FATAGGATCCGATGACTAAAACTTTTTTAGGGCGpSuc2c RCCGCTCGAGATTTACTTCTTGCCAGTTTGBmSuc1 FCAGCTGTACATATGTTCGCCTGGAGCACACBmSuc1 RCCGCTCGAGATGGTGAGCAAGGGCGFP RCCGCTCGAGATGGTGAGCAAGGGCGFP RCCGCTCGAGATGGTGAGCAAGGGCGFP RCCGCTCGAGATGGTGAGCAAGGGCFastBac DualpFB-BmSuc1 FATTGCGGCCGCTATGTTCGCCTGGAGCTACACTVectorsTACACTConstructionpFB-GpSuc1a FATAGGATCCGATGGGGGCTCCTAAGGCTAATCGpFB-GpSuc1a RCCCCAAGCTTTTCAATGATGATGATGATGATGATGGGGATAACTGCCTTCTTCTTAAATGTACACTConstructionpFB-GpSuc1a RCCCCAAGCTTTTCAATGATGATGATGATGATGATGGGGATAACTGCCTTCTTCTTAAATGCONStructionpFB-GpSuc1a RCCCCAAGCTTTTCAATGATGATGATGATGATGATGATGATGATGATGATGATG		GpSuc1b F	CTAGATCT CATATG ATGGCGGTCTTCACATTCACTG
Genomic TCXGpSuc2a FGGACTTCCATATGATGACGAGAGATTTACTGAGGCAnd pET-24bGpSuc2a RTATCTCGAGGGGCCAAAACGGAACGCTTGAGExpressionGpSuc2b FCGCGGATCCGATGAATTGATCCGAACGGCTTCAGVectorsGpSuc2b RTATCAAATGCGGCCGCAACAACAGAACGTGTCAATGConstructionGpSuc2c FATAGGATCCGATGACTAAAACTTTTTTAGGGCGpSuc2c RCCGCTCGAGATTTACTTCTTGCCAGTTGBmSuc1 FCAGCTGTACATATGTTCGCCTGGAGCACACBmSuc1 RCGGCTCGAGATGGTGAGCAAGGGCGFP FCCGGCTCGAGATGGTGAGCAAGGGCGFP RCGGGGTACCTTACTTGTACAGCTCpFastBac DualpFB-BmSuc1 FATTTGCGGCCGCTATGATGATGATGATGAGGGGGGVectorsTATAGGATCCGATGGGGGCTCCTAAGGCGGGVectorsTATAGGATCCGATGGGGGCTCCTAAGGCGAGCVectorsFB-GpSuc1a FATAGGATCCGATGGTGATGATGATGATGATGATGATGATGATGATGATG	Genomic PCR	GpSuc1b R	CCG CTCGAG CAATGTTGGGATAACTGG
And pE19240GpSuc2a RTATCTCGAGGGGGCAAAACGGAACGCTTGAGExpressionGpSuc2b FCGCGGATCCGATGAATTGATCCGAACGGCTTCAGVectorsGpSuc2b RTATCAAATGCGGCCGCAACAACAGAACGTGTCAATGConstructionGpSuc2c FATAGGATCCGATGACTAAAACTTTTTTAGGGCGpSuc2c RCCGCTCGAGATTTACTTCTTGCCAGTTTGBmSuc1 FCAGCTGTACATATGTTCGCCTGGAGCACACBmSuc1 RCGGCTCGAGAGCGGGTACACTTCTTCTCAATCGFP FCCGGCTCGAGATGGTGAGCAAGGGCGFP RCGGGGTACCTTACTTGTACAGCTCpFastBac DualpFB-BmSuc1 FATTTGCGGCCGCTATGTTCGCCTGGAGCTACACTVectorsTACACTConstructionpFB-GpSuc1a FATAGGATCCGATGGTGAGTGATGATGATGATGATGATGATGATGATGAT	And nET 24h	GpSuc2a F	GGACTTC CATATG ATGACGAGAGATTTACTGAGGC
ExpressionGpSuc2b FCGCGGATCCGATGAATTGATCCGAACGGCTTCAGVectorsGpSuc2b RTATCAAATGCGGCCGCAACAACAGAACGTGTCAATGConstructionGpSuc2c FATAGGATCCGATGACTAAAACTTTTTTAGGGCGpSuc2c RCCGCTCGAGATTTACTTCTTGCCAGTTTGBmSuc1 FCAGCTGTACATATGTTCGCCTGGAGCACACBmSuc1 RCGGGCTCGAGAGCGGGTACACTTCTTCTCAATCGFP FCCGGCTCGAGATGGTGAGCAAGGGCGFP RCGGGGTACCTTACTTGTACAGCTCpFastBac DualpFB-BmSuc1 FPFastBac DualpFB-BmSuc1 RCCCCAAGCTTTTAATGATGATGATGATGAGCAGGGVectorsTACACTConstructionpFB-GpSuc1a FATAGGATCCGATGGGGGCTCCTAAGGCTAATCGpFB-GpSuc1a RCCCCAAGCTTTTCAATGATGATGATGATGATGATGATGATGATGATGATGATG	Fyprossion	GpSuc2a R	TAT CTCGAG GGGCAAAACGGAACGCTTGAG
VectorsGpSuc2b RTATCAAATGCGGCCGCAACAACAGAACGTGTCAATGConstructionGpSuc2c FATAGGATCCGATGACTAAAACTTTTTTAGGGCGpSuc2c RCCGCTCGAGATTTACTTCTTGCCAGTTTGBmSuc1 FCAGCTGTACATATGTTCGCCTGGAGCACACBmSuc1 RCGGCTCGAGAGCGGGTACACTTCTTCTCAATCGFP FCCGGCTCGAGATGGTGAGCAAGGGCGFP RCGGGGTACCTTACTTGTACAGCTCpFastBac DualpFB-BmSuc1 FATTTGCGGCCGCTATGTTCGCCTGGAGCExpressionpFB-BmSuc1 RVectorsCCCCAAGCTTTTAATGATGATGATGATGAGAGCGGGVectorsTACACTConstructionpFB-GpSuc1a FATAGGATCCGATGGGGGCTCCTAAGGCTAATCGpFB-GpSuc1a RCCCCAAGCTTTTCAATGATGATGATGATGATGATGATGATGATGATGATGATG	Vactors	GpSuc2b F	CGC GGATCC GATGAATTGATCCGAACGGCTTCAG
Construction GpSuc2c F ATAGGATCCGATGACTAAAACTTTTTTAGGGC GpSuc2c R CCGCTCGAGATTTACTTCTTGCCAGTTTG BmSuc1 F CAGCTGTACATATGTTCGCCTGGAGCACAC BmSuc1 R CGGCTCGAGAGCGGGTACACTTCTTCTCAATC GFP F CCGCTCGAGATGGTGAGCAAGGGC GFP R CCGGCTCGAGATGGTGAGCAAGGGC pFastBac Dual pFB-BmSuc1 F ATTTGCGGCCGCTATGTTCGCCTGGAGC Expression pFB-BmSuc1 R CCCCAAGCTTTTAATGATGATGATGATGAGGGGGGG Vectors TACACT Construction pFB-GpSuc1a F ATAGGATCCGATGGGGGCTCCTAAGGCTAATCG pFB-GpSuc1a R CCCCAAGCTTTTCAATGATGATGATGATGATGATGGTGATA CTTCTTCTTAAATG CTTCTTCTTAAATG	Construction	GpSuc2b R	TATCAAAT GCGGCCGC AACAACAGAACGTGTCAATG
GpSuc2c R CCGCTCGAGATTTACTTCTTGCCAGTTTG BmSuc1 F CAGCTGTACATATGTTCGCCTGGAGCACAC BmSuc1 R CGGCTCGAGAGCGGGTACACTTCTTCTCAATC GFP F CCGCTCGAGATGGTGAGCAAGGGC GFP R CCGGCTCGAGATGGTGAGCAAGGGC pFastBac Dual pFB-BmSuc1 F ATTTGCGGCCGCTATGTTCGCCTGGAGC ATTTGCGGCCGCTATGTTCGCCTGGAGC Vectors TACACT Construction pFB-GpSuc1a F ATAGGATCCGATGGGGGCTCCTAAGGCTAATCG pFB-GpSuc1a R CCCCAAGCTTTTCAATGATGATGATGATGATGGTGATA CTTCTTCTTAAATG	Construction	GpSuc2c F	ATA GGATCC GATGACTAAAACTTTTTTAGGGC
BmSuc1 F CAGCTGTACATATGTTCGCCTGGAGCACAC BmSuc1 R CGGCTCGAGAGCGGGTACACTTCTTCTCAATC GFP F CCGCTCGAGATGGTGAGCAAGGGC GFP R CGGGGTACCTTACTTGTACAGCTC pFastBac Dual pFB-BmSuc1 F ATTTGCGGCCGCTATGTTCGCCTGGAGC Expression pFB-BmSuc1 R CCCAAGCTTTTAATGATGATGATGATGAGGGGGG Vectors TACACT Construction pFB-GpSuc1a F ATAGGATCCGATGGGGCTCCTAAGGCTAATCG pFB-GpSuc1a R CCCAAGCTTTTCAATGATGATGATGATGATGATGGTGATA CTTCTTCTTAAATG CTTCTTCTTAAATG		GpSuc2c R	CCG CTCGAG ATTTACTTCTTGCCAGTTTG
BmSucl R CGGCTCGAGAGCGGGTACACTTCTTCTCAATC GFP F CCGCTCGAGATGGTGAGCAAGGGC GFP R CGGGGTACCTTACTTGTACAGCTC pFastBac Dual pFB-BmSucl F ATTTGCGGCCGCTATGTTCGCCTGGAGC Expression pFB-BmSucl R CCCAAGCTTTTAATGATGATGATGATGAGGGGGGGGGGG		BmSuc1 F	CAGCTGTA CATATG TTCGCCTGGAGCACAC
GFP FCCGCTCGAGATGGTGAGCAAGGGCGFP RCGGGGTACCTTACTTGTACAGCTCpFastBac DualpFB-BmSuc1 FATTTGCGGCCGCTATGTTCGCCTGGAGCExpressionpFB-BmSuc1 RCCCAAGCTTTTAATGATGATGATGATGAGGGGGGGGGGG		BmSuc1 R	CGGCTCGAGAGCGGGTACACTTCTTCTCAATC
GFP R CGGGGTACCTTACTTGTACAGCTC pFastBac Dual pFB-BmSuc1 F ATTTGCGGCCGCTATGTTCGCCTGGAGC Expression pFB-BmSuc1 R CCCAAGCTTTTAATGATGATGATGATGATGAGGGGGG Vectors TACACT Construction pFB-GpSuc1a F ATAGGATCCGATGGTGATGATGATGATGATGGTGATGGTGATG pFB-GpSuc1a R CCCAAGCTTTTCAATGATGATGATGATGATGGTGATA CTTCTTCTTAAATG CTTCTTCTTAAATG		GFP F	CCGCTCGAGATGGTGAGCAAGGGC
pFastBac Dual pFB-BmSucl F ATTTGCGGCCGCTATGTTCGCCTGGAGC Expression pFB-BmSucl R CCCAAGCTTTTAATGATGATGATGATGAGGGGGGGGGGG		GFP R	
Expression pFB-BmSucl K CCCAAGCTTTTAATGATGATGATGATGATGATGAGGGGGGGG	pFastBac Dual	pFB-BmSuc1 F	ATTT GCGGCCGC TATGTTCGCCTGGAGC
Vectors ITACACT Construction pFB-GpSuc1a F ATAGGATCCGATGGGGGCTCCTAAGGCTAATCG pFB-GpSuc1a R CCCAAGCTTTTCAATGATGATGATGATGATGGGGATATA CTTCTTCTTAAATG	Expression	pFB-BmSuc1 R	CCC AAGCTT TTAATGATGATGATGATGATGAGCGGG TACACT
pFB-GpSuc1a R CCCAAGCTTTTCAATGATGATGATGATGGTGATGGTGATG CTTCTTCTTAAATG	Construction	pFB-GpSuc1a F	ATA GGATCC GATGGGGCTCCTAACGCTAATCC
CTTCTTCTTAAATG	Construction	pFB-GpSuc1a R	CCCAAGCTTTTCAATGATGATGATGATGATGGGTATA
		rib opoulluit	CTTCTTCTTAAATG

Table 1. The primer sequences used in this study.

Bold nucleotides indicate restriction sites.

2.5. *Expression of Recombinant Proteins in E. coli and Preparation of GpSUC1a Polyclonal Antibody*

Primers for amplifying the open reading frame (ORF) of *GpSuc1a*, *GpSuc1b*, *GpSuc2a*, *GpSuc2b*, and *GpSuc2c* were designed (Table 1). Genomic PCR was carried out and the PCR products were purified using a DNA purification kit (Promega, Madison, WI, USA), digested with different restriction enzymes and ligated into a His tag-holding expression vector pET-24b, resulting in the recombinant expression vectors. The resultant plasmids were confirmed by sequencing and transformed into E. coli strain BL21 (DE3) cells. The transfected cells were grown at 37 °C in Luria–Bertani medium containing 50 µg/mL kanamycin, and then induced with 0.5 mM isopropyl β -D-1-Thiogalactopyranoside (IPTG) for 20 h at 16 °C. Transformation and purification of recombinant BmSUC1 were simultaneously carried out. The soluble proteins in the supernatant were separated from the precipitate after ultrasonic cytolysis and centrifugation. Purification of the recombinant proteins was achieved using a Ni-NTA affinity column (Qiagen, Hilden, Germany). The concentrations of proteins were measured using the BCA Proteins Assay Kit (Sangon Biotech, Shanghai, China). Enzymatic activity of purified proteins was determined using sucrose as substrate according to the same method as described above. To establish the effect of pH on the sucrose hydrolytic activity, a 200 µL reaction containing 80 µg of total midgut proteins, 100 mM sucrose, and 10 mM Britton–Robinson wide range buffer (pH 4.0–11.0) was incubated for 30 min at 30 °C. Approximately 3 mg of purified recombinant GpSUC1a was collected for the preparation of the rabbit polyclonal anti-GpSUC1a antiserum, as described by Zhu et al. (2013) [21] and Gan et al. (2018) [19].

2.6. Expression and Purification of Recombinant Proteins through the Bac-to-Bac System

The ORFs of *GpSuc1a* and *BmSuc1* were subcloned from each pET-24b recombinant vectors and inserted into the donor plasmid pFastBac Dual within NotI and HindIII sites and transformed to E. coli DH10Bac (BmNPV) cells. For the method of culturing E. coli DH10Bac cells containing recombinant bacmid baculoviruses baculovirus (please refer to Daimon et al. (2005)) [24]. The white colonies were selected for further amplification. The positive recombinant bacmid baculoviruses confirmed by PCR were isolated from the DH10Bac (BmNPV) cells and transfected into BmN cells using Lipofectamine 2000 (Thermo, Waltham, MA, USA) [14]. The recombinant P0 viral solution was collected from BmN cells 72 h post-infection by centrifuging at $1000 \times g$ for 5 min. The P0 viral stock was further used to infect BmN cells to generate the P1 virus. The high-titre P2 stock obtained by repeating the steps was used to express recombinant proteins. After 72 h, the nutrient solution was collected and separated into supernatant and sediment by centrifuging at $4000 \times g$ at 4 °C for 30 min. The recombinant GpSUC1a and the BmSUC1 proteins containing the $6 \times$ His-tagged were purified with a Ni-NTA column. The enzymatic activity of purified proteins was determined using sucrose as a substrate with the same method as described above. The primers used are shown in Table 1.

2.7. SDS-PAGE and Western Blotting Analysis

To identify the expressional profile of GpSUC1a in larval tissues, total proteins were extracted from midgut, silk gland, fat body, and epidermis of the final instar larvae of *G. pyloalis* as described as above. One microgram proteins were separated by SDS-PAGE (10% (w/v) polyacrylamide gel) and electroporated onto polyvinylidene fluoride (PVDF) membrane (Millipore, Billerica, MA, USA) with 15 V for 15 min using Trans-Blot (Bio-Rad, Hercules, CA, USA). The membranes were blocked in 5% skim milk for 1 h at room temperature (RT) and incubated with anti-GpSUC1a antibody 1:500 diluted in 5% (m/v) skim milk in PBST (PBS containing 0.1% Tween 20) overnight at 4 °C. The membrane was washed and incubated with goat anti-rabbit IgG as a secondary antibody 1:5000 diluted in the same blocking buffer for another 1 h at RT then visualized by using an Enhanced HRP-DAB Chromogenic Substrate Kit (Tiangen, Beijing, China). Additionally, expression, purification, and identification of recombinant proteins were analyzed by SDS-PAGE and

western blot. In these cases, the anti-His tag antibody was used as the primary antibody in the immunoblot analysis.

2.8. Immunohistochemistry Assay

Immunohistochemistry was performed as described by Daimon et al. (2005) [24]. Paraffin sections of *G. pyloalis* midgut (GpMG) were made. The midguts were fixed in Bouin's fluid (saturated picric acid, formalin, and acetic acid at a ratio of 15:5:1 by volume) at 4 °C for 24 h. Standard histochemical methods were used for tissue dehydration, embedding in paraplast, sectioning into 9-µm thick sections, deparaffinization, and rehydration. The methods for washing and blocking of the midgut slices refer to Daimon et al. (2008) [14]. Additionally, the midgut sections were incubated overnight at 4 °C with the primary antibodies, anti-GpSUC1a serum (1:250). After rinsing 3 times for 10 min each at RT with PBS-Tr, the sections were incubated for 1.5 h at RT with 7.5 µg/mL of the secondary antibodies, Alexa Fluor 488-labeled goat anti-rabbit IgG F (ab)2 fragment (1:200, Sangon Biotech, Shanghai, China). The slides were counterstained with a 4',6-diamidino-2-phenylindole dihydrochloride solution (DAPI). The fluorescence was observed under a fluorescence microscope (Olympus BX53, Tokyo, Japan) and photographed.

2.9. Purification of GpSUC1a and BmSUC1 by Immunoprecipitation (IP) and β -FFase Activity Confirmation

To confirm the β -FFase activity of GpSUC1a and BmSUC1 in vivo, the two proteins were purified from larval midgut using corresponding antibodies and Protein A Agarose (Beyotime, Shanghai, China). In brief, a total of 200–1000 µg midgut proteins were transferred to a fresh, pre-cooled microcentrifuge tube containing 20 µL of Protein A Agarose bead slurry and rocked gently for 1 h at 4 °C to remove non-specific binding. The supernatant collected (0.22 μ g) by pulsing in a centrifuge (5 min, 2500× g, 4 °C) was added to corresponding antibodies or rabbit IgG and rocked gently overnight at 4 °C. The immune complex was captured by adding 40 µL of Protein A Agarose bead slurry and shaking for 3 h at 4 °C. The agarose beads were obtained by centrifuging at $2500 \times g$ for 5 min at 4 °C and washing six times with the pre-cooled wash buffer in One Step Animal Tissue Active Protein Extraction Kit. Additionally, purification of GpSUC1a and BmSUC1 were analyzed by SDS-PAGE and western blot. The enzymatic activity of purified proteins was determined using substrate of sucrose or maltose. The method was the same as described above in the case of using sucrose as a substrate. However, the maltose substrate was incubated with a 0.4 M PBS buffer (pH 6.0) for 10 min at 30 °C. The content of glucose generated by the reaction was detected with a Glucose Detection Kit (Jian Cheng, Nanjing, China), and the activity of the enzyme was calculated.

2.10. Liquid Chromatograph-Mass Spectrometer (LC-MS) Analysis

To perform an IP and an LC-MS analysis, GpSUC1a and BmSUC1 were purified from larval midgut and verified using SDS-PAGE as described above, and the fractions containing purified protein were recovered. The purified proteins were then digested using a 40 μ L Trypsin buffer (Sigma, catalog number: T4049) at 37 °C for 16–18 h. Finally, peptides were extracted, concentrated to dryness under a vacuum, and stored at -20 °C until LC-MS analysis. Post-translational modifications of protein such as N-glycosylation, phosphorylation, methylation, acetylation, and ubiquitination were identified by LC-MS analysis using an Easy nLC 1000 coupled to a Thermo Scientific Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA). Each fraction was reconstituted in 0.1% formic acid and analyzed in liquid chromatography. Samples were loaded on to a 75 μ m diameter chromatographic column (length 150 mm) packed with 3 μ m Reprosil Pur C18 AQ resin. Solvents A and B were 0.1% formic acid aqueous solution and 0.1% formic acid acetonitrile solution, respectively. The gradient was 5% to 10% B in 16 min, 10% to 22% B in 35 min, 22% to 30% B in 20 min followed by 30% to 95% B in 1 min, and 95% B for 6 min. The flow rate was set to 600 nL/min. Mass spectra were extracted, deconvolved using Proteome Discoverer 1.4.1.14, and searched against a concatenated database using Mascot 1.4. peptides by allowing a maximum of two trypsin missed cleavages with a mass tolerance of ± 15 ppm and a fragment ion mass tolerance of ± 0.02 Da. Only peptide scores higher than 10 were retained for analysis.

3. Results

3.1. GpSuc1a Is a Homologous Gene of BmSuc1 Identified in G. pyloalis

The enzymatic activities of β -FFase in vivo were detected using sucrose adding DNJ or raffinose as substrates (Figure 1a). As shown in Figure 1a, GpMG could decompose sucrose, and it wasn't affected by DNJ. Although raffinose could not be digested by α -glucosidase, it could be hydrolyzed by GpMG. However, neither sucrose nor raffinose could be hydrolyzed by the *G. pyloalis* silk gland (GpSG).

The specific primers were designed based on the β -FFase sequence of *Solanum tubero*sum (S. tuberosum, ACC93584), Bacillus amyloliquefaciens (B. amyloliquefaciens, YP008422504), *Manduca sexta* (M. sexta, ACX49763) and B. mori (AB366559) (Figure 1b). Degenerate PCR and RACE experiments were used to clone the *BmSuc1* homologous genes in *G. pyloalis*, including *GpSuc1a* (MN365898), *GpSuc1b* (MN380475), *GpSuc2a* (MN380476), *GpSuc2b* (MN380477), and *GpSuc2c* (MN380478). The characteristics of the β -FFase amino acid sequence of *G. pyloalis* are shown in Table 2. According to their ORF sequences, we amplified *GpSuc1a*, *GpSuc1b*, *GpSuc2a*, *GpSuc2b*, *GpSuc2c*, and *BmSuc1* using genomic DNA (Figure 1c). To further analyze the expression pattern of β -FFase in the different tissues of *G. pyloalis*, a semi-quantitative RT-PCR was performed. As shown in Figure 1d, *GpSuc1a* and *GpSuc2c* highly expressed in various tissues, including malpighian tubule, silk gland, foregut, midgut and fat body. However, the expression of *GpSuc1b*, *GpSuc2a*, and *GpSuc2b* was not detected in these tissues.

Amino acid sequence alignment analysis showed that these five genes were homology of the β -FFase in *S. tuberosum* (ACC93584), *B. amyloliquefaciens* (YP008422504), *M. sexta* (ACX49763), and *B. mori* (AB366559), which belong to 32 glycosyl hydrolase family (Figure 1b). The GpSUC1a, GpSUC1b, GpSUC2a, and GpSUC2b sequences contain three conservative domains similar to BmSUC1. In addition, GpSUC2c contains an pretermination stop codon.

3.2. Recombinant GpSUC1a Showed Lower Activity Compared to BmSUC1

The recombinant proteins were expressed and purified from prokaryotic expression system. The specific primers for cloning *GpSuc1a*, *GpSuc1b*, *GpSuc2a*, *GpSuc2b*, *GpSuc2c* and *BmSuc1* ORFs are shown in Table 1. And these target sequences were cloned into pET-24b expression vectors. The positive recombinant vectors, confirmed by double digestions (Supplementary data, Figure S1), were transformed into *E. coli* strain BL21 (DE3) cells to express recombinant proteins. The result indicated that all recombinant proteins except GpSUC1b could be expressed in DE3 cells (Supplementary data, Figure S2). The SDS-PAGE results showed that the positive recombinants were obtained and identified using western blot (Figure 2a,b). Purified proteins were used for enzymatic property analysis. The enzymatic activities of the recombinant proteins at different pH (5.0–10) in vitro were analyzed (Figure 2c). The results showed that pH 7.0 was the optimal condition for BmSUC1, but the recombinant GpSUC1 and GpSUC2 had little enzymatic activities.

Figure 1. *BmSuc1* homologous gene *GpSuc1* was identified in *G. pyloalis*. (a) β -FFase activity in different tissues (BmMG, *B. mori* midgut). β -FFase activity in BmMG and GpMG were significantly upregulated compared with control. Bars represent the mean \pm SEM (n = 3) of at least three independent experiments performed in triplicate. The asterisk represents a significant difference (two-way ANOVA, followed by Tukey's test as post hoc, $0.01 \leq * p \leq 0.05$) (the enzymatic activity of β -FFase in the midgut of *G. pyloalis* was taken as 100% when the raffinose was used as substrate). (b) Multiple sequence alignment of the β -FFase protein from *G. pyloalis* with other β -FFase proteins. Amino acids conserved among 100%, \geq 75%, and \geq 50% were highlighted in black, pink, and blue, respectively. The arrows represented conservative enzyme active sites, and the boxes indicate degenerate primers sites. GenBank accession numbers are as follows: *S. tuberosum*, ACC93584; *B. amyloliquefaciens*, YP008422504; *M. sexta*, ACX49763; *B. mori*, AB366559. Amplification and tissue expression patterns of β -FFases in the *G. pyloalis* larval tissues. (c) Genomic PCR amplified open reading frame of *BmSuc1*, *GpSuc1a*, *GpSuc1a*, *GpSuc2a*, *GpSu2b*, and *GpSuc2c*. (d) Expression pattern of β -FFase in *G. pyloalis* larvae. The 18s rRNA gene was used as control.

Recombinant proteins GpSUC1a and BmSUC1 were expressed in the Bac-to-Bac/ BmNPV/Bm cell system. After adding the P2 virus for 72 h, the fluorescence signal in Figure 2d showed that the recombinant baculovirus was successfully infected and the recombinant protein was successfully expressed as analyzed by the SDS-PAGE (Figure 2e) and the western blot (Figure 2f). The enzymatic characterization of purified protein Bm-SUC1 and GpSUC1a were determined at different pH conditions (5.0–9.0.) (Figure 2g). Similarly, GpSUC1a also showed little activity compared to BmSUC1.

				1	10	
		PI -	Homology (%)			
Protein	Mass (Da)		BmSUC1 BmSUC2	M. sexta	B. amyloliquefaciens	S. tuberosum
GpSUC1a	56,400.10	4.48	64.90 35.98	65.24	37.86	22.26
GpSUC1b	58,635.53	5.31	54.89 35.03	60.27	35.74	21.70
GpSUC2a	55,794.92	5.47	37.43 35.26	41.27	37.90	18.68
GpSUC2b	50,642.75	6.40	37.50 34.50	38.97	37.20	19.62
GpSUC2c	23,868.99	7.78	16.73 13.28	16.57	16.70	10.19

Figure 2. Expression of recombinant proteins in vitro. SDS-PAGE (**a**) and western blot (**b**) were used to analyze the recombinant proteins. Lanes 0: empty pET-24b vector, Lanes 1 total protein induced by 0.5 mM IPTG, Lanes 2: recombinant protein. Arrowheads indicate the recombinant protein. (**c**) Enzyme activity assays of recombinant proteins. Data are mean \pm SEM (n = 3) (The enzymatic activity of BmSUC1 at pH 7.0 was taken as 100%). (**d**–**f**) The recombinant proteins BmSUC1 and GpSUC1a were expressed in the Bac-to-Bac/BmNPV/BmN cell. (**d**) The BmN cells were infected by P2 virus under the fluorescence microscope (10×). The recombinant proteins BmSUC1 and GpSUC1a were analyzed by SDS-PAGE. (**e**) (U, unpurified products; P, purified proteins) and western blot (**f**). (**g**) Enzyme activity assays of the recombinant proteins BmSUC1 and GpSUC1a, which were expressed in the Bac-to-Bac system. Data are mean \pm SEM (n = 3) (The enzymatic activity of BmSUC1 at pH 7.0 was taken as 100%).

Table 2. Characteristics of β-FFase amino acid sequences of *G. pyloalis*.

3.3. GpSuc1a Highly Expressed in the Midgut of G. pyloalis and Displayed obvious β -FFase Activity

To identify GpSUC1a protein in larval tissues, an SDS-PAGE, a western blot, and an immunohistochemistry assay were performed (Figure 3) by using an anti-GpSUC1a antibody. The results showed that GpSUC1a was expressed only in the midgut (Figure 3a,b). The immunohistochemistry assay further characterized the localization of GpSUC1a in the midgut of *G. pyloalis* (Figure 3c).

Next, we purified GpSUC1a and BmSUC1 proteins from *G. pyloalis* and *B. mori* larval midguts, respectively, by IP experiment (Figure 4) and then the purified proteins were analyzed by SDS-PAGE and western blot (Figure 4a,b). The results of enzymatic characterization showed that GpSUC1a displayed a high sucrose hydrolase activity similar to that of BmSUC1 (Figure 4c); but, none of them could catalyze the hydrolysis of maltose, indicating that both GpSUC1a and BmSUC1 have β -FFase activity in vivo.

Figure 4. Confirmation of β -FFase activity in the larvae of GpSUC1a purified from the midgut. SDS-PAGE (**a**) and western blot (**b**,**c**) were used for analyzing the GpSUC1a in vivo. (**d**) Enzyme activity assays of the proteins in vivo. (Input: One Step Animal Tissue Active Protein Extraction Kit; IP: Purified protein with corresponding antibody added; IgG: Normal Rabbit IgG). Data are mean \pm SEM (n = 3, *** p < 0.001).

3.4. Identification of Post-Translational Modifications (PTMs) of GpSUC1a and BmSUC1

To compare the PTMs of GpSUC1a and of BmSUC1, two proteins were obtained from larval midguts using an IP assay. After digestion by trypsin and PNGase F, the recombinant proteins were analyzed by LC-MS to detect the post-translational modifications (PTMs) of BmSUC1 and of GpSUC1a.

The GpSUC1a and BmSUC1 degradation product samples were separated by the Easy nLC 1000 system (Figure 5a,b). Both peaks began at approximately 8 min and the whole process stopped at approximately 76 min. After separation, the samples were

analyzed by MS using Orbitrap Fusion. N-glycosylation and methylation were identified using Mascot 1.4 combining the raw data with the uniprot-*B. mori* database. The LC-MS results showed that some putative N-glycosylated sites were found in GpSUC1a but none in BmSUC1 (Table 3), and there was more methylation in BmSUC1 than in GpSUC1a. Thus, we evaluated the phosphorylation, acetylation, and ubiquitination using LC-MS (Figure 5c,d). The peaks appeared at 24 and 16 min for GpSUC1a and BmSUC1, respectively, and both disappeared at approximately 118 min. Based on the LC-MS results, these three modifications were found neither in GpSUC1a nor in BmSUC1.

Figure 5. More posttranslational modifications in BmSUC1 than in GpSUC1a. The samples of BmSUC1 and GpSUC1a degradation products were separated by the Easy nLC 1000 system. (a) Liquid Mass spectra of GpSUC1a about N-glycosylation and methylation. (b) Mass spectra of BmSUC1 about N-glycosylation and methylation. LC-MS results of GpSuc1a and BmSUC1 about phosphorylation, acetylation, and ubiquitination (c,d).

Protein	Position (aa)	Amio Acid Sequences	Modifications
BmSUC1	21–47	ALRQQNETTKRELEEYIADKKA EINPR	Methyl [K20]; Deamidated [R11]
GpSUC1a	20-45	SFKQQFDNVADLEEYIAQKRTE INPR	Deamidated [Q5; Q18;R20;R26]
BmSUC1	48–73	YRPHYHISPPVGWMNDPNGFS YY <mark>KEK</mark>	Methyl [R2; K24; K26]; Deamidated [R2; N18]
GpSUC1a	46–71	YRLQYHVTPPVGWMNDPNGFS FYKGE	Deamidated [Q4]
BmSUC1	162–183	KYEGNPVLSYVPDNSADFRDPK	Methyl [R19; K22]
GpSUC1a	160–181	KYEGNPVLTYTPRPDFNDSDPK	Methyl [R19; K22]; Deamidated [N13]
BmSUC1	187–202	FKDHWYVVIGSSSNK · R	Methyl [K2]; Deamidated [N14]
GpSUC1a	185–201	HEDHWYVVIGSKTVDGR	No sites
BmSUC1	283–307	TDKYFQELDYGHDFYAT QTIQGDGK	Methyl [K3; K25]
GpSUC1a	282–306	PETEFQELDYGHDIYATQSLEK DGT	No sites
BmSUC1	337–344	ELQLIGTR	No sites
GpSUC1a	336–343	EIKLEGDR	Methyl [K3]
BmSUC1	360-376	SVHNGDLEPQQAIEFGP	No sites
GpSUC1a	359–375	SLFDGDLLPEQSIEFEK	Deamidated [Q11]
BmSUC1	424-436	QVEWVPIGKTSWR	No sites
GpSUC1a	359–375	Q VEWNPIGSQSWR	Deamidated [Q1]
BmSUC1	467-483	VKNSSPQTLSVEAYRLR	Deamidated [Q7]
GpSUC1a	467-483	LTNLSPQNLSVEAYHLR	Deamidated [N3; N8]
BmSUC1	484-488	RSVPA	No sites
GpSUC1a	484–505	R SIPEMDVFVTITENRLNSGFK	Deamidated [R1; N18]

Table 3. Comparative identification results of BmSUC1 and GpSUC1a about N-glycosylation and methylation.

The yellow and blue labels correspond to methyl and deamidated sites, respectively, while the green was both. The red labels represented putative N-glycosylated sites.

4. Discussion

In adaptation of *B. mori* to mulberry, there have been key enzymatic responses to the defensive components in mulberry latex. Mulberry latex contains high concentration of sugar-mimic alkaloids, such as DNJ and D-AB1. These compounds are not toxic to B. mori, a mulberry specialist, but they are highly toxic to the larvae of Samia cynthia ricini, a generalist herbivore [9,25]. This suggests that *B. mori* larvae have adaptive mechanisms that are used against the latex-borne sugar-mimic alkaloids and that allow B. mori larvae to absorb the nutrients in mulberry leaves normally. The *BmSuc1* gene is the first animal β -FFaseencoding gene to be identified. It is highly insensitive to DNJ and plays a critical enzymatic role in *B. mori* ability to avoid the toxic effects of sugar-mimic alkaloids in mulberry latex [14]. Our previous results indicate that BmSUC1 acts as an essential digestive enzyme in the carbohydrate metabolism of silkworm larvae [19]. Interestingly, *G. pyloalis* is another moth that also feeds on mulberry leaves, and it is not affected by latex and other toxic compounds in mulberry leaves [26]. To explore the five *BmSuc1* homologous genes in *G*. pyloalis. We obtained full-length cDNAs using RACE, then named them: GpSuc1a, GpSuc1b, *GpSuc2a*, *GpSuc2b*, and *GpSuc2c*, respectively. Bioinformatic analysis indicated that *GpSuc2c* is a gene with an early stop codon, which lacks the central site of the enzyme activity region (-EC-) (Figure 1b).

Our data showed that the β -FFase of *G. pyloalis* is similar to the β -FFase of *B. mori* in the midgut, which can decompose sucrose in the presence of DNJ but cannot decompose the

raffinose (Figure 1a). A tissue expression profile analysis of the five β -FFase homologous genes of *G. pyloalis* showed that only *GpSuc1a* and *GpSuc2c* were highly expressed in the midgut, while the other three genes (*GpSuc1b*, *GpSuc2a*, and *GpSuc2b*) were almost not expressed in the midgut (Figure 1d). Our results suggested that *GpSuc1a* is the primary functional β -FFase gene in the midgut of *G. pyloalis* because the *GpSuc2c* is a gene with an early stop codon.

Double enzymatic digestion and sequencing showed that the pET-24b *E. coli* recombinant expression vector was successfully constructed (Figure S1). The positive recombinant vector was transformed into *E. coli* BL21 (DE3) cells and induced. The SDS- PAGE and the western blot demonstrated that all recombinant proteins except GpSUC1a were expressed (Figure S2). We could not purify GpSUC1a from the cells transfected with the pET-28a expression vector, most likely due to the presence of more rare codons (CGA, CGG, AGG, AGA, GGA, GGG, AUA, CCC, and ACG) in its sequence.

Although the BmSUC1 and the GpSUC1a could not be expressed as more soluble proteins at 16 °C, the recombinant proteins were expressed mostly in the form of the inclusion body. Failure of the prokaryotic systems to synthesize and correctly fold a significant amount of the full-length fusion protein may be the major reason for the lacking of enzymatic activities in these recombinant proteins. Many eukaryotic proteins that fold correctly in eukaryotes can misfold when expressed in *E. coli* [27,28]. Moreover, in this study, we found that GpSUC1a was highly expressed in vitro, and it was more easily induced by IPTG than others. Thus, *GpSuc1a* may encode the major β -FFase gene in *G. pyloalis*. The recombinant proteins were purified, and their β -FFase activities were compared. Surprisingly, the recombinant proteins GpSUC1a had lower enzymatic activity compared with BmSUC1 at different pH levels during the enzyme assays (Figure 2c).

Considering the limitations of expressing proteins in prokaryotic systems, the BmNPV/ Bac-to-Bac expression system applicable to *B. mori* was used to express the recombinant protein BmSUC1 or GpSUC1a. Compared to the *E. coli* expression system, the BmNPV/Bacto-Bac expression system has several advantages, such as the capacity for insertion of large DNA fragments, high yields of recombinant protein, and integrated PTMs. It can maintain the structure and the function of natural protein by finishing modifications such as phosphorylation and glycosylation [29–31]. However, the GpSUC1a still showed almost no activity when compared with the BmSUC1 enzymatic activities under different pH conditions (Figure 2g).

In order to identify the expression and enzymatic characterization of GpSUC1a in vivo, we confirmed the existence of GpSUC1a in the midgut of G. pyloalis by western blot (Figure 3b) and immunohistochemistry (Figure 3c) using the antibodies against GpSUC1a. Importantly, when GpSUC1a was purified from G. pyloalis larval midgut, it showed great β -FFase activity similar to BmSUC1 (Figure 4). These results indicated that the enzymatic activity of GpSUC1a was reasonably highly detected in the protein purified from the gut, compared with the recombinant protein, suggesting that post translational modification may play an important role. However, the enzymatic activity of GpSUC1a was still lower than that of BmSUC1. The main reason may be the different PTMs for β -FFase in G. pyloalis and B. mori. It is well known that the simplicity of genetic modifications is one disadvantage of the *E. coli* expression system in which PTMs processes could not be finished because of a lack of relevant organelles [32–35]. As compared to BmSUC1, the expression of GpSUC1a may require more complex modifications. Although the Bac-to-Bac/BmNPV/BmN cell system is superior to the *E. coli* expression system for expression regulation, it is not consistent with the internal environment of the organism. Therefore, it is necessary to use in vivo experiments to distinguish the differences of PTMs between GpSUC1a and BmSUC1.

Known as a pro-protein or a pro-peptide, a protein precursor is an inactive protein (or peptide) that can be turned into an active form by PTMs, such as by breaking off a piece of the molecule or adding another molecule [36–39]. The identification of PTMs including N-glycosylation, phosphorylation, methylation, acetylation, and ubiquitination

in BmSUC1 or in GpSUC1a protein was analyzed to support our hypothesis that GpSUC1a may require more modification. As shown in Table 3, the occurrence of deamidated sites was caused by the digestion of trypsin during mass spectrometry. They were also partly due to the PNGase F enzyme, which could cleave between the innermost GlcNAc and asparagine residues of high mannose, hybrid, and complex oligosaccharides from N-linked glycoproteins. According to the consensus sequence Asn-X-Ser/Thr (N-X-S/T) of N-glycosylation motifs, we found putative N-glycosylated peptides in GpSUC1a but not in BmSUC1 (Table 3), indicating that N-glycosylation of GpSUC1a is more strictly controlled than that of BmSUC1. N-glycosylation is the attachment of the sugar molecule oligosaccharide known as glycan to a nitrogen atom (amide nitrogen of asparagine residue of a protein), which is important for both the structure and the function of some eukaryotic proteins [40–42]. Nascimento et al. (2017) found that glycosylated and nonglycosylated Aam1 (the α -glucosidase (EC 3.2.1.20) expressed in *Aedes aegypti* larvae midgut) displayed distinct patterns that could influence their catalytic activity [43]. Gonaus et al. (2017) suggested that only the double mutant lacking the N-glycosylation around the active site access (N75 and N175) of AmPDH1 (an oxidoreductase capable of oxidizing a broad variety of sugars) achieved substantially higher electric current than the wild-type enzyme [43]. These data suggest that the activities of GpSUC1a were lower than BmSUC1, whether in E. *coli* or Bac-to-Bac expression systems, due to N-glycosylation. As for methylation, histone methylation has been studied in-depth. However, the regulation processes of other proteins on the occurrence of methylation modification remain unclear. The effect of methylation on the activity of BmSUC1 and GpSUC1a require further study.

Daimon et al. reported that BmSuc1 showed significant homology with bacterial β -FFase, and it belongs to the bacterial lineage [14]. The interaction between intestinal microorganisms and the host in terms of immunity, metabolism, and development is vital to insects. Intestinal microbes can affect the expression of host genes. Sonnenberg et al. (2006) found that colonization of germ-free mice with one of two Bacteroides induced the expression of tumor necrosis factor- α (TNF- α), which is produced by specific cells of the immune system inflammatory cytokines [39,40]. Regstad et al. (2015) demonstrated that the relative expression of tryptophan hydroxylase 1 (*Tph1*) mRNA in sterile mice was significantly reduced compared with humanized (HM; ex-GF colonized human gut microbiota) mice [43]. Both *BmSuc1* and *GpSuc1a* are derived from bacteria, and the difference in their in vitro activities may be related to intestinal microbes. If the intestinal colony structure of *B. mori* and *G. pyloalis* is different, the expression and the activity of *BmSuc1* amay also be different in their dependence on intestinal microbes. Compared with *BmSuc1*, *GpSuc1a* may need more help; but, it is not clear why the in vitro activity of *BmSuc1* is much greater than that of *GpSuc1a*. This topic needs further research.

In summary, we cloned five *BmSuc1* homologous genes from the final instar larvae of the mulberry pest, the *G. pyloalis*, and analyzed their tissue expression patterns. We identified the β -FFase gene in the midgut of *G. pyloalis* (*GpSuc1a*) and confirmed its expression and its location. As *B. mori* and *G. pyloalis* are both insects that feed on mulberry leaves, their β -FFase genes should have the same biological function in the body's defense system against mulberry sugar-like alkaloids. However, our comparative studies have shown that *GpSuc1a* and *BmSuc1* have significant differences in terms of expression conditions in vitro and PTM in vivo, showing that the homologous genes have the characteristics of biological diversity.

5. Conclusions

In this study, we completed the report on the characterization of β -FFase genes from *G. pyloalis* for the first time. Moreover, this is the first comparison of expression regulation between two mulberry feeding insects, *B. mori* and *G. pyloalis*. The β -FFase activity in the midgut of *G. pyloalis* larvae and purified GpSUC1a from the midgut were both confirmed, while recombinant GpSUC1a displayed little activity as compared with the higher activity of recombinant BmSUC1. The expression of GpSUC1a was controlled by a post-translational

regulation system different from BmSUC1, in which N-glycosylation is necessary and a possible way for *G. pyloalis* to express the functional β -FFase gene in vivo. The management of mulberry borers can be inspired by this research.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/insects13050410/s1, Figure S1: Recombinant vectors digested by restriction endonucleases; Figure S2: SDS-PAGE and western blot analysis of recombinant proteins at different inducing conditions.

Author Contributions: Conceptualization, Y.Z., L.Y., Y.C. and Y.M.; methodology, Y.Z., X.Z. and Y.M.; software, J.L. and S.J.; validation, Y.C. and X.Z.; formal analysis, J.G., S.J. and D.L.; investigation, D.L.; resources, S.J.; data curation, Y.Z., L.Y., J.G. and Y.M.; writing—original draft preparation, Y.Z., X.Z. and Y.M.; writing—review and editing, Y.Z., Y.C., J.G. and Y.M.; visualization, J.L.; supervision, Y.Z., J.G. and Y.M.; funding acquisition, Y.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China Grant, grant number 31872423, Innovative Research Groups of Anhui Agricultural University, grant number ANRC2019032 and National Innovation and Entrepreneurship Training Program for College Students, grant number202010364055.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: We thank Xiao Lixin (Plantation Technology Promotion Center of Jing County, Xuancheng City, Anhui Province, China) for the kind gifts of *Glyphodes pyloalis*.

Conflicts of Interest: The authors declare no conflict of interest.

References

- Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 2002, 47, 57–92. [CrossRef] [PubMed]
- Ponce de Leon, I.; Montesano, M. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants. Int. J. Mol. Sci. 2013, 14, 3178–3200. [CrossRef] [PubMed]
- 3. Winter, P.S.; Bowman, C.E.; Villani, P.J.; Dolan, T.E.; Hauck, N.R. Systemic acquired resistance in moss: Further evidence for conserved defense mechanisms in plants. *PLoS ONE* **2014**, *9*, e101880.
- 4. Zagrobelny, M. Cyanogenic glucosides and plant-insect interactions. *Phytochemistry* 2004, 65, 293–306. [CrossRef]
- 5. Agrawal, A.A. Observation, natural history, and an early post-Darwinian view of plant-animal interactions. *Am. Nat.* **2014**, *184*, ii–iv. [CrossRef] [PubMed]
- 6. Huber, M.; Epping, J.; Gronover, C.S.; Fricke, J.; Aziz, Z.; Brillatz, T.; Swyers, M.; Köllner, T.G.; Vogel, H.; Hammerbacher, A. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. *PLoS Biol.* **2016**, *14*, e1002332. [CrossRef] [PubMed]
- Mithofer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. *Annu. Rev. Plant Biol.* 2012, 63, 431–450. [CrossRef]
 Nawrot, R. Defense-related Proteins from *Chelidonium majus* L. as Important Components of its Latex. *Curr. Protein Pept. Sci.* 2017,
- 18, 864–880. [CrossRef]
- 9. Asano, N.; Yamashita, T.; Yasuda, K.; Ikeda, K.; Ryu, K. Polyhydroxylated alkaloids isolated from mulberry trees (*Morusalba* L.) and silkworms (*Bombyx mori* L.). J. Agric. Food Chem. **2001**, 49, 4208–4213. [CrossRef]
- 10. Konno, K. Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. *Phytochemistry* **2011**, 72, 1510–1530. [CrossRef]
- Deng, M.J.; Lin, X.D.; Wen, C.W.; Dong, M.J.; Xu, J.P. Metabolic changes in the midgut of Eri silkworm after Oral administration of 1-deoxynojirimycin: A 1H-NMR-based metabonomic study. *PLoS ONE* 2017, 12, e0173213. [CrossRef] [PubMed]
- Hirayama, C.; Konno, K.; Wasano, N.; Nakamura, M. Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: Enzymatic adaptation of *Bombyx mori* to mulberry defense. *Insect Biochem. Mol. Biol.* 2007, *37*, 1348–1358. [CrossRef] [PubMed]
- 13. Wen, C.W.; Lin, X.D.; Dong, M.J.; Deng, M.J. An Evaluation of 1-Deoxynojirimycin Oral Administration in Eri Silkworm through Fat Body Metabolomics Based on (1) H Nuclear Magnetic Resonance. *BioMed Res. Int.* **2016**, 2016, 4676505. [CrossRef] [PubMed]
- 14. Daimon, T.; Taguchi, T.; Meng, Y.; Katsuma, S.; Mita, K.; Shimada, T. Beta-fructofuranosidase genes of the silkworm, *Bombyx mori*: Insights into enzymatic adaptation of *B. mori* to toxic alkaloids in mulberry latex. *J. Biol. Chem.* **2008**, *283*, 15271–15279. [CrossRef]
- 15. Konno, K.; Ono, H.; Nakamura, M.; Tateishi, K.; Hirayama, C.; Tamura, Y.; Hattori, M.; Koyama, A. Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. *Proc. Natl. Acad. Sci. USA* **2006**, *103*, 1337–1341. [CrossRef]
- 16. Carneiro, C.N.; Isejima, E.M.; Samuels, R.I.; Silva, C.P. Sucrose hydrolases from the midgut of the sugarcane stalk borer Diatraea saccharalis. *J. Insect Physiol.* 2004, *50*, 1093–1101. [CrossRef]

- 17. Krasikov, V.V.; Karelov, D.V.; Firsov, L.M. alpha-Glucosidases. Biochemistry. Biokhimiia 2001, 66, 267–281. [CrossRef]
- Orikasa, Y.; Oda, Y. Molecular characterization of beta-fructofuranosidases from Rhizopus delemar and Amylomyces rouxii. *Folia Microbiol.* 2013, 58, 301–309. [CrossRef]
- 19. Gan, Q.; Zhang, X.; Zhang, D.; Shi, L.; Zhou, Y.; Sun, T.; Jiang, S.; Gao, J.; Meng, Y. BmSUC1 is essential for glycometabolism modulation in the silkworm, *Bombyx mori. Biochim. Biophys. Acta* **2018**, *1861*, 543–553. [CrossRef]
- 20. Kong, W.; Yang, J. The complete mitochondrial genome of *Glyphodes pyloalis* Walker (Lepidoptera: Crambidae). *DNA. Part A, DNA Mapp. Seq. Anal.* **2016**, 27, 4044–4045.
- Zhu, B.J.; Liu, Q.N.; Dai, L.S.; Wang, L.; Sun, Y.; Lin, K.Z.; Wei, G.Q.; Liu, C.L. Characterization of the complete mitochondrial genome of *Glyphodes pyloalis* (Lepidoptera: Pyralididae). *Gene* 2013, 527, 283–291. [CrossRef] [PubMed]
- 22. Watanabe, H.; Kurihara, Y.; Wang, Y.X.; Shimizu, T. Mulberry pyralid, *Glyphodes pyloalis*: Habitual host of nonoccluded viruses pathogenic to the silkworm, Bombyx mori. Invertebr. *J. Invertebr. Pathol.* **1988**, 52, 401–408. [CrossRef]
- Yazdani, E.; Sendi, J.J.; Aliakbar, A.; Senthil-Nathan, S. Effect of Lavandula angustifolia essential oil against lesser mulberry pyralid *Glyphodes pyloalis* Walker (Lep: Pyralidae) and identifification of its major derivatives. *Pestic. Biochem. Physiol* 2013, 107, 250–257. [CrossRef]
- Daimon, T.; Katsuma, S.; Iwanaga, M.; Kang, W.; Shimada, T. The BmChi-h gene, a bacterial-type chitinase gene of Bombyx mori, encodes a functional exochitinase that plays a role in the chitin degradation during the molting process. *Insect Biochem. Mol. Biol.* 2005, *35*, 1112–1123. [CrossRef] [PubMed]
- Messaoudi, S.; Anizon, F.; Peixoto, P.; David-Cordonnier, M.H.; Golsteyn, R.M.; Léonce, S.; Pfeiffer, B.; Prudhomme, M. Synthesis and biological activities of 7-aza rebeccamycin analogues bearing the sugar moiety on the nitrogen of the pyridine ring. *Bioorg. Med. Chem.* 2006, 14, 7551–7562. [CrossRef] [PubMed]
- Sharifi, M.; Ghadamyari, M.; Sajedi, R.H.; Zavareh, M.; Sheikhnejad, H. Insecticidal effects of 4-hexylresorcinol on the lesser mulberry snout moth, *Glyphodes pyloalis* Walker. Arch. Phytopathol. Plant Prot. 2013, 46, 1–13. [CrossRef]
- Babiker, E.E.; Azakami, H.; Ogawa, T.; Kato, A. Immunological characterization of recombinant soy protein allergen produced by Escherichia coli expression system. J. Agric. Food Chem. 2000, 48, 571–575. [CrossRef]
- 28. Hillebrecht, J.R.; Chong, S. A comparative study of protein synthesis in vitro systems: From the prokaryotic reconstituted to the eukaryotic extract-based. *BMC Biotechnol.* **2000**, *8*, 58. [CrossRef]
- Pal Roy, M.; Mazumdar, D.; Dutta, S.; Saha, S.P.; Ghosh, S. Cloning and Expression of Phytase appA Gene from Shigella sp. CD2 in Pichia pastoris and Comparison of Properties with Recombinant Enzyme Expressed in *E. coli. PLoS ONE* 2016, *11*, e0145745. [CrossRef]
- 30. Sangolgi, P.B.; Balaji, C.; Dutta, S.; Jindal, N.; Jarori, G.K. Cloning, expression, purification and characterization of Plasmodium spp. glyceraldehyde-3-phosphate dehydrogenase. *Protein Expr. Purif.* **2016**, *117*, 17–25. [CrossRef]
- Zhao, N.; Yao, H.; Lan, L.; Cao, C.; Umashankar, M.L.; Lu, X.; Wu, X.; Wang, B.; Cui, W.; Cenis, J.L. Efficient production of canine interferon-alpha in silkworm *Bombyx mori* by use of a BmNPV/Bac-to-Bac expression system. *Appl. Microbiol. Biotechnol.* 2008, 78, 221–226.
- Porowinska, D.; Wujak, M.; Roszek, K.; Komoszynski, M. Prokaryotic expression systems. Postepy Hig. I Med. Dosw. 2013, 67, 119–129. [CrossRef] [PubMed]
- Pitson, S.M.; ANDREA, D.; Richard, J.; Vandeleur, L.; Moretti, P.A.; Xia, P.; Gamble, J.R.; Vadas, M.A.; Wattenberg, B.W. Human sphingosine kinase: Purification, molecular cloning and characterization of the native and recombinant enzymes. *Biochem. J.* 2000, 350 Pt 2, 429–441. [CrossRef] [PubMed]
- Rutschmann, C.; Baumann, S.; Cabalzar, J.; Luther, K.B.; Hennet, T. Recombinant expression of hydroxylated human collagen in Escherichia coli. *Appl. Microbiol. Biotechnol.* 2014, 98, 4445–4455. [CrossRef] [PubMed]
- Zhou, L.; Wu, X.; Lan, L.; Liu, J. Expression of Trichoderma reesei endo-beta-glucanase II in silkworm, *Bombyx mori* L. by using BmNPV/Bac-to-Bac expression system and its bioactivity assay. *Biotechnol. Lett.* 2010, 32, 67–72. [CrossRef] [PubMed]
- Ogiue-Ikeda, M.; Machida, K. Expression and Purification of SH2 Domains Using Baculovirus Expression System. *Methods Mol. Biol.* 2017, 1555, 183–198.
- Michard, C.; Doublet, P. Post-translational modifications are key players of the Legionella pneumophila infection strategy. *Front. Microbiol.* 2015, 6, 87. [CrossRef]
- Hirata, Y.; Takahashi, M.; Morishita, T.; Noguchi, T.; Matsuzawa, A. Post-Translational Modifications of the TAK1-TAB Complex. Int. J. Mol. Sci. 2017, 18, 205. [CrossRef]
- Kar, U.P.; Dey, H.; Rahaman, A. Regulation of dynamin family proteins by post-translational modifications. J. Biosci. 2017, 18, 205. [CrossRef]
- Vallejo, D.; Codocedo, J.F.; Inestrosa, N.C. Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. *Mol. Neurobiol.* 2017, 54, 1759–1776. [CrossRef]
- Imperiali, B.; O'Connor, S.E. Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. *Curr. Opin. Chem. Biol.* 1999, *3*, 643–649. [CrossRef]

- 42. Patterson, M.C. Metabolic mimics: The disorders of N-linked glycosylation. *Semin. Pediatr. Neurol.* 2005, 12, 144–151. [CrossRef] [PubMed]
- Nascimento, N.; Ferreira, L.; Romão, T.P. N-glycosylation influences the catalytic activity of mosquito alpha-glucosidases associated with susceptibility or refractoriness to Lysinibacillus sphaericus. *Insect Biochem. Mol. Biol.* 2017, *81*, 62–71. [CrossRef] [PubMed]