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Abstract 

Background: The association of overall cardiovascular health (CVH) with changes in DNA methylation 

(DNAm) has not been well characterized.  

Methods: We calculated the American Heart Association’s Life’s Essential 8 (LE8) score to reflect CVH 

in five cohorts with diverse ancestry backgrounds. Epigenome-wide association studies (EWAS) for LE8 

score were conducted, followed by bioinformatic analyses. DNAm loci significantly associated with LE8 

score were used to calculate a CVH DNAm score. We examined the association of the CVH DNAm score 

with incident CVD, CVD-specific mortality, and all-cause mortality.   

Results: We identified 609 CpGs associated with LE8 score at false discovery rate (FDR) < 0.05 in the 

discovery analysis and at Bonferroni corrected P < 0.05 in the multi-cohort replication stage. Most had 

low-to-moderate heterogeneity (414 CpGs [68.0%] with I2 < 0.2) in replication analysis. Pathway 

enrichment analyses and phenome-wide association study (PheWAS) search associated these CpGs with 

inflammatory or autoimmune phenotypes. We observed enrichment for phenotypes in the EWAS catalog, 

with 29-fold enrichment for stroke (P = 2.4e-15) and 21-fold for ischemic heart disease (P = 7.4e-38). 

Two-sample Mendelian randomization (MR) analysis showed significant association between 141 CpGs 

and ten phenotypes (261 CpG-phenotype pairs) at FDR < 0.05. For example, hypomethylation at 

cg20544516 (MIR33B; SREBF1) associated with lower risk of stroke (P = 8.1e-6). In multivariable 

prospective analyses, the CVH DNAm score was consistently associated with clinical outcomes across 

participating cohorts, the reduction in risk of incident CVD, CVD mortality, and all-cause mortality per 

standard deviation increase in the DNAm score ranged from 19% to 32%, 28% to 40%, and 27% to 45%, 

respectively.  

Conclusions: We identified new DNAm signatures for CVH across diverse cohorts. Our analyses 

indicate that immune response-related pathways may be the key mechanism underpinning the association 

between CVH and clinical outcomes.  
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INTRODUCTION 

Cardiovascular disease (CVD) remains the most frequent cause of death in the US and globally.1 To 

promote cardiovascular health (CVH) prior to onset of clinical CVD, the American Heart Association 

(AHA) has developed a new CVH metric, Life’s Essential 8 (LE8),2 which includes the four health 

factors: BMI, blood lipids, blood glucose, and blood pressure and the four health behaviors: dietary 

habits, physical activity, smoking, and sleep. Several recent studies have shown that a favorable CVH 

score is associated with lower risk of CVD and mortality.3-6 The maximum CVH score is 100; but over 

80% of US adults have low (<50, 17.9% of adults) or moderate (50-79, 62.5%) scores of CVH; only 

19.6% have ideal CVH (scores of 80-100).7 Attaining ideal CVH is challenging, partly because promoting 

healthy behaviors is not a trivial task, e.g., public health efforts to improve diet quality and physical 

activity have been met with limited success.8 Identifying omics biomarkers of CVH has the potential to 

uncover key molecular mechanisms and biological pathways linking poor CVH to increased risk of CVD 

and mortality. With this insight, we may be able to design more precise and effective prevention and 

intervention strategies to improve CVH.  

 

DNA methylation (DNAm) occurs predominantly on cytosine residues of the dinucleotide sequence (i.e., 

CpGs).9, 10 In large-scale observational studies, DNAm marks are often measured using blood samples 

because of the minimal invasiveness and accessibility, as well as the critical role of blood-derived DNAm 

in crosstalk with other tissues. Differential DNAm patterns have been associated with CVH components 

and CVD risk.11-17 Furthermore, genetic instruments (e.g., Mendelian randomization [MR] analysis) 

suggest that DNAm at several CpGs are causally related to CVD.16, 18 These findings suggest that DNAm 

biomarkers provide promise for better understanding the epigenetic pathways and molecular mechanisms 

of both CVH and CVD. We have shown that Life’s Simple 7 (LS7), the AHA’s CVH score prior to LE8, 

was associated with a DNAm signature.15 Recently, we also demonstrated that the AHA’s LE8 score was 

associated with DNAm-based biological age;19 and that DNAm age markers may explain up to 40% of 

the association of the LE8 score with incident CVD.19 However, previous studies linking CVH, DNAm, 
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and onset of clinical CVD have been limited by moderate sample size or lack of external validation. To 

better characterize the DNAm signature of CVH and its clinical implications, we conducted an 

epigenome-wide association study (EWAS) of CVH with accompanying pathway enrichment analyses, 

phenome-wide association study (PheWAS), MR analyses, and prospective investigation of incident CVD 

and mortality across six large and diverse cohorts. We hypothesized that we could identify specific 

DNAm signatures and corresponding molecular mechanisms underlying the relationship between CVH 

and CVD and mortality.  

 

METHODS 

Study populations. This investigation leverages participant-level data from the Framingham Heart Study 

(FHS),20 Coronary Artery Risk Development in Young Adults Study (CARDIA),21 Multi-Ethnic Study of 

Atherosclerosis (MESA),22 The Study of Health in Pomerania (SHIP),23 Strong Heart Study (SHS),24, 25 

and Jackson Heart Study (JHS).26 Additional information on each cohort is provided in the Supplemental 

Materials. Protocols and procedures for the study cohorts were approved by the Institute Review Board 

of each cohort. The current study was approved by the Institutional Review Board at Tufts University.  

 

LE8 score calculation. We calculated the CVH score (i.e., the LE8 score) using the approach proposed 

by the AHA,2 with modifications to accommodate data availability in five cohorts (CARDIA, FHS, 

MESA, SHIP, and SHS). Procedures used to calculate LE8 scores for each cohort are detailed in 

Supplemental Table 1. Briefly, each component was scored separately from 0 to 100. The LE8 score 

was calculated as the unweighted mean of all individual component scores. In FHS, CARDIA, and SHIP, 

the LE8 score was calculated using all eight components, while this score was calculated based on seven 

components in MESA (no data for sleep health) and six components in SHS (no data for sleep health and 

diet). We tested and confirmed that the correlation between the LE8 score with all components and the 

score calculated with missing components was high (Supplemental Table 2).  
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DNA methylation (DNAm) measurement. DNAm levels were measured based on whole blood samples 

in all cohorts. Details of DNA collection and assessment of DNAm have been described in the 

Supplemental Materials. Briefly, Illumina MethylationEPIC BeadChip array (EPIC array) was used in 

all cohorts except FHS, which used the Illumina HumanMethylation450 BeadChip array (450K array). 

Cohort-specific quality control and normalization had been performed following standard protocols. The 

450K array targets 485,512 CpGs and the EPIC array targets 866,836 CpGs; ~93% of CpGs in the 450K 

array are covered by the EPIC array.27 Because FHS was our largest participating cohort, we primarily 

analyzed CpGs that are common to both arrays. We also excluded probes on the X and Y chromosomes to 

avoid potential sex bias. The methylation level at each CpG was quantified as a β value, i.e., the 

proportion of methylated CpGs over the sum of methylated and unmethylated CpGs.  

 

Clinical outcome ascertainment. Prospective outcomes analyzed were incident CVD, CVD-specific 

mortality, and all-cause mortality. In each participating study, these clinical events were adjudicated by 

physicians using medical and hospital records, death certificates, and next-of-kin interviews.28 CVD 

definition by studies was reported in Supplemental Table 3. Participants with CVD identified at baseline 

(i.e., prevalent CVD cases) were removed before analysis for incident CVD and CVD-specific mortality.  

 

Statistical analysis. We performed three main analyses (Figure 1), including 1) conducting an EWAS 

and meta-analysis for cross-sectional associations of the LE8 score and DNAm, 2) using various 

bioinformatic tools to explore potential biological and clinical implications for LE8 score-associated 

CpGs, and 3) creating a LE8 DNAm score and testing its prospective association with clinical outcomes.  

 

EWAS of LE8 score and DNAm. Due to its large sample size and homogenous study sample, we first 

performed discovery EWAS in FHS. For CpGs reaching significance, i.e., those with false discovery rate 

(FDR) < 0.05, in the discovery analysis, we performed validation analysis using meta-analysis of EWAS 

results from four independent cohorts (CARDIA, MESA, SHIP, and SHS). In FHS, to remove potential 
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batch effects, DNAm β values for 443,238 autosomal CpGs were residualized by regressing on surrogate 

variables29 using linear regression models.11 We then used linear mixed models to examine associations of 

the LE8 score with DNAm residuals as the dependent variable and LE8 score as the independent variable. 

Covariates were sex, age, and leukocyte composition estimated using the Houseman method.29 Familial 

relatedness in FHS participants was considered as a random-effect factor. In each replication cohort, we 

also residualized DNAm β values and performed ancestry-specific LE8 score-CpG associations analysis 

using linear regression models with adjustment for the same covariates as those included in FHS. In SHS, 

to achieve more stable inference, an empirical Bayes method (in limma R package30) was used to 

moderate the standard errors. In CARDIA, a Bayesian method (in bacon R package31) was used to adjust 

the standard errors based on estimation of the empirical null distribution. We performed random-effect 

meta-analysis to calculate pooled effect size, standard errors, P values, and heterogeneity32 (I2) in 

replication cohorts. We considered CpGs replicable if the association direction was same to those in FHS 

and meta-analysis P reached < 0.05 after a Bonferroni correction by the number of significant CpGs in 

FHS. All replicated CpGs were annotated to genes using the Illumina Methylation array annotation files.   

 

Pathway enrichment analyses. We examined whether LE8-associated CpGs were enriched in any 

biological pathways. In this analysis, we searched gene symbols annotated to the LE8-associated CpGs in 

two platforms, the Database for Annotation, Visualization and Integrated Discovery (DAVID)33, 34 and the 

Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA)35. Multiple gene sets 

such as the gene ontology (GO)36 terms of biological function, Kyoto Encyclopedia of Genes and 

Genomes (KEGG),37 Molecular Signatures Databases (MSigDB),38 WikiPathways,39 and GWAS catalog 

reported genes40 were examined. Fisher’s exact test was used to calculate enrichment P values, and a test 

with FDR < 0.05 was considered statistically significant. We visualized the networks of enriched 

pathways (i.e., clusters) using the R package FGNet.41 

 

Overlap with EWAS catalog. LE8 and its subcomponents have been suggested to be associated with a 
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wide range of phenotypes across the life course.2, 42, 43 We therefore mined EWAS catalog, a database for 

CpGs associated with various traits (https://www.ewascatalog.org),17 for prior evidence of disease related 

associations for the replicated LE8-associated CpGs. By overlap of these CpGs with those reported in 

EWAS catalog, we examined whether LE8-associated CpGs were linked with major diseases such as 

CVD, neurodegenerative diseases, and cancer. We filtered out EWAS catalog CpGs with P > 1e-6 and 

CpGs identified in studies with sample size < 500 individuals in this catalog. Fisher’s exact tests were 

performed to determine if LE8-associated CpGs were enriched with EWAS catalog CpGs for disease 

phenotypes. A test with FDR < 0.05 was considered statistically significant.     

 

Phenome-wide association study (PheWAS) catalog analysis. We further searched the PheWAS 

catalog (https://phewascatalog.org) for disease phenotypes that may be associated with LE8-associated 

CpGs. The PheWAS catalog included 1,358 phenotypes based on electronic medical records of 13,835 

individuals of European ancestry in the eMERGE Network.44 We searched this catalog using DNAm 

quantitative trait loci (meQTL) single nucleotide polymorphisms (SNPs) in the Genetics of DNA 

Methylation Consortium (GoDMC) meQTL database (http://mqtldb.godmc.org.uk)45 for LE8-associated 

CpGs. We focused on cis-meQTL SNPs (defined as SNPs residing within 1Mb from the corresponding 

CpG with P < 1e-8) in GoDMC database and SNPs that were also reported in the GWAS catalog.40 We 

considered SNPs with P < 3.7e-5 (0.05/1,358) significant in the PheWAS catalog. For significant SNPs, 

we further performed PheWAS search in the IEU OpenGWAS database.46 We included ten batches of 

GWAS summary datasets such as UK Biobank phenotypes for up to 3,873 phenotypes 

(https://gwas.mrcieu.ac.uk/datasets; Supplemental Table 4). We reported SNP-phenotype association 

with P values < 1.3e-5 (0.05/3,837) in the IEU OpenGWAS database.46  

 

Mendelian randomization (MR) analysis. To further explore the relationship between LE8-associated 

CpGs with CVD and other disease phenotypes, we used the TwoSampleMR R package47 to test the 

putative causal association of LE8-associated CpGs with the 14 phenotypes, including stroke, heart 
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failure, atrial fibrillation , coronary arterial calcification (CAC), COPD, C-reactive protein (CRP), % 

lymphocytes, % monocytes, % neutrophils, preeclampsia, gestational hypertension, Alzheimer's disease, 

lung cancer, and breast cancer.48-56 We used independent cis-meQTL SNPs from the GoDMC database, 

after linkage disequilibrium (LD) pruning based on R2 < 0.01, as instruments. We extracted effect sizes 

(regression coefficients and standard errors) from both the GoDMC cis-meQTL database57 and the 

GWAS summary results for the 14 phenotypes (Supplemental Table 5). We performed the primary 

analysis using the inverse variance weighted (IVW) method and sensitivity analysis using the MR-Egger 

method when we identified three or more instrumental SNPs. CpGs with phenotype-specific FDR < 0.05 

were considered significant.  

 

CVH DNAm score. We developed the CVH DNAm score based on FHS and CARDIA EWAS results 

because the LE8 score was calculated using all eight components with large sample size. Also, this design 

eliminated the potential overfitting in analysis for the association between CVH DNAm score and clinical 

outcomes in other participating cohorts (MESA, SHS, and JHS). We first selected CpGs with FDR < 0.05 

in FHS and Bonferroni corrected P values < 0.05 in CARDIA (i.e., corrected by the number of CpGs with 

FDR < 0.05 in FHS). Using participant-level data from FHS, we performed further CpG selection using 

elastic-net regression.58 For individuals with missing values for certain CpGs, cohort median values were 

assigned. Notably, the proportion of missingness was very low (0.01%), and the impact of missingness 

was negligible. Before entering the elastic-net regression model, we calculated CpG residuals using linear 

regression models with adjustment for sex, age, estimated leukocyte composition, laboratories for DNAm 

measurements, and DNAm batch variables. To tune the hyperparameter λ, we performed 10-fold cross-

validation with default tuning grid (i.e., α = 0.1, 0.55, and 1) using R package caret59 and glmnet.60  

Elastic-net regression selected CpGs were aggregated into a single sum score, with weights applied 

reflecting regression coefficients in the meta-analysis of FHS and CARDIA. The same selected CpGs and 

weights were also applied to derive CVH DNAm scores in other participating studies.    
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Prospective association of the CVH DNAm score and clinical outcomes. Cox models were used to 

examine the prospective association between the CVH DNAm score and incident CVD, CVD-specific 

mortality, and all-cause mortality in each cohort. Mixed Cox models were used to account for familial 

relationships in FHS. To reduce potential model overfitting in this prediction analysis in CARDIA, we 

used DNAm data measured five years (i.e., at Year 15) prior to those used for LE8 EWAS (i.e., at Year 

20). Two sets of covariates were examined, including 1) sex, age, estimated leukocyte composition, 

cohort-specific covariates such as research centers, and self-reported race/ethnicity and 2) model 1 

covariates plus education levels. Harrell’s C statistic was calculated to evaluate the model concordance.61 

The proportional hazards assumption for a Cox regression model fit was examined based on weighted 

residuals, using the cox.zph function in survival R package.62 Two-sided P values < 0.05 were considered 

as significant in this analysis.   

 

RESULTS 

Participant characteristics. Table 1 displays participant characteristics for all six cohorts included in 

this study. The study sample for the CVH EWAS and DNAm score analysis included 9,390 and 10,581 

participants, respectively. CARDIA participants were generally younger than those in other cohorts. The 

mean age of CARDIA participants at year 15 and year 20 were ~38 years and ~43 years. Mean age 

ranged 51 to 61 years in the other cohorts. About half (51.3%) of study participants were of European 

ancestry; and the remainder of Native American (18.6%) and African (27.6%), Hispanic (2%), and 

Chinese (0.5%) ancestry.  

 

EWAS identified 609 LE8-associated CpGs. We performed association analyses between the LE8 score 

and 443,238 CpGs in FHS. We also calculated the associations and performed meta-analysis for 783,289 

CpGs with complete DNAm data in all four replication cohorts (CARDIA, MESA, SHIP, and SHS). QQ 

plots of FHS EWAS and meta-analysis of the replication cohorts are shown in Supplemental Figure 1. 

Out of the 443,238 CpGs, associations for 397,905 (89.8%) CpGs were included in the validation 
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analysis. At FDR < 0.05, we observed that the LE8 score was associated with DNAm levels at 5,605 

CpGs in FHS, and of these, 5,223 (83.2%) were available in the replication cohort meta-analysis. After 

Bonferroni correction for 5,223 tests, 609 CpGs were statistically significant (i.e., P < 0.05/5,223) in the 

replication cohorts (Supplemental Table 6). For each of these 609 CpGs, the direction of the association 

in FHS was the same as that in the replication cohorts. In the combined meta-analysis of all five cohorts 

(783,289 CpGs; Figure 2), the majority of the 609 CpGs had P < 0.05/783,289 (501 CpGs [82.3%]) and 

low to moderate heterogeneity (553 CpGs [90.8%] with I2 < 0.5; 414 CpGs [68.0%] with I2 < 0.2).  

 

Enrichment analysis demonstrated multiple biological pathways. We observed enrichment for 80 GO 

terms involved with biological processes (level 3) at FDR < 0.05. The top three significant GO terms 

were single-organism transport (GO:0044765; P = 1.2E-07; FDR = 2.9E-05), cellular response to 

chemical stimulus (GO:0070887; P = 1.4E-07; FDR = 2.9E-05), and regulation of cell communication 

(GO:0023051; P = 1.4E-07; FDR = 2.9E-05). Our GO network analysis further showed clustering of the 

GO terms (Figure 3). We observed nine clusters for 76 GO terms (Supplemental Table 7), e.g., those 

related to cell communication and signaling (Cluster 2), cellular immune response (Cluster 5), and 

development and cellular differentiation (Cluster 3). 

 

In FUMA analysis, we also observed enrichment in a variety of gene sets at FDR < 0.05. The largest 

number of gene sets was 145 immunologic signature gene sets (MsigDB c7; Supplemental Table 8), 

which represent cell states and perturbations within the immune system. For example, the top gene set in 

this collection was GSE40666 (UNTREATED-VS-IFNA-STIM-EFFECTOR-CD8-TCELL-90MIN-UP), 

which included 22 genes annotated to 29 CpGs, P = 8.8e-11.63 Other enriched gene sets (Supplemental 

Table 9 to 16) included 11 hallmark sets (MsigDB h), 71 chemical and genetic perturbation (MsigDB 

c2), 27 microRNA targets (MsigDB c3), 9 TF targets (MsigDB c3), 5 cancer gene modules (MsigDB c4), 

4 oncogenic signatures (MsigDB c6), 13 WikiPathways, and 33 GWAS catalog reported genes. 
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EWAS catalog analysis linked LE8-associated CpGs with a broad range of disease phenotypes. 

Among the 609 LE8-associated CpGs, 575 CpGs were reported to be associated with a variety of traits in 

the EWAS catalog.17 We identified 10 major phenotypes, including ischemic heart disease, stroke, 

chronic kidney disease, Alzheimer's disease, chronic obstructive pulmonary disease, lung function (FEV1 

and FEV1/FVC), chronic pain, rheumatoid arthritis, C-reactive protein, and pregnancy complications 

(hypertensive disorders of pregnancy, preeclampsia, and gestational diabetes mellitus). LE8-associated 

CpGs were enriched for all these 10 disease phenotypes (Table 2), e.g., 29-fold enrichment for stroke (P 

= 2.4e-15), 21-fold for ischemic heart disease (P = 7.4e-38), 22-fold for CKD (P = 1.3e-16), 6-fold for 

Alzheimer’s disease (P = 2.4e-6), and 7-fold for pregnancy complications (P = 1.5e-13). The phenotype 

with the largest number of overlapping CpGs was CRP; 562 of the 609 CpGs have been found to be 

associated with C-reactive protein (P = 1e-300). Lung function was the phenotype with largest fold 

enrichment in this analysis, 71-fold enrichment (P = 1.3e-14).  

 

We also searched for the association between LE8-associated CpGs and LE8 components in the EWAS 

catalog. We found that 452 CpGs have been associated with at least one of the six LE8 components (we 

found no overlap for physical activity associated CpGs and there was no study on sleep in the EWAS 

catalog). A Venn diagram for these 452 CpGs is provided in Supplemental Figure 2. The majority of 

these CpGs were associated with blood glucose (339 CpGs), smoking (213 CpGs), and/or BMI (116 

CpGs) related phenotypes. We also found nine CpGs associated with diet, 16 CpGs with blood pressure, 

and 37 CpGs associated with blood lipids.  

 

PheWAS analysis highlights association of cis-meQTL SNPs with autoimmune diseases. Out of the 

609 LE8 associated CpGs, 382 CpGs had at least one cis-meQTL SNP in the GoDMC database.45 We 

explored the associations between these SNPs and 1,358 phenotypes in the PheWAS of GWAS catalog 

SNPs.44 After Bonferroni correction (i.e., P < 0.05/1,358), we found 107 SNP-phenotype pairs (39 cis-

meQTL SNPs for 11 CpGs; Supplemental Figure 3). In the 39 SNPs, 27 SNPs (cis-meQTLs for five 
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CpGs) reside in the human leukocyte antigen (HLA) region of chromosome 6 (Supplemental Table 17). 

In addition, we observed that 31 SNPs (cis-meQTLs for eight CpGs) were linked with inflammatory or 

autoimmune disorders, e.g., gout, celiac disease, multiple sclerosis, type 1 diabetes, and rheumatoid 

arthritis (Supplemental Table 18). We further performed a PheWAS search for the 39 SNPs in the IEU 

OpenGWAS database; 35 SNPs were associated with at least one phenotype (range: 1 to 338; median: 13 

phenotypes; Supplemental Table 19). Inflammatory or autoimmune disorders were also observed in the 

latter analysis. For example, consistent with the findings in the PheWAS catalog (Supplemental Figure 

4), rs3135338 (cis-meQTL for cg00124375; annotated to HLA-DRA) was associated with type 1 diabetes 

(P = 1e-300),64 multiple sclerosis (P = 3.7e-294),65 and rheumatoid arthritis (P = 1e-200)66 in large 

GWAS.  

 

MR analysis suggests causal relationship of LE8-associated CpGs with multiple disease phenotypes. 

We performed two-sample MR analysis for the 382 CpGs with cis-meQTL SNPs and 14 phenotypes 

related to diseases identified by our EWAS catalog analysis. We observed 261 significant CpG-phenotype 

pairs for 141 unique CpGs at FDR < 0.05 (Supplemental Table 20). Overall, we found no strong 

evidence of horizontal pleiotropy or heterogeneity. Based on MR-Egger intercept, no CpG-phenotype pair 

had an intercept P < 1e-3. At P < 1e-3, heterogeneity was observed for 16 CpGs with four phenotypes (24 

pairs). The majority of phenotypes are leukocyte composition (22 pairs). Nonetheless, leukocyte 

composition (% neutrophils, % monocytes, and % lymphocytes) were phenotypes with the largest 

numbers of significant CpGs; the number of associated CpGs were 57, 74, and 78, respectively 

(Supplemental Table 21).  

 

We further examined the directions of associations from the LE8 EWAS and the MR analysis. That is, if 

the LE8 score was positively associated with DNAm levels at a CpG (i.e., hypermethylation), we 

expected that hypermethylation at this CpG was associated with a lower risk of disease phenotypes in the 

MR analysis, or vice versa. We highlighted 10 CpGs in Table 3 (full significant MR findings for all 
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CpGs are presented in Supplemental Table 21). We showed four CpGs (of the 10 CpGs) with consistent 

associations in the two analyses. For example, we found that LE8 score was associated with 

hypomethylation at cg20544516 (MIR33B; SREBF1; P = 5.2e-10) and hypomethylation at this CpG was 

associated with lower risk of stroke (P = 8.1e-6). Similarly, we found that the LE8 score was associated 

with hypermethylation at cg26403580 (PRDX3; P = 4.8e-11) and hypermethylation at this CpG was 

associated with lower risk of stroke (P = 1.6e-4). However, we also observed inconsistent associations, 

e.g., the LE8 score was associated with hypomethylation at cg04379041 (ZGPAT; P = 2.0e-12) and 

hypomethylation at this CpG was associated with higher risk of heart failure (P = 6.2e-4).  

 

CVH DNAm score predicts incident clinical outcomes. Of the 5,605 CpGs with FDR < 0.05 in the 

FHS, 1,326 CpGs were verified in CARDIA. Further, the elastic-net regression model selected 141 CpGs 

that were used to derive the CVH DNAm score in each cohort. This DNAm score was moderately 

associated with the LE8 score, e.g., Pearson r was 0.39 in FHS and 0.24 in MESA. The DNAm score by 

LE8 score deciles and density plot of the two scores in FHS and MESA are depicted in Supplemental 

Figure 5.  

 

In FHS (Table 4), each standard deviation (SD) increase of the DNAm score was associated with striking 

risks of clinical outcomes. This included 34% (95% CI: 27%, 41%; P = 2.8e-14) lower risk of incident 

CVD, 29% (95% CI: 11%, 43%; P = 3.3e-3) lower CVD-specific mortality, and 35% (95% CI: 30%, 

40%; P = 1.2e-16) lower all-cause mortality, adjusted for model 2 covariates. These associations were 

consistently observed in each of the other cohorts of diverse populations. The reduction in the risk of 

incident CVD, CVD mortality, and all-cause mortality per SD increase in the DNAm score ranged from 

19% to 32%, 28% to 40%, and 27% to 45% (model 2 analyses), respectively. Compared to models with 

adjustment for sex, age, education, and leukocyte composition, adding the DNAm score increased the C 

statistic by average of 0.2 (Supplemental Table 22). The model 2 C statistic was 0.68, 0.84, and 0.79 in 

MESA and 0.72, 0.83, and 0.81 in JHS for incident CVD, CVD mortality, and all-cause mortality, 
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respectively. Associations between the DNAm score and clinical outcomes in meta-analysis were similar 

with or without FHS are shown in Figure 4, without apparent cross-cohort heterogeneity.  

 

DISCUSSION 

In this new investigation including over 11,000 individuals with diverse ancestry and sociodemographic 

backgrounds, we identified an epigenetic signature comprising 609 CpGs consistently associated with the 

CVH as defined by the LE8 score. Enrichment analyses suggested these LE8-associated CpGs reflect a 

variety of specific biological pathways, particularly related to immune responses. EWAS catalog and 

PheWAS catalog analyses further demonstrated that these CpGs may be involved in the development of a 

range of interrelated diseases, showing the relevance of the health and behavioral factors that define good 

CVH in other disease pathways and overall health. Furthermore, utilizing genetic variants of the LE8-

associated CpGs, we demonstrated that many of these CpGs were putatively causal for CVD phenotypes. 

Finally, we showed that an epigenetic CVH score could increase prediction for CVD, CVD-specific 

mortality, and all-cause mortality. Cumulatively, our study provides powerful new evidence that DNAm 

is a key mechanism to facilitate a better understanding of the underlying biology of CVD (and likely 

related conditions), informing future efforts for prevention and intervention of CVD.   

 

Some earlier research has identified a limited number of DNAm sites associated with CVH. Primarily 

using CARDIA (n=1,085), Zheng et al. identified 45 CVH-associated CpGs.15 The present study builds 

on and greatly expands this prior work by evaluating the new AHA CVH metric, LE8, and substantially 

increasing the sample size and ancestry diversity of the population—ultimately identifying approximately 

ten times more CVH-associated CpGs. Importantly, the diversity of our study sample allowed us to 

identify CpGs shared across multiple ancestral populations. Beyond the advantage of guard against false 

positive signals due to minimizing population stratification-related confounding,67, 68 our multiethnic 

analysis increases both generalizability and public health relevance of our findings. 
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Our EWAS catalog analysis suggests that blood glucose, BMI, and smoking may be the major driving 

components for our LE8 EWAS findings. In addition, EWAS catalog enrichment, PheWAS, and MR 

analyses all showed that the LE8-associated CpGs are linked to several interrelated phenotypes. Although 

we did not directly examine the association between the LE8 score and all of these phenotypes, our 

observations suggest that LE8-associated phenotypes span more than just CVD. For example, we 

demonstrated enrichment of Alzheimer’s disease, which was consistent with recent studies showing that a 

higher LE8 score was associated with lower risk of dementia in UK Biobank.69 These findings highlight 

the foundational role of LE8 for promoting overall health.  

 

One MR analysis finding regarding the association between hypomethylation at cg20544516 (MIR33B; 

SREBF1) and a lower risk of stroke was consistent with a recent study that found a relation of higher LE8 

score to lower risk of stroke, supporting a putative causal relationship from LE8 to DNAm and then to 

stroke.70 To perform MR analyses, we used genetic variants that were identified by a large meQTL 

analysis in 32,851 individuals of European ancestry.45 This meQTL database, together the large GWAS 

databases for phenotypes of interest, provides a robust set of genetic variants to ensure the validity of our 

MR analysis. Nonetheless, we also observed some inconsistencies between our expectations and these 

empirical data, such as the association between hypomethylation at cg04379041 and increased risk of 

heart failure. One potential cause of bias may be reverse causality due to the cross-sectional design of the 

CVH EWAS. In this case, differential DNAm may lead to the onset of a disease phenotype, which then 

alters an individual’s CVH status, rather than CVH status leading to DNAm change and the disease 

phenotype. Our results support the need for future studies using longitudinal design with repeated DNAm 

measurements to provide additional evidence on the causal relationships between LE8, DNAm, and 

clinical outcomes.  

 

Among the CpGs that were significant in the PheWAS analysis, many were annotated to genes that fall on 

the HLA region at chromosome 6.52 We showed the cis-meQTLs of these CpGs were associated with a 
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variety of autoimmune diseases such as type 1 diabetes, rheumatoid arthritis, and celiac disease. CRP was 

the phenotype with the largest number of overlapping CpGs in EWAS catalog enrichment analysis, while 

leukocyte composition was the phenotype with the largest number of significant MR findings. These 

observations are consistent with prior studies reporting significant associations between LE8 components 

and inflammatory markers.71-74 Together with these prior reports, our analyses support a key role of 

immune response related mechanisms in mediating the relationship between LE8 and disease endpoints. 

Future experimental studies and clinical trials should consider and aim to confirm our observations.  

 

This study included a diverse group of participants from six different cohorts, each well-established with 

rich data describing participants’ lifestyle, genetic, and clinical information. Although not all cohorts had 

complete data to calculate the LE8 score, we found high correlations of scores missing sleep or diet, as 

well as consistent results for the DNAm score and disease phenotypes across cohorts. While we evaluated 

six diverse cohorts with a range of ancestries, most were US-based, and future refinement and broader 

validation of our findings are needed in other world regions, including low- and middle-income nations 

where CVD is increasing most rapidly. Potential limitations should be considered. The behavioral 

components in LE8 scored were based on self-reported data using different instruments in different 

cohorts. Future use of more objective measurements of behaviors could further increase the strength of 

observed findings and associations. Heterogeneity in lifestyle and health factor assessment, as well as 

race/ethnicity, could also explain the relatively moderate EWAS replication rate (609 out of 5,223 CpGs). 

Better DNAm and LE8 data harmonization may improve statistical power for the remaining CpGs. 

DNAm data in the present EWAS was based on a single measurement; and repeated measures may reduce 

measurement error due to changes over time as well as allow assessment of temporal relationships. On the 

other hand, to-date empirical data on longitudinal change in DNAm is not well established.  

 

Overall, we demonstrated that CVH, measured by LE8 score, was associated with strong DNAm 

signatures that can be observed across cohorts with diverse sociodemographic and ancestry backgrounds. 
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Our study suggests that regulating immune response may be the key mechanism underpinning the 

association between LE8 and clinical outcomes. Future studies with large diverse study samples and 

longitudinal DNAm measurements are needed to better understand the causal relations between LE8 and 

DNAm, as well as their clinical consequences.  
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FHS CARDIA (Y15) CARDIA (Y20) MESA SHIP SHS JHS

Total Participants (N) 3688 2381 2438 724 476 2064 1724

Mean Age, years (SD) 58 (13) 40 (4) 45 (4) 61 (10) 51 (14) 56 (8) 56 (12)

Sex, % Female 2008 (54%) 1406 (59%) 1401 (57%) 332 (46%) 217 (46%) 1205 (58%) 1080 (63%)

Smoking status, n (%)

     Never 2489 (68%) 1471 (62%) 1504 (62%) 402 (56%) 186 (39%) 667 (32%) 1115 (65%)

     Former 890 (24%) 451 (19%) 502 (21%) 321 (44%) 167 (35%) 606 (29%) 356 (21%)

     Current 309 (8%) 459 (19%) 431 (18%) 1 (0.1%) 123 (26%) 791 (38%) 243 (14%)

     NA 1 (0.04%) 10 (0.6%)

Race/Ethnicity

    AA 987 (41%) 1068 (44%) 123 (17%) 1724 (100%)

    EA 3688 (100%) 1394 (59%) 1370 (56%) 317 (44%) 476 (100%)

    HA 224 (31%)

    CHN 60 (8%)

    American Indian 2064 (100%)

DASH diet score (or cohort-specific diet quality score)  (SD) 24 (6) 68 (12) * 41 (11) 14 (3)

Physical activity score  (SD) 36 (6) 345 (275) 341 (280) 1665 (2423) * 2 (1) 2 (2)

Sleep, hours (SD) 7.3 (1.1) 6.5 (1.2) 6.7 (1.6) 7 (1.2)

BMI, kg/m2 (SD) 28 (5.4) 28.6 (6.8) 29.3 (6.7) 28.6 (5.1) 27.3 (4.2) 29.7 (2) 32.0 (7.4)

Systolic blood pressure, mm Hg (SD) 123 (17) 112 (14) 116 (15) 123 (20) 124 (17) 124 (6) 128 (16)

Diastolic blood pressure, mm Hg, (SD) 74 (10) 74 (11) 73 (11) 71 (10) 76 (9) 76 (4) 76 (9)

Hypertension meds, n (%) 1326 (36%) 168 (7%) 406 (17%) 253 (35%) 145 (31%) 411 (20%) 934 (54%)

Total cholesterol, mg/dL (SD) 186 (35) 185 (35) 185 (35) 193 (33) 211 (43) 193 (13) 199 (41)

Triglyceride, mg/dL (SD) 115 (72) 105 (92) 110 (81) 126 (63) 123 (66) 119 (26) 107 (70)

HDL, mg/dL (SD) 58 (18) 51 (14) 54 (17) 51 (14) 57 (14) 44 (5) 51 (15)

Lipid lowering meds, n (%) 1255 (34%) 47 (2%) 228 (9%) 122 (17%) 60 (13%) 237 (14%)

Blood glucose, mg/dL (SD) 102 (21) 94 (18) 99 (25) 94 (23) 97 (11) 110 (18) 91 (9)

HbA1c, % (SD) 5.6 (0.6) 5.5 (0.9) 5.2 (0.5) 5.4 (0.7) 6.1 (1.4)

Diabetic meds, n (%) 240 (7%) 36 (2%) 109 (5%) 51 (7%) 0 (0%) 306 (18%)

* In MESA, physical activity level: (hours of intense activity or metabolic equivalent (METs) for sedentary, light, moderate, and intense activities)

Table 1: Participant characteristics by participanting studies

* In CARDIA, diet was evaluated based on healthy eating index (HEI) at Year 20 exam
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Phenotype Sub-Phenotypes
EWAS Catalog 

CpG counts
Overlapping 

CpGs
Fold 

enrichment
+/- Enrichment P

Stroke Incident Stroke & Self-Reported Prevalent Stroke 339 13 28.8 + 2.4E-15

Heart diseases
Incident Ischemic Heart Disease, Self-Reported Prevalent Ischemic Heart 
Disease

1412 39 20.8 + 7.4E-38

Lung function FEV1, FEV1/FVC 95 9 71.2 + 1.3E-14

Chronic obstructive pulmonary disease Incident COPD & Self-Reported Prevalent COPD 38896 303 5.9 + 1.6E-155

Chronic kidney disease
Chronic kidney disease, estimated glomerular filtration rate (eGFR), Incident 
Chronic Kidney Disease, urinary-albumin-creatinine ratio (UACR)

557 16 21.6 + 1.3E-16

Alzheimer's disease Alzheimer's disease Braak stage, APOE e2 vs e4 1328 11 6.2 + 2.4E-06

Pregnancy complications 
Hypertensive disorders of pregnancy, Preeclampsia, gestational diabetes 
milletus, very early preterm birth (<28 weeks)

2504 24 7.2 + 1.5E-13

Chronic pain Incident Chronic Pain 152 4 19.8 + 5.7E-05

CRP C-reactive protein 64063 562 6.6 + 1.0E-300

Rheumatoid Arthritis Rheumatoid Arthritis & Prevalent Rheumatoid Arthritis 52085 49 0.7 - 9.0E-03

Table 2: Phenotype enrichment analysis in EWAS Catalog
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Beta SE P I2 Trait Beta SE P FDR 

Stroke 0.162 0.036 8.1E-06 0.002 Yes

% Monocyte 0.034 0.012 3.2E-03 0.026 Yes

cg26403580 1 10 PRDX3 0.00013 0.00002 4.8E-11 0.00 Stroke -0.082 0.022 1.6E-04 0.020 Yes

cg18262201 1 10 PFKFB3 0.00041 0.00009 7.8E-06 0.44 % Monocyte -0.011 0.002 1.4E-05 0.000 Yes

CRP 0.025 0.006 2.2E-05 0.001 Yes

% Lymphocyte -0.011 0.002 6.4E-07 0.000 Yes

% Neutrophil 0.008 0.002 3.0E-04 0.003 Yes

% Monocyte 0.038 0.008 4.2E-06 0.000 No

% Neutrophil -0.031 0.012 7.9E-03 0.043 Yes

Lung cancer -0.257 0.044 6.8E-09 0.000 Yes

COPD 0.158 0.048 9.5E-04 0.043 No

Preeclampsia -0.419 0.090 3.6E-06 0.001 Yes

CRP -0.097 0.023 2.7E-05 0.001 No

% Monocyte 0.089 0.007 4.4E-42 0.000 Yes

% Neutrophil -0.047 0.007 6.1E-12 0.000 No

Atrial fibrillation -0.102 0.025 6.0E-05 0.003 No

CAC 0.196 0.046 2.0E-05 0.008 Yes

% Monocyte -0.120 0.029 4.0E-05 0.001 No

Heart failure -0.053 0.016 6.2E-04 0.039 No

% Lymphocyte 0.045 0.010 8.7E-06 0.000 No

% Neutrophil -0.040 0.008 1.2E-06 0.000 No

Preeclampsia -0.168 0.039 2.0E-05 0.004 No

% Lymphocyte 0.022 0.005 6.6E-06 0.000 No

% Neutrophil -0.027 0.004 3.9E-10 0.000 No

Preeclampsia -0.106 0.027 6.9E-05 0.009 No

CpG
Consistency with 

expectation

Table 3: Selected MR analyses results for LE8-associated CpGs

2 17
MIR33B; 
SREBF1

-0.00014 0.00002

(random-effect) Meta-analysis of LE8 EWAS MR
GeneCHR

Counts of 
MR traits

5.2E-10 0.00cg20544516

cg27454412 3 7 C7orf50 -0.00032 0.00004 1.8E-12 0.00

cg21794222 3 6 CCR6 0.00016 0.00003 2.8E-10 0.00

0.00011 8.8E-10 0.48

cg07467649 3 7 BAZ1B -0.00016

cg25953130 2 10 ARID5B 0.00069

cg00124375 3 6 DDAH2 -0.00028

0.00003 2.0E-12

0.00002 2.5E-10 0.00

0.00006

LY6G6E-
LY6G6D

63cg09286468

0.54

0.00

0.001.5E-150.00004-0.0003

1.2E-05

cg04379041 4 20 ZGPAT -0.00021
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HR 95% CI P HR 95% CI P

FHS 3675 391 0.65 (0.59, 0.72) 2.9E-15 0.66 (0.59, 0.73) 2.8E-14

CARDIA 2609 168 0.65 (0.56, 0.76) 4.6E-08 0.68 (0.58, 0.80) 1.9E-06

MESA 926 125 0.81 (0.68, 0.96) 2.0E-02 0.81 (0.67, 0.97) 2.0E-02

JHS 1326 177 0.72 (0.63, 0.84) 1.4E-05 0.73 (0.62, 0.85) 6.7E-05

SHS 2064 901 0.67 (0.24, 0.73) 3.7E-21 0.68 (0.24, 0.74) 7.0E-19

FHS 3679 91 0.71 (0.57, 0.89) 3.2E-03 0.71 (0.57, 0.89) 3.3E-03

CARDIA 2609 18 0.58 (0.37, 0.93) 2.4E-02 0.6 (0.36, 0.98) 4.3E-02

MESA 926 53 0.63 (0.48, 0.83) 9.9E-04 0.65 (0.49, 0.86) 2.0E-03

JHS 1326 74 0.65 (0.52, 0.81) 1.1E-04 0.72 (0.56, 0.91) 6.9E-03

SHS 2064 399 0.6 (0.21, 0.68) 1.6E-15 0.62 (0.22, 0.71) 4.9E-13

FHS 4123 683 0.64 (0.60, 0.69) 1.0E-50 0.65 (0.60, 0.70) 1.0E-50

CARDIA 2632 108 0.54 (0.44, 0.65) 9.3E-11 0.55 (0.45, 0.67) 4.1E-09

MESA 926 159 0.71 (0.61, 0.83) 2.0E-05 0.73 (0.62, 0.86) 1.4E-04

JHS 1724 346 0.68 (0.61, 0.75) 2.8E-13 0.69 (0.61, 0.77) 3.6E-10

SHS 2064 1292 0.61 (0.22, 0.66) 8.8E-43 0.64 (0.23, 0.68) 3.5E-35

Cohort N Events

Covariates in M1 included sex, age, estimated leukocyte composition, cohort-specific covariates such 
as research centers, and self-reported race/ethnicity. Covariates in M2 included M1 covaraites and 
education levels. Covariates in M3 included M2 covariates and LE8 score. 

Table 4: Hazard ratios showing risk reduction for standard deviation increase in LE8 DNAm score

Incident CVD

CVD Death

All-cause mortality

M1 M2
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1. EWAS 

Random-effect meta-analysis  

FHS                 
(n=3,688) 

5,605 CpGs 

FDR < 0.05 

CARDIA (Y20), MESA, SHIP, & SHS     
(n= 2,438, 724, 476, & 2,064) 

Bonferroni corrected P < 0.05 

609 CpGs 

Pathway 
Enrichment 

Analysis 
MR Analysis PheWAS 

Analysis 
EWAS Catalog 

Analysis 

2. Bioinformatic analyses  

Elastic-net regression selection in FHS 

Verify in CARDIA (Y20)  

1,326 CpGs selected 

DNAm Score calculation               
(144 CpGs) 

Prospective Association Analysis in                  
FHS, CARDIA (Y15), MESA, SHS, & JHS  

(n=3,688, 2,381, 724, 2,064, &1,724)     

3. LE8 DNAm Score Analysis  

Figure 1. Study design flow-chart. EWAS: epigenome-wide association study, PheWAS: phenome-wide association 
study, DNAm: DNA methylation, MR: Mendelian randomization, FHS: Framingham Heart Study, CARDIA: Coronary 
Artery Risk Development in Young Adults Study, MESA: Multi-Ethnic Study of Atherosclerosis, SHIP: The Study of 
Health in Pomerania, SHS: Strong Heart Study, JHS: Jackson Heart Study 
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Bonferroni correction for 397,905 CpGs 

Figure 2. Manhattan plot for LE8 EWAS. Plot was generated using data from combined analysis of all five cohorts (FHS, 
CARDIA, MESA, SHIP, and SHS). The number of common CpGs in all five cohorts was 397,905 and the number of 
common CpGs in replication cohorts were 783,289.   

Chromosomes 

Red: 609 replicable CpGs 
Gray: CpGs with I

2 
>0.5 

Blue/Green: common CpGs in all participating studies 
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Figure 3. GO term network analysis. Biological process GO terms (level 3) clustered based on shared gene annotations. 
Nodes were only included if they belonged to a cluster of at least three terms and if they had an FDR < 0.05. 
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Figure 4: Hazard ratios for DNAm LE8 score for incident CVD, CVD mortality, and all-cause mortality. 
Hazard ratios are relative to one standard deviation increase in DNAm LE8 score. Model adjusted for sex, 
age, estimated leukocyte composition, cohort-specific covariates such as research centers, self-reported 
race/ethnicity, and education levels. 
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