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G R A P H I C A L  A B S T R A C T

Central Illustration. The potential benefits of additional measurement of total plasma homocysteine in combination with high-sensitivity c-reactive 
protein and lipoprotein(a) for predicting coronary heart disease and stroke in the Multi-Ethnic Study of Atherosclerosis. Abbreviations: high-sensitivity c- 
reactive protein, hs-CRP; total plasma homocysteine, tHcy; lipoprotein(a), lp(a). Cox proportional hazards regression hazard ratios and 95 % confidence intervals 
adjusted for age, sex, race/ethnicity, hypertension, hypertension medication usage, diabetes, pack-years smoking, HDL-C, total cholesterol, triglycerides (log- 
transformed), BMI and eGFR. Low hs-CRP <2 mg/dL; High hs-CRP ≥2 mg/dL; Low Lp(a) <50 mg/dL; High Lp(a) ≥50 mg/dL; Low tHcy <12 µmol/L; High 
tHcy=≥12 µmol/L. 
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Background and aims: Elevated lipoprotein(a) [Lp(a)], high-sensitivity C-Reactive Protein (hs-CRP), and total 
homocysteine (tHcy) are associated with atherosclerotic cardiovascular disease (ASCVD) risk. This study 
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investigated the individual and joint associations of Lp(a), hs-CRP and tHcy with coronary heart disease (CHD) 
and stroke.
Methods: This study was conducted in the Multi-Ethnic Study of Atherosclerosis (MESA) cohort (2000–2017) 
(CHD analytic N = 6,676; stroke analytic N = 6,674 men and women). Associations between Lp(a) (<50 vs. ≥50 
mg/dL), hs-CRP (<2 vs. ≥2 mg/L) and tHcy (<12 vs. ≥12 µmol/L) and CHD and stroke incidence were evaluated 
individually and jointly using Cox proportional hazards regression.
Results: Individually, elevated tHcy was associated with CHD and stroke incidence, Lp(a) with CHD only and hs- 
CRP with stroke only. In combined analyses, CHD risk was higher when multiple biomarkers were elevated [hs- 
CRP+Lp(a), hazard ratio (HR)=1.39, 95 % confidence interval (CI): 1.06, 1.82; hs-CRP+ tHcy, HR = 1.34, 95 % 
CI: 1.02, 1.75; Lp(a)+ tHcy HR = 1.58, 95 % CI: 1.08, 2.30; hs-CRP+Lp(a)+ tHcy HR = 2.02, 95 % CI: 1.26, 
3.24]. Stroke risk was elevated when hs-CRP and either Lp(a) (HR = 1.51, 95 % CI: 1.02, 2.23) or tHcy (HR =
2.10, 95 % CI: 1.44, 3.06) was also high, when all three biomarkers were elevated (HR = 2.99, 95 % CI: 1.61, 
5.58), or when hs-CRP and tHcy (HR = 1.79, 95 % CI: 1.16, 2.76) were both high.
Conclusions: Risk of ASCVD was highest with concomitant elevation of tHcy, hs-CRP and Lp(a). Inclusion of tHcy 
and consideration of biomarker combination rather than individual biomarker levels may help better identify 
individuals at greatest risk for ASCVD events.

1. Introduction

Despite improvements in identifying individuals at risk for athero-
sclerotic cardiovascular disease (ASCVD), it remains the leading cause of 
morbidity and mortality worldwide [1]. The integration of 
non-traditional risk markers, including lipoprotein(a) [Lp(a)], 
high-sensitivity C-reactive protein (hs-CRP) and plasma total homocys-
teine (tHcy) may help reduce risk for ASCVD [2]. Lp(a) and hs-CRP are 
established ASCVD risk markers and are currently listed as risk 
enhancing factors in the 2019 American Health Association (AHA)/A-
merican College of Cardiology (ACC) cardiovascular disease prevention 
guidelines [3]. tHcy, however, is not currently included in guidelines 
and research is lacking on the potential benefit of considering biomarker 
combinations to refine ASCVD risk surveillance.

Lp(a) may influence ASCVD risk through multiple mechanisms 
including atherosclerosis, thrombosis and inflammation [4,5]. Markers 
of systemic inflammation have also been associated with ASCVD, 
including hs-CRP [6–9] and tHcy [10–14]. Elevated tHcy is associated 
with vascular inflammation and oxidative stress secondary to reactive 
oxygen species accumulation [15]. It is possible that these inflammatory 
pathways have synergistic effects and measurements could provide 
additional information regarding ASCVD risk. Additionally, tHcy and Lp 
(a) are both associated with increased coagulation and research suggests 
a possible synergistic effect [16–18].

A previous study in the Multi-Ethnic Study of Atherosclerosis (MESA) 
found that Lp(a) was only associated with ASCVD risk in individuals 
with elevated hs-CRP levels [19] and a recent analysis observed that 
combinations of risk enhancers appeared to better identify intermediate 
risk individuals who would benefit from treatment [20]. To our 
knowledge no prior studies have evaluated tHcy in combination with 
hs-CRP and Lp(a) for ASCVD risk. The present study investigated re-
lationships between Lp(a), hs-CRP, and tHcy with CHD and stroke risk 
among participants in the MESA prospective cohort. We hypothesized 
that elevated Lp(a), hs-CRP and tHcy would have additive associations 
with incident CHD and stroke.

2. Materials and methods

2.1. Study population

The Multi-Ethnic Study of Atherosclerosis (MESA) recruited 6814 
men and women aged 45 to 84 years and free of clinically apparent 
cardiovascular disease, from four ethnic/racial groups (White, Black, 
Hispanic, Chinese) at six centers in the United States (Baltimore, MD; 
Chicago, IL; Forsyth County, NC; Los Angeles County, CA; New York, 
NY; St. Paul, MN) between July 2000 and August 2002 [21]. The present 
study utilizes baseline exposure and covariate data and outcome 
follow-up through 2017. Participants without baseline hs-CRP, Lp(a) or 

tHcy measurements (N = 118), and without outcome data for CHD (N =
22) and stroke (N = 24) were excluded. Additional participants with 
Missing covariate data were excluded (N = 107). The analytic sample 
was 6567 for CHD and 6565 for stroke, with a median follow-up time of 
15.8 years.

The study was approved by the institutional review boards for the 
MESA field centers and all participants provided informed consent.

2.2. Data collection

2.2.1. Biomarker measurements
Lp(a), hs-CRP and tHcy were measured using 12-hour fasting blood 

samples collected at the baseline study visit and stored at -70 ◦C using 
standardized procedures [21]. High-sensitivity c-reactive protein was 
measured using the BNII nephelometer (N High Sensitivity CRP; Dade 
Behring, Inc., Deerfield, IL). Plasma tHcy was measured using high 
performance liquid chromatography with fluorometric detection. Lp(a) 
mass concentrations were measured using a latex-enhanced turbidi-
metric immunoassay that controls for the heterogeneous sizes of apoli-
poprotein(a) (Health Diagnostics Laboratory, Richmond, VA; Denka 
Seiken, Tokyo, Japan). Coefficients of variation for measured bio-
markers were <5 % (Lp(a)), 3.6 % (hs-CRP), and 3.8 % (tHcy).

2.2.2. Covariates
At the baseline study exam, demographics, personal and medical 

history and lifestyle behaviors were obtained by interview and ques-
tionnaire. Biospecimen samples (12-hour fasting blood and urine) were 
collected and anthropometrics and blood pressure were measured by 
study staff. Procedures are outlined in detail elsewhere [21,22]. Hy-
pertension was defined as blood pressure medication usage, diastolic 
blood pressure ≥90 mmHg or systolic blood pressure ≥140 mmHg and 
diabetes as taking diabetes medication or a fasting glucose >125 mg/dL.

2.2.3. Primary outcome ascertainment
Incident CHD and stroke events through 2017 were primarily self- 

reported at study visits or follow-up calls occurring every 9–12 
months and verified by medical records, reviewed by trained personnel 
to confirm events. Records were reviewed by cardiologists or cardio-
vascular physician epidemiologists for non-neurovascular events, and 
neurologists for all neurovascular events. Incident CHD was defined as 
the first occurrence of any of the following: myocardial infarction, 
resuscitated cardiac arrest, CHD death, or definite angina. Definite 
angina was defined as symptoms of typical chest pain and physician 
diagnosis of angina followed by coronary artery bypass graft and 
percutaneous transluminal coronary angioplasty, evidence of ischemia 
by stress tests or resting ECG, or ≥70 % obstruction on coronary angi-
ography. Probable angina cases were included if followed by revascu-
larization. Incident stroke was defined as new fatal or non-fatal strokes 
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due to ischemic, hemorrhage, or transient ischemic attack.

2.3. Statistical analysis

Preliminary associations between Lp(a), hs-CRP, tHcy, outcomes of 
interest and population characteristics were evaluated using Spearman 
correlation, ANOVA or Wald Х2. Lp(a), hs-CRP and tHcy were evaluated 
categorically using standard cut-points [Lp(a): low <50 mg/dL, high 
≥50 mg/dL; hs-CRP: low <2mg/L, high ≥2 mg/L; tHcy: low <12 µmol/ 
L, high ≥12 µmol/L) [3,12,23]. Lp(a) was additionally evaluated using 
the alternatively cut-point 30 mg/dL [Lp(a): low <30 mg/dL, high ≥30 
mg/dL].

To evaluate joint effects, all possible combinations of two bio-
markers, in addition to all three combined, were evaluated in relation to 
CHD and stroke incidence. In evaluating two biomarkers together, 
participants were stratified by high/low status and comparisons were 
made to individuals with low levels of both biomarkers. Categories for 
evaluating the combinations of all three biomarkers, again stratified by 
high/low status were compared to individuals with low hs-CRP, low Lp 
(a), and low tHcy.

Time to event for CHD and stroke was modeled for hs-CRP, Lp(a) and 
tHcy separately and by categories of the combined biomarkers of in-
terest using Cox proportional hazards regression. Models were con-
ducted (1) unadjusted; (2) age, sex, race/ethnicity; and (3) age, sex, 
race/ethnicity, hypertension, hypertension medication usage, diabetes, 
pack-years smoking, high-density lipoprotein-cholesterol, total choles-
terol (HDL-C), triglycerides (log-transformed), body mass index (BMI) 
and estimated glomerular filtration rate (eGRF). The following variables 
were also evaluated as covariates, but not included in the final presented 
models: waist circumference, low-density lipoprotein cholesterol, non- 
HDL-C, education, income, alcohol intake, Healthy Eating Index diet 
score, physical activity, aspirin use, and lipid-lowering medication use. 
For multivariable-adjusted models, a priori chosen factors there were 
associated with exposure and/or outcome or that changed the associa-
tion between Lp(a), hs-CRP, tHcy and the outcome(s) were included in 
the final version of the fully adjusted model. Tests for interaction were 
conducted using cross-product terms (2-way for two biomarker combi-
nations, 3-way for combination of all three). Multivariable-adjusted 
survival curves using the same covariates outlined previously were 
computed for the associations between biomarker combinations and 
incidence of CHD and stroke. Harrell’s Concordance Statistics (c-statis-
tics) were calculated in adjusted models with and without hs-CRP, Lp(a) 
and tHcy. Sensitivity analyses were conducted using ischemic stroke 
only. Findings were similar to those using all stroke types, so results are 
presented using all stroke types. Statistical analyses were performed 
using SAS version 9.4 (SAS Institute Inc) and statistical significance was 
defined as a two-tailed P value <0.05.

3. Results

There were 669 incident cases of CHD and 294 incident cases of 
stroke. Baseline population characteristics among individuals with 0/3, 
1/3, 2/3 and 3/3 biomarkers above thresholds are presented in Table 1. 
Among the 6589 participants, 48.0 % (N = 3161) had elevated h-sCRP, 
20.1 % (N = 1318) had elevated Lp(a), and 13.3 % (N = 874) had 
elevated tHcy.

Associations of individual biomarkers with CHD and stroke are 
presented in Table 2. Lp(a) was associated with CHD risk while tHcy was 
positively associated with CHD when evaluated continuously, but not 
categorically. Hs-CRP was not independently associated with CHD in 
fully adjusted models. tHcy and hs-CRP were both positively associated 
with stroke incidence, while Lp(a) was not associated with stroke risk. 
Results were similar when Lp(a) cut-point of 30 mg/dL was used 
(Supplementary Table 1).

Two-way combinations of hs-CRP, Lp(a) and tHcy and associations 
with CHD and stroke are presented in Table 3. Survival curves for the 

associations are presented in Figs. 1 and 2, respectively. In general, in-
dividuals with only one elevated biomarker did not have an increased 
risk of CHD compared with the reference group where both biomarkers 
were low. However, CHD incidence was higher when two biomarkers 
were elevated [high hs-CRP + high Lp(a): hazard ratio (HR)=1.39, 95 % 
confidence interval (CI): 1.06, 1.82; high hs-CRP + tHcy: HR = 1.34, 95 
% CI: 1.02, 1.76; high tHcy + Lp(a):HR = 1.58, 95 % CI: 1.08, 2.30]. 
Tests for interaction for the combinations of two biomarkers were not 
statistically significant (P>0.27). Similarly, higher stroke incidence was 
only observed among individuals with combined high hs-CRP + Lp(a) 

Table 1 
Baseline characteristics of the Multi-Ethnic Study of Atherosclerosis study pop-
ulation by number of biomarkers (high sensitivity c-reactive protein, lipoprotein 
(a) and homocysteine) above thresholds (N = 6676).

0/3 
Elevated

1/3 
Elevated

2/3 
Elevated

3/3 
Elevated

P- 
valuec

Overalla 2406 
(36.5)

3270 
(49.6)

809 
(12.3)

107 (1.6) —

Ageb 60.0 
(52.0, 
69.0)

61.0 
(53.0, 
69.0)

68.0 
(59.0, 
76.0)

69.0 
(64.0, 
75.0)

<0.0001

Sex (female)a 1084 
(45.1)

2072 
(63.4)

276 
(34.1)

50 (46.7) <0.0001

Race/ 
Ethnicitya

    <0.0001

White 1020 
(42.5)

1118 
(36.3)

311 
(38.4)

22 (20.6) 

Black 415 
(17.3)

1096 
(33.5)

229 
(28.3)

63 (58.9) 

Chinese 485 
(20.2)

201 (6.2) 101 
(12.5)

1 (0.9) 

Hispanic 483 
(20.1)

785 
(24.1)

168 
(20.8)

21 (19.6) 

Hypertensiona 838 
(34.9)

1548 
(47.3)

481 
(59.5)

79 (74.8) <0.0001

HTN 
medicationa

697 
(28.6)

1263 
(38.6)

418 
(51.7)

74 (69.2) <0.0001

Diabetesa 215 (9.0) 448 
(13.7)

137 
(16.9)

24 (22.04 <0.0001

Smoking 
(pack-years)b

0.0 (0.0, 
11.0)

0.0 (0.0, 
16.8)

0.75 (0.0, 
21.8)

0.50 (0.0, 
25.0)

<0.0001

BMI (kg/m2)b 25.9 
(23.3, 
28.8)

29.0 
(25.7, 
33.0)

27.4 
(24.6, 
30.8)

29.7 
(26.4, 
32.7)

<0.0001

hs-CRP (mg/ 
L)†b

0.85 
(0.50, 
1.31)

3.78 
(2.33, 
6.77)

1.64 
(0.74, 
3.51)

4.43 
(3.02, 
8.94)

<0.0001

Lp(a) (mg/dL)b 11.6 (5.9, 
22.5)

26.6 (9.7, 
62.6)

13.4 (6.4, 
28.8)

80.9 
(66.7, 
115.6)

<0.0001

tHcy (µmol/L)b 8.3 (7.1, 
9.7)

8.3 (7.0, 
9.6)

13.7 
(12.6, 
15.8)

14.4 
(13.2, 
17.5)

<0.0001

HDL-C (mg/ 
dL)b

49.0 
(41.0, 
59.0)

49.0 
(41.0, 
59.0)

46.0 
(39.0, 
57.0)

46.0 
(39.0, 
57.0)

0.0008

Total 
Cholesterol 
(mg/dL)b

189.0 
(169.0, 
211.0)

196.0 
(174.0, 
219.0)

186.0 
(163.0, 
210.0)

197.0 
(173.0, 
220.0)

<0.0001

Triglycerides 
(mg/dL)b

105.0 
(74.0, 
153.0)

114.0 
(81.0, 
165.0)

112.0 
(77.0, 
166.0)

112.0 
(84.0, 
171.0)

0.01

eGFRb 81.0 
(71.9, 
92.4)

80.7 
(70.7, 
92.8)

71.0 
(59.3, 
84.1)

64.6 
(50.0, 
75.4)

<0.0001

Abbreviations: Body mass index, BMI; high sensitivity c-reactive protein, hs- 
CRP; estimated glomerular filtration rate, eGFR; high-density lipoprotein 
cholesterol, HDL-C; homocysteine, tHcy; interquartile range, IQR; lipoprotein 
(a), Lp(a).

a n (%)
b Median (IQR)
c Wald X2 test for categorical variables; One-way ANOVA for continuous 

variables.
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Table 2 
Individual associations between high sensitivity c-reactive protein (<2 mg/L, ≥2 mg/L), lipoprotein(a) (<50 mg/dL, ≥50 mg/dL), homocysteine (<12 µmol/L, ≥12 
µmol/L) with coronary heart disease and stroke (though 2017) in MESA (N = 6676).

Coronary Heart Disease Stroke

N Cases/ 
N Total

Minimally Adjusteda

HR (95 % CI)
Fully Adjustedb

HR (95 % CI)
N Cases/ 
N Total

Minimally Adjusteda

HR (95 % CI)
Fully Adjustedb

HR (95 % CI)

hs-C-reactive protein      
hs-CRP <2 mg/L 343/3417 Reference Reference 133/3417 Reference Reference
hs-CRP ≥2 mg/L 316/3150 1.22 (1.05, 1.43) 

P = 0.01
1.05 (0.89, 1.24) 

P = 0.53
161/3148 1.34 (1.06, 1.69) 

P = 0.02
1.30 (1.01, 1.67) 

P = 0.04
Loghs-CRP (per unit) 669/6567 1.14 (1.07, 1.23) 

P < 0.0001
1.08 (1.00, 1.16) 

P = 0.05
294/6565 1.16 (1.05, 1.29) 

P = 0.004
1.15 (1.03, 1.29) 

P = 0.01
Lipoprotein(a)     

Lp(a) <50 mg/dL 517/5258 Reference Reference 232/5257 Reference Reference
Lp(a) ≥50 mg/dL 152/1309 1.25 (1.04, 1.51) 

P = 0.02
1.25 (1.04, 1.52) 

P = 0.02
62/1308 1.07 (0.80, 1.42) 

P = 0.66
1.02 (0.76, 1.37) 

P = 0.88
LogLp(a) (per unit) 669/6567 1.06 (0.99, 1.14) 

P = 0.09
1.08 (1.01, 1.17) 

P = 0.03
294/6565 1.02 (0.92, 1.14) 

P = 0.70
1.01 (0.91, 1.13) 

P = 0.81
Homocysteine      

tHcy <12 µmol/L 542/5695 Reference Reference 229/5693 Reference Reference
tHcy ≥12 µmol/L 127/872 1.25 (1.03, 1.51) 

P = 0.03
1.20 (0.98, 1.47) 

P = 0.08
65/872 1.44 (1.09, 1.91) 

P = 0.01
1.50 (1.12, 2.01) 

P = 0.006
LogtHcy (per unit) 669/6567 1.46 (1.13, 1.89) 

P = 0.004
1.36 (1.02, 1.80) 

P = 0.03
294/6565 1.51 (1.03, 2.12) 

P = 0.03
1.66 (1.11, 2.50) 

P = 0.01

Abbreviations: high sensitivity C-reactive protein, hs-CRP; confidence interval, CI; coronary heart disease, CHD; estimated glomerular filtration rate, eGFR; hazard 
ratio, HR; high-density lipoprotein cholesterol, HDL-C; homocysteine, tHcy; interquartile range, IQR; lipoprotein(a), Lp(a).

a Cox proportional hazards regression adjusted for age, sex, race/ethnicity adjusted.
b Cox proportional hazards regression adjusted for age, sex, race/ethnicity, hypertension, hypertension medication usage, diabetes, pack-years smoking, HDL-C, 

total cholesterol, triglycerides (log-transformed), BMI and eGFR.

Table 3 
Associations of two-way combinations of high sensitivity c-reactive protein, lipoprotein(a) and homocysteine with coronary heart disease and stroke (through 2017) in 
MESA (N=6,676)

Coronary Heart Disease Stroke

N Cases/N Total Minimally Adjusteda

HR (95% CI)
Fully Adjustedb

HR (95% CI)
N Cases/N Total Minimally Adjusteda

HR (95% CI)
Fully Adjustedb

HR (95% CI)

hs-CRP and Lp(a)c

Low hs-CRP and Lp(a) 270/2773 Reference Reference 111/2773 Reference Reference
High hs-CRP only 247/2485 1.21 (1.01, 1.44) 

P=0.04
1.03 (0.85, 1.23) 

P=0.79
121/2484 1.22 (0.94, 1.58) 

P=0.14
1.17 (0.89, 1.54) 

P=0.27
High Lp(a) only 73/644 1.21 (0.93, 1.58) 

P=0.15
1.17 (0.90, 1.52) 

P=0.25
22/644 0.83 (0.53, 1.30) 

P=0.43
0.76 (0.48, 1.21) 

P=0.24
High hs-CRP, Lp(a) 79/665 1.58 (1.22, 2.06) 

P=0.0006
1.39 (1.06, 1.82) 

P=0.02
40/2484 1.59 (1.09, 2.32) 

P=0.02
1.51 (1.02, 2.23) 

P=0.04
P-Interaction=0.67 P-Interaction=0.43 P-Interaction=0.12 P-Interaction=0.07

hs-CRP and tHcyc

Low hs-CRP and tHcy 282/2956 Reference Reference 109/2956 Reference Reference
High hs-CRP only 254/2697 1.17 (0.98, 1.39) 

P=0.08
1.01 (0.84, 1.21) 

P=0.96
118/2695 1.20 (0.92, 1.56) 

P=0.18
1.16 (0.88, 1.53) 

P=0.30
High tHcy only 61/461 1.12 (0.85, 1.48) 

P=0.42
1.07 (0.81, 1.43) 

P=0.62
24/461 1.09 (0.70, 1.70) 

P=0.70
1.14 (0.73, 1.80) 

P=0.56
High hs-CRP, HCY 72/453 1.58 (1.22, 2.05) 

P=0.0006
1.34 (1.02, 1.76) 

P=0.03
43/453 2.07 (1.44, 2.96) 

P<0.0001
2.10 (1.44, 3.06) 

P=0.0001
P-Interaction=0.33 P-Interaction=0.27 P-Interaction=0.11 P-Interaction=0.11

tHcy and Lp(a)c

Low tHcy and Lp(a) 416/4534 Reference Reference 181/4533 Reference Reference
High tHcy only 101/724 1.23 (0.99, 1.53) 

P=0.07
1.18 (0.94, 1.48) 

P=0.15
51/724 1.40 (1.02, 1.92) 

P=0.04
1.45 (1.05, 2.00) 

P=0.03
High Lp(a) only 120/1119 1.24 (1.00, 1.51) 

P=0.05
1.24 (1.00, 1.53) 

P=0.05
46/1118 1.03 (0.74, 1.42) 

P=0.87
0.98 (0.70, 1.37) 

P=0.91
High tHcy, Lp(a) 32/190 1.62 (1.22, 2.33) 

P=0.01
1.58 (1.08, 2.30) 

P=0.02
16/190 1.67 (0.99, 2.80) 

P=0.05
1.69 (0.99, 2.88) 

P=0.05
P-Interaction=0.78 P-Interaction=0.73 P-Interaction=0.65 P-Interaction=0.60

Abbreviations: high sensitivity C-reactive protein, hs-CRP; confidence interval, CI; coronary heart disease, CHD; estimated glomerular filtration rate, eGFR; hazard 
ratio, HR; high-density lipoprotein cholesterol, HDL-C; homocysteine, tHcy; interquartile range, IQR; lipoprotein(a), Lp(a).

a Cox proportional hazards regression adjusted for age, sex, race/ethnicity adjusted.
b Cox proportional hazards regression adjusted for age, sex, race/ethnicity, hypertension, hypertension medication usage, diabetes, pack-years smoking, HDL-C, 

total cholesterol, triglycerides (log-transformed), BMI and eGFR.
c Low hs-CRP <2 mg/L; High hs-CRP ≥2 mg/L; Low Lp(a) <50 mg/dL; High Lp(a) ≥50 mg/dL; Low tHcy <12 µmol/L; High tHcy=≥12 µmol/L.

S.O. Nomura et al.                                                                                                                                                                                                                             American Journal of Preventive Cardiology 21 (2025) 100903 

4 



(HR = 1.51, 95 % CI: 1.02, 2.23, P-interaction=0.07) or combined high 
hs-CRP + tHcy (HR = 2.10, 95 % CI: 1.44, 3.06, P-interaction=0.11) 
when compared to individuals with low levels for both biomarkers. High 
tHcy + Lp(a) were borderline significantly associated with stroke inci-
dence (HR = 1.69, 95 % CI: 0.99, 2.88, P-interaction=0.60), but the 
sample size in this group was notably smaller than the other groups 
(n=193). However, individuals with high tHcy only [and low Lp(a)] had 
increased stroke risk (HR = 1.45, 95 % CI: 1.05, 2.00). Findings were 
similar when using 30 mg/dL Lp(a) cut-point (Supplementary 
Table 2).

Results for combinations of all three biomarkers in relation to inci-
dence of CHD and stroke are presented in Table 4 with survival curves in 
Figs. 1d and Fig. 2d. When evaluated as the number of biomarkers over 
the corresponding clinical thresholds, incidence of both CHD (HR =
1.99, 95 % CI: 1.24, 3.20) and stroke (HR = 2.95, 95 % CI: 1.58, 5.49) 
were highest when all three biomarkers were above clinical cut-points 
and hazard ratios increased and associations strengthened which each 
additional elevated. There was a significant increased risk of CHD only 
in individuals with combined high Lp(a), hs-CRP and tHcy (HR = 2.02, 
95 % CI: 1.26, 3.24, P-interaction=0.58). Similarly, individuals classi-
fied as high for all three biomarkers were at an increased risk for stroke 
(HR = 2.99, 95 % CI: 1.61, 5.58, P-interaction=0.34). However, in-
dividuals with both high hs-CRP and tHcy but low Lp(a) also had a 
statistically significantly higher incidence of stroke relative to in-
dividuals with the combination of low hs-CRP, tHcy and Lp(a) (HR =
1.79, 95 % CI: 1.16, 2.76). Results using Lp(a) cut-point of 30 mg/dL are 

presented on Supplementary Table 3 and are similar to findings using 
50 mg/dL). C-statistics for models with and without hs-CRP, Lp(a) and 
tHcy were similar [CHD models c-statistic range: 0.7274 (no bio-
markers) to 0.7294 (all three biomarkers); stroke models c-statistic 
range: 0.7329 (no biomarkers and Lp(a) only) to 0.7374 (all three bio-
markers) Supplementary Table 4.

4. Discussion

The results of this study suggest it may be beneficial to consider 
biomarker combinations and to include tHCY measurements in assessing 
ASCVD risk. When considering combinations of two biomarkers, 
significantly higher CHD risk was only seen when both biomarkers were 
concomitantly elevated, and not with elevation of single biomarkers. 
Similarly, elevated stroke risk was only seen with elevated hs-CRP in 
combination with elevated Lp(a) or tHcy; only tHcy alone conferred 
significant stroke risk individually. In three-way analyses, CHD risk was 
elevated only when all three biomarkers were at or above clinical cut- 
points; stroke incidence was increased only when all three biomarkers 
were elevated, or when both hs-CRP and tHcy were elevated. Addi-
tionally, both CHD and stroke risk appeared highest when all three 
biomarkers were above clinical thresholds, and associations increased 
with each additional biomarker over the corresponding threshold.

Lp(a) [5,24–27], hs-CRP [6–9] and tHcy [10–14] have all been 
shown to be associated with ASCVD risk. Two prior studies, one 
involving primary and the other secondary prevention of ASCVD have 

Fig. 1. Combined associations of high-sensitivity c-reactive protein, lipoprotein(a) and total homocysteine with incident coronary heart disease in the Multi-Ethnic 
Study of Atherosclerosis. 
Abbreviations: high-sensitivity c-reactive protein, hs-CRP; coronary heart disease (CHD) total plasma homocysteine, tHcy; lipoprotein(a), LPA. Cox proportional 
hazards regression survival curves adjusted for age, sex, race/ethnicity, hypertension, hypertension medication usage, diabetes, pack-years smoking, HDL-C, total 
cholesterol, triglycerides (log-transformed), BMI and eGFR. Low hs-CRP <2 mg/dL; High hs-CRP ≥2 mg/dL; Low Lp(a) <50 mg/dL; High Lp(a) ≥50 mg/dL; Low 
tHcy <12 µmol/L; High tHcy=≥12 µmol/L.
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evaluated Lp(a) and hs-CRP in combination. A secondary analysis in the 
prevention trial ACCELERATE demonstrated that hs-CRP may modulate 
Lp(a)-associated CVD risk [12]. More recently, a study of MESA par-
ticipants not on statins demonstrated Lp(a) was associated with greater 
risk of ASCVD only when hs-CRP was >2 mg/L [19]. While Lp(a) was 
individually associated with CHD and hs-CRP and tHcy were individual 
associated with stroke when evaluated separately, these biomarkers 
were not individually associated with CHD when considering multiple 
risk factors. This may be due to smaller numbers in those categories, or 
the potential residual effect of the other coinciding risk factors. Our 
study aligns with and expands on these results by demonstrating that 
when considering combinations of biomarkers, the CHD risk associated 
with Lp(a) was only present when an individual also had elevated 
hs-CRP and/or tHcy. Similarly, the association between stroke risk and 
hs-CRP was only present when Lp(a) and/or tHcy was concomitantly 
elevated. In contrast, tHcy was associated with stroke risk without 
elevation in Lp(a), but when considering hs-CRP measurements was only 
associated with increased risk when hs-CRP was also elevated. The 
combination of elevated tHcy and Lp(a) was only of borderline signifi-
cance in its association with stroke which may be due to the limited 
numbers of cases and participants with this biomarker combination. 
However, Lp(a) was not independently associated with stroke risk in this 
study, and these results suggest a more complicated relationship, 
possibly owing to the more heterogeneous nature of stroke. Using the 
lower clinical threshold of Lp(a) <30 mg/dL did not change study 
findings overall and tended to weaken associations, which may be due to 

the inconsistent associations observed with ASCVD risk when using a 
threshold of 30 mg/dL in MESA [28,29]. While risk was highest when all 
three biomarkers were elevated, benefits of additional measurement for 
risk prediction remain unclear. C-statistics suggested limited additional 
predictive value in study models with the additional of hs-CRP, Lp(a) 
and tHcy, however, future studies are needed to further explore the 
potential benefits of adding these biomarkers to study models as study 
sample size likely limited out ability to detect incremental, but still 
meaningful improvements in risk stratification [30,31].

In our study, the finding that elevated tHcy significantly enhances 
risk for CHD or stroke when combined with either hs-CRP and/or Lp(a) 
represents a novel finding. Numerous studies have demonstrated that 
systemic inflammation plays an important role as a CVD risk factor [32]. 
While hs-CRP is the most validated biomarker of inflammation, Lp(a) 
and tHcy are also known to play important roles in inflammation [12,
33]. The current study demonstrated that in addition to hs-CRP, tHcy 
also plays a role in modulating the Lp(a)-associated ASCVD risk. Addi-
tionally, research suggests Lp(a) and tHcy are both associated with 
increased coagulation and appear to have a synergistic effect [16–18].

Homocysteine is not currently recognized as a risk-enhancing factor 
by the AHA/ACC guidelines. Although homocysteine has been shown to 
be a risk factor for ASCVD since the mid-1990s, interest in this 
biomarker as a CHD risk factor has diminished in the ensuing decades 
due in part to the failure of homocysteine-lowering intervention trials 
[17]. However, many of these trials had short treatment and follow up 
periods (≤ 2 years), and/or enlisted participants with high CHD risk, and 

Fig. 2. Combined associations of high-sensitivity c-reactive protein, lipoprotein(a) and total homocysteine with incident stroke in the Multi-Ethnic Study of 
Atherosclerosis. 
Abbreviations: high-sensitivity c-reactive protein, hs-CRP; total plasma homocysteine, tHcy; lipoprotein(a), LPA. Cox proportional hazards regression survival curves 
adjusted for age, sex, race/ethnicity, hypertension, hypertension medication usage, diabetes, pack-years smoking, HDL-C, total cholesterol, triglycerides (log- 
transformed), BMI and eGFR. Low hs-CRP <2 mg/dL; High hs-CRP ≥2 mg/dL; Low Lp(a) <50 mg/dL; High Lp(a) ≥50 mg/dL; Low tHcy <12 µmol/L; High 
tHcy=≥12 µmol/L.
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therefore the impact of long-term homocysteine-lowering on CHD risk in 
low to intermediate risk individuals has not been determined. In support 
of tHcy risk-enhancing role, a recent publication from our group 
demonstrated that elevated tHcy was associated with increased risk of 
prevalent and incident coronary artery and descending thoracic aorta 
calcification and calcification progression in the MESA cohort [12].

Several recent publications have demonstrated the important role 
played by tHcy as a risk factor for stroke [34–37]. Research suggests 
lowering tHcy concentrations may have a greater impact on reducing 
stroke incidence, compared with myocardial infarction [38,39]. The 
MTHFR C677T genotype, which is associated with higher tHcy levels is 
associated with small vessel disease, which is more strongly associated 
with stroke than CHD and hyperhomocysteinemia has been shown to be 
more strongly associated with risk of stroke compared to CHD [38,39]. 
In view of the decreased focus on tHcy in recent years as a risk fac-
tor/risk enhancer, more studies are needed to determine whether 
measurement of tHcy, either individually or in combination with hs-CRP 
and Lp(a), may offer value in assessing CHD and stroke risk in the 
routine care and risk assessment of patients for primary prevention of 
CHD and stroke.

Our study has implications for future clinical care as well as avenues 
for future investigation. In addition to their usefulness for assessing 
overall risk to CHD and stroke, all three biomarkers may be potential 
therapeutic targets and pathways to address residual ASCVD risk. 
Plasma total homocysteine levels can be lowered with B vitamins 
including folic acid [40,41] and has been shown to lower risk of stroke 
[36,42,43]. Systemic inflammation, reflected in hs-CRP levels, can be 
effectively lowered with lifestyle interventions [44] and medications, 
including statins [45] and other lipid lowering therapy, such as bem-
pedoic acid therapy [46]. Drugs that lower inflammation such as 

canakinumab and colchicine have been demonstrated to improve car-
diovascular outcomes in patients with established ASCVD [47,48]. 
While effective therapy for lowering Lp(a) is currently not available, 
anti-sense oligonucleotide therapy has shown promise in lowering Lp(a) 
[49,50]. Pelacarsen was shown to lower Lp(a) by more than 80 % in the 
phase II HORIZON trial with Phase III currently ongoing [51]. Addi-
tionally, all three biomarkers are currently widely available as 
FDA-approved assays on high-throughput testing platforms in clinical 
laboratories at a relatively low cost (<$20 each), and thus there would 
be minimal logistical or practical barriers to incorporating these bio-
markers into routine CVD risk assessment.

While this study has important strengths, including the availability 
of all three biomarkers for evaluating combined associations and 
rigorous data collection and follow-up procedures, it also has some 
important limitations. While MESA is a relatively large study, there were 
small groups of participants in certain categories of combined bio-
markers, particularly in the stroke analyses which has a smaller number 
of events than CHD, which may have limited our ability to detect a true 
association. It may also have limited our ability to detect statistically 
significant interactions which require greater statistical power. An 
additional limitation is that biomarkers were only measured at baseline 
and repeated measures were not available. While tHcy and Lp(a) have 
been demonstrated to be relatively stable in prior studies, hs-CRP can 
vary substantially across repeated measures which could not be 
accounted for in the present study [52–54].

5. Conclusions

In this study, CHD and stroke risk were highest only when Lp(a), hs- 
CRP and tHCY were all elevated, suggesting the additional measurement 

Table 4 
Combined associations of high sensitivity c-reactive protein (<2 mg/dL, ≥2 mg/dL), lipoprotein(a) (<50 mg/dL, ≥50 mg/dL) and homocysteine (<12 µmol/L, ≥12 
µmol/L) with coronary heart disease and stroke (though 2017) in MESA (N = 6676).

Coronary Heart Disease Stroke

N Cases/ 
N Total

Minimally Adjusteda

HR (95 % CI)
Fully Adjustedb, d

HR (95 % CI)
N Cases/ 
N Total

Minimally Adjusteda

HR (95 % CI)
Fully Adjustedb, d

HR (95 % CI)

Overallc      
0:3 Elevated 220/2396 Reference Reference 90/2396 Reference Reference
1:3 Elevated 316/3257 1.23 (1.03, 1.48) 

P = 0.02
1.07 (0.89, 1.29) 

P = 0.44
137/3255 1.12 (0.85, 1.46) 

P = 0.43
1.04 (0.79, 1.38) 

P = 0.77
2:3 Elevated 112/808 1.30 (1.03, 1.64) 

P = 0.03
1.18 (0.93, 1.49) 

P = 0.18
54/808 1.38 (0.98, 1.94) 

P = 0.07
1.40 (0.98, 1.98) 

P = 0.06
3:3 Elevated 21/106 2.38 (1.51, 3.76) 

P = 0.0002
1.99 (1.24, 3.20) 

P = 0.005
13/106 2.98 (1.64, 5.39) 

P = 0.0003
2.95 (1.58, 5.49) 

P = 0.007
Individual Combinationsc      
Low hs-CRP, Lp(a), tHCY 220/2369 Reference Reference 90/2396 Reference Reference

High hs-CRP only 196/2138 1.18 (0.97, 1.44) 
P = 0.09

1.00 (0.81, 1.23) 
P = 0.98

91/2137 1.13 (0.84, 1.52) 
P = 0.42

1.08 (0.79, 1.47) 
P = 0.62

High Lp(a) only 62/560 1.27 (0.95, 1.68) 
P = 0.11

1.21 (0.90, 1.61) 
P = 0.21

19/560 0.90 (0.56, 1.46) 
P = 0.67

0.82 (0.49, 1.35) 
P = 0.43

High tHcy only 50/377 1.18 (0.87, 1.61) 
P = 0.29

1.12 (0.82, 1.53) 
P = 0.48

21/377 1.18 (0.73, 1.90) 
P = 0.50

1.23 (0.76, 2.00) 
P = 0.40

High hs-CRP, Lp(a); Low tHcy 58/559 1.45 (1.08, 1.96) 
P = 0.01

1.28 (0.94, 1.73) 
P = 0.12

27/558 1.34 (0.86, 2.08) 
P = 0.19

1.26 (0.80, 1.99) 
P = 0.31

High Lp(a), tHcy; Low hs-CRP 11/84 1.16 (0.63, 2.14) 
P = 0.62

1.13 (0.62, 2.09) 
P = 0.69

3/84 0.65 (0.20, 2.05) 
P = 0.46

0.65 (0.20, 2.06) 
P = 0.46

High hs-CRP, tHcy; Low Lp(a) 51/347 1.49 (1.10, 2.02) 
P = 0.01

1.25 (0.91, 1.72) 
P = 0.16

30/347 1.78 (1.17, 2.70) 
P = 0.007

1.79 (1.16, 2.76) 
P = 0.008

High hs-CRP, Lp(a), tHcy 21/106 2.40 (1.52, 3.80) 
P < 0.0001

2.02 (1.26, 3.24) 
P = 0.004

13/106 2.99 (1.65, 5.41) 
P = 0.0003

2.99 (1.61, 5.58) 
P = 0.0006

Abbreviations: high sensitivity C-reactive protein, hs-CRP; confidence interval, CI; coronary heart disease, CHD; estimated glomerular filtration rate, eGFR; hazard 
ratio, HR; high-density lipoprotein cholesterol, HDL-C; homocysteine, tHcy; interquartile range, IQR; lipoprotein(a), Lp(a).

a Cox proportional hazards regression adjusted for age, sex, race/ethnicity adjusted.
b Cox proportional hazards regression adjusted for age, sex, race/ethnicity, hypertension, hypertension medication usage, diabetes, pack-years smoking, HDL-C, 

total cholesterol, triglycerides (log-transformed), BMI and eGFR.
c Low hs-CRP < 2 mg/L; High hs-CRP ≥2 mg/L; Low Lp(a) <50 mg/dL; High Lp(a) ≥50 mg/dL; Low tHcy <12 µmol/L; High tHcy=≥12 µmol/L.
d Interaction p-values from fully-adjusted Cox proportional hazards regression cross-product term: CHD hs-CRP category*Lp(a) category*tHcy category P = 0.58; 

stroke hs-CRP category*Lp(a) category*tHcy category P = 0.34.
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of tHCY, and consideration of combinations of multiple ASCVD risk 
biomarkers, may help refine identification of individuals are highest risk 
for CHD and stroke. Future research should consider whether adding 
biomarker combinations to risk prediction assessments may be benefi-
cial for improving stratifying CHD and stroke risk.
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