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Abstract

Changes in gene expression programs play a central role in cancer. Chromosomal aberrations such as deletions,
duplications and translocations of DNA segments can lead to highly significant positive correlations of gene expression
levels of neighboring genes. This should be utilized to improve the analysis of tumor expression profiles. Here, we develop a
novel model class of autoregressive higher-order Hidden Markov Models (HMMs) that carefully exploit local data-dependent
chromosomal dependencies to improve the identification of differentially expressed genes in tumor. Autoregressive higher-
order HMMs overcome generally existing limitations of standard first-order HMMs in the modeling of dependencies
between genes in close chromosomal proximity by the simultaneous usage of higher-order state-transitions and
autoregressive emissions as novel model features. We apply autoregressive higher-order HMMs to the analysis of breast
cancer and glioma gene expression data and perform in-depth model evaluation studies. We find that autoregressive
higher-order HMMs clearly improve the identification of overexpressed genes with underlying gene copy number
duplications in breast cancer in comparison to mixture models, standard first- and higher-order HMMs, and other related
methods. The performance benefit is attributed to the simultaneous usage of higher-order state-transitions in combination
with autoregressive emissions. This benefit could not be reached by using each of these two features independently. We
also find that autoregressive higher-order HMMs are better able to identify differentially expressed genes in tumors
independent of the underlying gene copy number status in comparison to the majority of related methods. This is further
supported by the identification of well-known and of previously unreported hotspots of differential expression in
glioblastomas demonstrating the efficacy of autoregressive higher-order HMMs for the analysis of individual tumor
expression profiles. Moreover, we reveal interesting novel details of systematic alterations of gene expression levels in
known cancer signaling pathways distinguishing oligodendrogliomas, astrocytomas and glioblastomas. An implementation
is available under www.jstacs.de/index.php/ARHMM.
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Introduction

Copy number changes of genes are frequently found in different

types of cancer [1]. Mutations such as duplications of oncogenes

and deletions of tumor suppressor genes contribute together with

single nucleotide polymorphisms, epigenetic alterations and other

types of mutations to changes in gene expression programs

triggering the development of cancer [2]. Broad and focal

duplications and deletions of chromosomal regions are known to

directly influence expression levels of underlying genes. Genes with

increased copy numbers tend to show increased expression,

whereas genes with reduced copy numbers tend to show reduced

expression in tumors compared to healthy tissue (e.g. [3–6]). This

coupling of gene copy numbers and gene expression levels leads to

local chromosomal dependencies between gene expression levels

providing the opportunity to develop improved methods for the

analysis of individual tumor expression profiles.

Over the last years, several approaches have been developed for

the analysis of tumor expression profiles in the context of

chromosomal locations of genes. Methods like CGMA (compar-

ative genomic microarray analysis) [7], MACAT (MicroArray

Chromosome Analysis Tool) [8] or LAP (Locally Adaptive

statistical Procedure) [9] require replicated measurements of

tumor and normal reference samples for the identification of

differentially expressed genes. Such methods cannot be applied to

the analysis of individual tumor expression profiles in large

screenings for which repeated profiling of the same sample is
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typically not done to reduce costs and to increase the number of

screened tumors. Usually, log-fold change thresholds are used to

determine differentially expressed genes in individual tumor

expression profiles measured in such screenings. Alternatively,

closely related methods for the analysis of comparative genomic

hybridization data (e.g. reviewed and compared in [10] and [11])

can be applied to individual tumor expression profiles. For

example, ChARM (Chromosomal Aberration Region Miner) [12]

has also been demonstrated to identify differentially expressed

chromosomal regions in individual tumor expression profiles.

However, we have recently shown that both strategies only reach

suboptimal performances that can be improved substantially by

Hidden Markov Models (HMMs) utilizing prior knowledge on the

distribution of gene expression measurements and chromosomal

proximities of genes [13].

Generally, HMMs provide a sound mathematical grounding for

the analysis of biological sequences [14,15]. However, a current

limitation of almost all existing HMM -based approaches is their

limited potential to model local dependencies between measure-

ments due to two restrictive assumptions. First of all, the

commonly used standard first-order state-transition process only

enables the modeling of local dependencies between directly

adjacent hidden states. Secondly, it is commonly assumed that

measurements only depend on the underlying state and do not

directly influence each other. Nevertheless, HMMs with such

restrictive assumptions have frequently been found to reach good

results in a broad range of applications [14,16,17], but it has on

the other hand also been demonstrated that the integration of a

higher-order state-transition process can improve the model

performance substantially in speech recognition (e.g. [18]),

handwriting recognition (e.g. [19]), financial time-series analysis

(e.g. [20]), image segmentation (e.g. [21]), robotics (e.g. [22]) and

computational biology (e.g. [11,23,24]).

However, this only addresses the first limitation by overcoming

the restrictive first-order state-transition process. Independent

from that, extensions of the standard emission process have been

initially realized in speech recognition by the integration of

autoregressive emission distributions enabling the modeling of

state-specific direct local dependencies within a range of successive

measurements [25]. This concept has also been successfully

applied in other domains including the analysis of financial time

series [26], electrophysiological signals [27], evaluation of mete-

orological data [28], modeling of influenza and dengue fever

epidemics [29,30], speech synthesis [31] and for studying the

locomotive behavior of flies [32]. However, there have been no

general efforts to combine both concepts by realizing an HMM

with higher-order state-transitions and autoregressive emissions.

To overcome this, we develop a novel model class of

autoregressive higher-order HMMs enabling an improved mod-

eling of local dependencies between successive measurements.

Autoregressive higher-order HMMs simultaneously utilize higher-

order state-transitions in combination with autoregressive emis-

sions as novel model features. Globally, this model class has very

general modeling capabilities including mixture models, standard

first-order HMMs and higher-order HMMs as special cases. We

motivate the development of autoregressive higher-order HMMs

by considering the analysis of individual tumor expression profiles

in which local dependencies of gene expression levels are

frequently caused by deletions and duplications of underlying

chromosomal regions. The existence of such local chromosomal

dependencies between expression levels of genes in close

chromosomal proximity is clearly shown for three different types

of cancer in Figure 1. Additionally, based on initial findings on the

importance of integrating prior knowledge on the distribution of

differentially expressed genes into the training of HMMs [13], we

here also specifically design an efficient Bayesian Baum-Welch

training for autoregressive higher-order HMMs.

We apply our autoregressive higher-order HMMs to the

analysis of publicly available breast cancer and glioma gene

expression data. We first systematically evaluate the performance

of autoregressive HMMs to predict overexpressed genes in breast

cancer with known underlying increased gene copy numbers.

Then, we analyze to which extent these results are transferable to

other similar breast cancer expression profiles. We further

complement this by a sensitivity analysis evaluating the robustness

of autoregressive HMM predictions. Next, we perform an in-depth

comparison study to related existing methods on breast cancer

gene expression profiles, where we first investigate general

characteristics of predicted differentially expressed genes followed

by the identification of overexpressed genes with known increased

copy numbers. Finally, we consider different types of gliomas and

demonstrate that autoregressive HMMs are useful tools to reveal

systematic differences in expression levels of genes in known

cancer signaling pathways.

Materials and Methods

The materials part provides a brief overview of the considered

data sets. The methods part gives a detailed description of the

model class of autoregressive higher-order HMMs.

Figure 1. Local chromosomal dependencies of gene expression
levels in different types of cancer. Spatial correlations of expression
levels of genes in increasing chromosomal order up to ten were
quantified by an average autocorrelation function that considers each
chromosome-specific expression profile in each individual tumor
sample. The autocorrelation function quantifies the similarity of gene
expression levels of neighboring genes on a chromosome in a fixed
distance. Corresponding average autocorrelation functions are shown
for three types of cancer (i) different types of gliomas (red) [33], (ii)
breast cancer expression profiles (orange) [3] and (iii) glioblastoma
expression profiles (grey) [4]. Additionally, the green curve represents
the average autocorrelation function of normal brain reference gene
expression profiles taken from [33]. Due to chromosomal aberrations in
gliomas, expression levels of genes in close chromosomal proximity
tend to show greater similarity in gliomas (red) than in corresponding
normal brain tissues (green). Moreover, the black curve represents
mean values and standard deviations of the average autocorrelation
function for randomly permuted glioma gene expression profiles from
[33] across 100 repeats. The observation of significant local chromo-
somal dependencies in tumor expression profiles compared to
permuted expression profiles motivates the development of autore-
gressive higher-order HMMs for the analysis of tumor expression
profiles.
doi:10.1371/journal.pone.0100295.g001

ARHMM-Based Analysis of Tumor Expression Profiles
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Materials
This section shortly introduces the considered breast cancer and

glioma data sets.

Breast Cancer Data. A breast cancer data set by Pollack et al.

[3] is used to compare different bioinformatics methods for their

potential to identify differentially expressed genes in breast cancer.

This data set contains gene expression levels and corresponding

gene copy numbers measured for 4 breast cancer cell lines and 37

tumors across 6,095 genes of the 23 human chromosomes. For

each chromosome in each cell line and each tumor, we

summarized the gene expression measurements in a chromo-

some-specific tumor expression profile ~oo(k)~(o1(k), . . . ,oTk
(k))

leading to k[f1, . . . ,943~(4z37) � 23g different profiles. Each

profile represents the relative expression level of each gene

t[f1, . . . ,Tkg defined by the log2-ratio ot(k) of its expression level

in tumor divided by its corresponding expression level in the

healthy reference sample. All log-ratios in a tumor expression

profile are ordered from the p-arm to the q-arm of the underlying

chromosome utilizing the chromosomal locations of the corre-

sponding genes. A histogram of log-ratios of the breast cancer gene

expression data set is shown in Figure S1 in Text S1. Local spatial

dependencies between expression levels in the breast cancer gene

expression profiles are shown in Figure 1.

Glioma Data. We created a glioma gene expression data set

based on data from the Repository for Molecular Brain Neoplasia

Data (Rembrandt, current release 1.5.9) [33] containing tumor

samples of oligodendrogliomas (WHO grades II and III),

astrocytomas (WHO grades II and III) and glioblastomas

(glioblastoma multiforme: astrocytoma of WHO grade IV). We

performed stringent quality controls of the downloaded gene

expression arrays and removed all arrays with hybridization

artifacts. We further did a standard Affymetrix microarray

processing utilizing a customized design file from BrainArray

(HGU133Plus2 version 15.0.0) in combination with GCRMA

normalization [34]. The final data set contains tumor gene

expression profiles of 89 different gliomas (45 glioblastomas, 33

astrocytomas, and 11 oligodendrogliomas) for which gene

expression levels of 16,282 genes are quantified in terms of log-

ratios with respect to an average normal brain reference computed

based on data from Rembrandt. The individual tumor-specific

chromosomal expression profiles were structured in analogy to the

previously described breast cancer expression profiles. We use this

data set to perform an in-depth comparison of gene expression

changes affecting known cancer-relevant signaling pathways across

different types of gliomas. Local chromosomal dependencies

between gene expression levels in gliomas are shown in Figure 1.

Methods
This section develops the basics of the model class of

autoregressive higher-order HMMs in the context of the analysis

of tumor expression profiles. This includes a detailed model

description, a general characterization of the model class, the

integration of prior knowledge into the training of the model,

basics of the model training and the model initialization.

Autoregressive Higher-Order Hidden Markov

Models. We develop a three-state HMM with state-specific

autoregressive Gaussian emission densities for the identification of

differentially expressed genes in tumors. The set of hidden states of

the HMM is denoted by S : = {‘ = ’,‘2’,‘+’}. Considering the

usually observed distribution of log-ratios (e.g. Figure S1 in Text

S1), genes with unchanged expression levels between tumor and

normal tissue (log-ratios close to zero) are modeled by state ‘~’.

Underexpressed genes in tumor (log-ratios much less than zero)

are modeled by state ‘{’, and overexpressed genes in tumor

(log-ratios much greater than zero) are modeled by state ‘z’.

These states form the basis of the fully connected three-state

architecture of the HMM illustrated in Figure S2 in Text S1.

We utilize a homogeneous higher-order Markov model (e.g.

[35]) to model the state-transition process of the autoregressive

HMM. This has recently been shown to improve the analyses of

comparative genomics and DNA methylation data by a better

modeling of spatial dependencies between closely adjacent

chromosomal regions [11,24]. The state-transition process of an

HMM of order L§1 is specified by two components (i) an initial

Figure 2. Selected state space representations of models
included in the novel model class of autoregressive higher-
order HMMs. State space representations of selected models included
in the class of autoregressive higher-order HMMs. Hidden states are
denoted by Qt and emissions are denoted by Ot for t[f1, . . . ,Tg.
Arrows between nodes define modeled statistical dependencies. a)
Standard mixture model (AR(0)-HMM(0)). b) Mixture model with
second-order autoregressive emissions (AR(2)-HMM(0)). c) Standard
HMM with first-order state-transitions (AR(0)-HMM(1)). d) Standard
higher-order HMM with second-order state-transitions (AR(0)-HMM(2)).
e) Autoregressive higher-order HMM with second-order state-transi-
tions and second-order autoregressive emissions (AR(2)-HMM(2)).
doi:10.1371/journal.pone.0100295.g002

ARHMM-Based Analysis of Tumor Expression Profiles
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state distribution~pp : ~(pi)i[S with initial state probability pi[(0,1)
fulfilling the constraint

P
i[S pi~1 and (ii) a set of stochastic

transition matrices A : ~fA1, . . . ,ALg. Each transition matrix

Al : ~(aij)i[Sl ,j[S[A with 1ƒlƒL defines the transition proba-

bility aij[(0,1) for each transition from the current state il of a

state-context i~(i1, . . . ,il)[Sl to a next state j[S. This means that

for lw1 transitions from il are depending on its l{1 predecessors

i1, . . . ,il{1. Each transition matrix Al[A also fulfills the constraintP
j[S aij~1 for each i[Sl . More formally, the state-transition

process is used to model a hidden state sequence

~qq(k) : ~(q1(k), . . . ,qTk
(k)) that underlies a specific tumor expres-

sion profile ~oo(k). The individual state of a gene t in a profile k is

denoted by qt(k)[S. To model the state sequence ~qq(k), each

transition matrix Al with 1ƒlvL is used for the corresponding

transition from the current state ql(k) to the next state qlz1(k)
under consideration of the l{1 predecessor states

q1(k), . . . ,ql{1(k). Finally, the transition matrix AL[A is used

for each transition from qt(k) to qtz1(k) for all genes t§L in

dependency of the complete memory on L{1 predecessor states

qt{Lz1(k), . . . ,qt{1(k).

In addition to the higher-order state-transition process, we also

propose to model additional dependencies between emissions on

the level of the observed tumor expression profile utilizing higher-

order autoregressive Gaussian emission distributions. Similar to an

initial work in speech recognition by Ephraim et al. [25], we adapt

the concept of using an autoregressive emission process to the

analysis of tumor expression profiles. For each hidden state i[S,

we assume that the expression level ot(k) of a gene t in a profile k

is modeled by a state-specific autoregressive Gaussian emission

distribution of order M§0 defined by

bi(ot(k)) : ~
1ffiffiffiffiffiffi

2p
p

si

exp {
(ot(k){mt

i (k))2

2s2
i

 !

with respect to the state-specific standard deviation si[Rz and the

state-specific autoregressive mean

mt
i(k) : ~miz

XM
m~1

cim
:ot{m(k):dt,m ð1Þ

for the expression level of gene t in profile k. Here, mi[R defines

the basic state-specific mean and the coefficients (ci1, . . . ,ciM )[RM

are used to model the impact of predecessor expression levels on

the gene-specific mean. Additionally, at the start of an emission

sequence, where the complete memory on M predecessor

emissions does not exist, we have to truncate the modeling of

dependencies by defining the function dt,m to be zero in cases

where t{mv1 and otherwise one. The emission parameters are

summarized in B : ~(mi,ci1, . . . ,ciM ,si)i[S . Additionally, all pa-

rameters of the autoregressive higher-order HMM are denoted by

l : ~(~pp,A,B).

The identification of differentially expressed genes is done by

determining the probability with which each gene t in a tumor

expression profile~oo(k) is assigned to a state i[S of the HMM. This

state-posterior probability ck
t (i) : ~P½qt~i D~oo(k),l � is computed

using extended Forward-Backward algorithms adapted to higher-

order HMMs [15]. The obtained state-posterior probabilities

enable (i) the ranking of individual genes according to their

potential of being differentially expressed and (ii) the determina-

tion of the most likely underlying state of each gene based on state-

posterior decoding (e.g. [15,36]). The autoregressive higher-order

HMM has been implemented using Jstacs [37].

Existing Models Covered by Autoregressive Higher-Order

Hidden Markov Models. We introduce the notation AR(M)-

HMM(L) to specify an HMM with an autoregressive emission

process of order M and a state-transition process of order L. This

model is part of the very general model class of autoregressive

higher-order HMMs. This model class contains several special

cases that have previously been studied in different domains also

including applications in computational biology. Some selected

underlying state space representations of specific models are shown

in Figure 2 for increasing model complexities enabling a better

modeling of dependencies between closely adjacent genes in a

tumor expression profile.

Figure 2a represents the mixture model AR(0)-HMM(0) (e.g.

[38]) that does not model any dependencies between genes. A

second-order autoregressive mixture model AR(2)-HMM(0) (e.g.

[39]) is exemplarily shown in Figure 2b. This model only realizes

dependencies between successive genes on the level of the

measured gene expression levels. The standard first-order HMM

AR(0)-HMM(1), which is very popular in applied sciences (e.g.

[15–17,36]), is shown in Figure 2c. This model integrates

dependencies between directly adjacent genes on a chromosome

on the level of the hidden state-transitions of adjacent genes. A

second-order HMM AR(0)-HMM(2) is exemplarily shown in

Figure 2d. Such higher-order HMMs are still rarely used in

practical applications, but they are known to be powerful

extensions of first-order HMMs (e.g. [11,18,19,24,40]). Finally, a

second-order HMM with second-order autoregressive emissions

denoted by AR(2)-HMM(2) is shown in Figure 2e.

Generally, autoregressive higher-order HMMs implement a

combination of higher-order state-transitions and autoregressive

emissions to improve the modeling of local chromosomal

dependencies between genes. The improved modeling of spatial

dependencies is reached at the price of an increased number of

model parameters and an increased computational complexity.

For an HMM with N states, an autoregressive emission process of

order M and a state-transition process of order L, the processing

of a tumor expression profile of length T generally requires

O(TNLz1M) operations. The factor NLz1 accounts for the state-

transitions and the factor M accounts for the emissions that have

to be processed for each of the T genes. Thus, in dependency of

available training data, only small model orders should be

considered in practical applications to avoid long training times

and overfitting. For the analysis of microarray data, models with a

state-transition process of order two up to four have shown the best

performance in previous studies with higher-order HMMs [11,24].

Integration of Prior Knowledge. The integration of prior

knowledge into the training of HMMs has been shown to be a key

feature for improving the identification of differentially expressed

genes in tumors [13]. Thus, to achieve a problem-specific

characterization of the autoregressive higher-order HMM, we

define a prior distribution

P½l DH � : ~D1(~pp DH1 ):D2(A DH2 ):D3(B DH3 ) ð2Þ

over the space of the model parameters l : ~(~pp,A,B) for given

hyper-parameters H : ~(H1,H2,H3). This prior distribution is

specified by a product of three independent prior distributions

enabling the integration of prior knowledge into the initial state

distribution, the set of transition matrices and the emission

parameters of the HMM. Following the usual choices of prior

distributions for HMMs (e.g. [11,13,14,24]), the prior D1(~pp D H1 )
for the initial state distribution is defined by a Dirichlet distribution

ARHMM-Based Analysis of Tumor Expression Profiles
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and the prior D2(A D H2 ) for the set of transition matrices is

specified by products of Dirichlet distributions. Both priors

represent conjugate priors enabling the analytical estimation of

model parameters during the training. Details of both prior

distributions are given in Appendix A in Text S1.

In the following, we summarize important characteristics of the

emission prior D3(B D H3 ) to enable the integration of prior

knowledge into the training of the state-specific autoregressive

Gaussian emission densities. To avoid that each gene t in a tumor

expression profile k has its specific emission prior, we define the

prior distribution for the state-specific autoregressive mean mt
i(k)

specified in Eqn. (1) using the following strategy. We only explicitly

model prior knowledge for each basic state-specific mean mi and

assume constant priors for the corresponding coefficients

(ci1, . . . ,ciM ). This leads to a reduction of the prior for mt
i (k) to

a prior that is only depending on the corresponding mi. Based on

that, the emission prior for an HMM with autoregressive Gaussian

emissions can be defined by using a product of independent

Gaussian-Inverted-Gamma distributions as used for non-autore-

gressive HMMs in [13]. Details of this emission prior in the

context of autoregressive higher-order HMMs are provided in

Appendix A in Text S1.

Bayesian Baum-Welch Training. The training of the

autoregressive higher-order HMM is done by a Bayesian Baum-

Welch algorithm enabling the integration of prior knowledge into

the iterative parameter estimation process. This algorithm belongs

to the class of Expectation-Maximization (EM) algorithms [41]

and extends the typically used Baum-Welch training [36,42] that

does not utilize prior knowledge. In our context, the term

‘Bayesian’ specifies a Maximum-A-Posterior (MAP) estimate

integrated into an EM algorithm. A specific version of a Bayesian

Baum-Welch algorithm has been developed in [13] for first-order

HMMs. This algorithm has been adapted to higher-order HMMs

in [24]. Here, we further extend this algorithm to the requirements

of autoregressive higher-order HMMs. The Bayesian Baum-

Welch algorithm locally maximizes the log-posterior by a two-step

procedure based on initially chosen model parameters. This is

realized by iteratively determining new parameters

l(hz1)~ argmax
l

Q(l Dl(h) )z log (P½l DH �)ð Þ

maximizing the log-posterior of the model l with respect to the

current parameters of the model l(h) (h~1 initial model). The log-

posterior is specified by a combination of Baum’s auxiliary

function Q(l D l(h) ) (Appendix B in Text S1; [13,24,36]) and the

logarithm of the prior distribution P½l D H � in Eqn. (2). This

combination enables the iterative estimation of new model

parameters under consideration of prior knowledge. The process

of estimating new parameters l(hz1) is iterated until the log-

posterior increases less than a predefined threshold in comparison

to the value obtained for the previous parameters l(h). We stop

the training if the increase of the log-posterior is less than 10{3 for

two successive iterations.

Since we propose autoregressive Gaussian emissions as a novel

model feature, we briefly summarize important steps of the

estimation of the corresponding autoregressive means. The

maximization step of the emission parameter estimation part of

the log-posterior leads to a state-specific system of linear equations

that enables to update the basic mean and the corresponding

coefficients for each autoregressive mean. Standard solvers for

systems of linear equations can be used to compute the solution of

the given system. We utilize the publicly available Jama package

[43] to compute each state-specific autoregressive mean.

Specific details of the estimation of initial state, transition and

emission parameters of the autoregressive higher-order HMM and

a computational scheme of the training algorithm are given in

Appendix B in Text S1.

Model Initialization. For the identification of differentially

expressed genes in tumors, an initial autoregressive HMM must be

specified to enable a good adaptation of the model to the data

during the training. We transfer initial model and prior settings

described in [13] to autoregressive HMMs. The initial state

probabilities are set to p{~pz : ~0:1 and p~ : ~0:8 assuming

that the proportion of differentially expressed genes is much less

than the proportion of genes with unchanged expression behavior.

We further assume that the initial transition matrix A1 : ~(aij)i,j[S

has a stationary distribution identical to the initial state

distribution ~pp. This is done by defining state-specific diagonal

elements aii : ~1{s=pi and non-diagonal elements aij : ~s=(2pi)

with respect to a scaling factor s~0:05 for controlling the state

durations. Additionally, in analogy to [24], the transition

probabilities of each transition matrix Al : ~(aij)i[Sl ,j[S with

1vlƒL are initially set to aij : ~ail j defining that the transition

probability from each state-context i : ~(i1, . . . ,il) to a state j is

identical to the value of the corresponding transition probability

ail j in A1. The initial state-specific autoregressive Gaussian

emission densities are characterized by basic means m{ : ~{2,

m~ : ~0 and mz : ~2 and corresponding standard deviations

s{ : ~0:3, s~ : ~0:5 and sz : ~0:3. Additionally, we set each

corresponding initial autoregressive coefficient cim : ~0. We also

utilize these settings to specify appropriate prior knowledge for the

training of the emission parameters of each state. Details of this are

given in Appendix A in Text S1.

This basic initialization strategy has led to robust results in [13].

We here further performed an in-depth sensitivity analysis by

systematically varying initial model and prior parameter settings to

quantify the impact on the predictions made by autoregressive

HMMs. We find that changes of parameter settings do not

substantially influence the predictions (see results section for more

details). Yet, users are still able to change these settings to enable

modeling of specific characteristics of other data sets. However,

this was not necessary for the analysis of the three different tumor

data sets that we have analyzed here.

With the goal of performing exhaustive comparisons of different

autoregressive HMMs, we trained each HMM with an auto-

regressive emission process of order M[f0, . . . ,5g in combination

with a state-transition process of order L[f0, . . . ,5g on the breast

cancer expression profiles using the developed Bayesian Baum-

Welch algorithm. This was done using the proposed initial basic

settings. These settings were also used for the analysis of the glioma

data sets.

Results/Discussion

In this section, we first systematically compare different

autoregressive HMMs for their performance to identify overex-

pressed genes with underlying increased copy numbers in breast

cancer. Next, we analyze to which extent the obtained results can

be transferred to other similar breast cancer gene expression

profiles. This is complemented by performing a sensitivity analysis

to study the robustness of predictions obtained by autoregressive

HMMs. After that, we compare the performance of autoregressive

HMMs to related existing methods. Here, we first investigate the

different methods for general characteristics of their predictions of

differentially expressed genes. We further compare the different

methods based on their identification of overexpressed genes with

underlying increased copy numbers in breast cancer. Finally, we

ARHMM-Based Analysis of Tumor Expression Profiles
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transfer autoregressive higher-order HMMs to different types of

gliomas and perform an in-depth systematic analysis of differen-

tially expressed genes with respect to known cancer signaling

pathways.

Identification of Overexpressed Genes with Increased
Gene Copy Numbers by Autoregressive Higher-Order
Hidden Markov Models of Different Model Complexities

We utilize breast cancer gene expression and corresponding

gene copy number data by Pollack et al. [3] to compare

autoregressive HMMs with different combinations of emission

and transition orders for their ability to predicted overexpressed

genes with underlying increased copy numbers. This is generally

motivated by a frequently observed direct genome-wide coupling

between gene expression levels and gene copy numbers. Different

studies comparing tumor to healthy tissue have found that genes

with increased copy numbers tend to be overexpressed, while

genes affected by deletions tend to be underexpressed in tumors

(e.g. [3–6,44,45]). Since mutations in trans-acting factors (e.g.

transcription factors or protein kinases) also lead to alterations of

gene expression levels in tumor, there is of course not a direct one-

to-one relationship between the expression level and the copy

number of each gene. Still, genes affected by copy number

alterations can be used to initially characterize and evaluate the

identification of differentially expressed genes by different auto-

regressive HMMs.

Here, we do this in analogy to Seifert et al. [13] utilizing the

strong coupling between overexpression and increased copy

numbers of genes present in the breast cancer data set [3]. Based

Figure 3. Identification of overexpressed genes with increased copy numbers in breast cancer by different autoregressive HMMs.
Systematic comparison of the identification of overexpressed genes with at least three-fold increased copy numbers by autoregressive HMMs based
on breast cancer gene expression profiles from [3]. Each AR(M)-HMM(L) with an emission process of order M[f0, . . . ,5g (AR(M)) in combination with
a state-transition process of order L[f0, . . . ,5g (HMM-Order) is considered. The left column shows the performances reached by autoregressive
HMMs trained and applied to fifty percent of the breast cancer gene expression data. The right column shows the performances of these models
reached on the remaining unseen fifty percent of the data set. For each model, the identification of candidate genes of overexpression with at least
three-fold increased copy numbers is quantified by the true positive rate (TPR) reached at a fixed false positive rate of 5%. Six different scenarios are
shown. a) and b) represent performances of the different models with respect to our standard initial model parameter settings. c) and d) represent
average performances and corresponding standard deviations reached with respect to systematically changed initial model parameters. e) and f)
represent average performances and corresponding standard deviations reached with respect to systematically modified prior hyperparameter
settings. The predictions of autoregressive HMMs are generally very robust. Models utilizing a combination of higher-order state-transitions and
autoregressive emissions (e.g. AR(4)-HMM(2) and AR(2)-HMM(2)) are clearly outperforming the mixture model (AR(0)-HMM(0)), the standard first-order
HMM (AR(0)-HMM(1)), and standard higher-order HMMs (AR(0)-HMM(L)).
doi:10.1371/journal.pone.0100295.g003
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on that, we determined potential candidate genes of overexpres-

sion for each individual tumor sample using its corresponding

individual gene copy number profile. For each individual tumor

expression profile, each gene with an underlying increased gene

copy number in tumor compared to normal was considered as a

potential candidate for overexpression. We used three different

copy number cutoffs (two-, three-, four-fold) for the selection of

candidate genes of overexpression to evaluate the robustness of the

model comparisons. The majority of these candidate genes tend to

be overexpressed in breast cancer (Figure S3 in Text S1).

To analyze the performance of the identification of overex-

pressed genes with underlying increased copy numbers by different

autoregressive HMMs, we used fifty percent of the breast cancer

gene expression data set. We trained each initial AR(M)-HMM(L)

with an autoregressive emission process of order M[f0, . . . ,5g in

combination with a state-transition process of order L[f0, . . . ,5g
using the developed Bayesian Baum-Welch algorithm. We then

compared the different models based on their performance to

identify candidate genes of overexpression with at least three-fold

increased copy numbers. To measure the performance of each

individual model, we first ranked all genes according to their

potential of being overexpressed utilizing the corresponding state-

posteriors of state ‘z’. Based on that, we computed the true

positive rate (TPR) of predicted potential candidate genes of

overexpression reached at a typically considered fixed small false

positive rate (FPR) of 5%. The reached performances are shown in

Figure 3a. Similar results were reached considering the identifi-

cation of candidate genes of overexpression with at least two- or

four-fold increased copy numbers (Figure S4a in Text S1).

Generally, comparing well-known standard models included in

the class of autoregressive higher-order HMMs, the mixture model

(AR(0)-HMM(0)), which does not model dependencies between

expression levels of genes, and the autoregressive mixture model

(AR(M )-HMM(0) with M§1), which directly models dependen-

cies between expression levels of successive genes on chromo-

somes, are outperformed by non-autoregressive HMMs (AR(0)-

HMM(L) with L§1: black curves in Figure 3a), which integrate

dependencies between genes using state-transitions. This extends

previous findings where standard mixture models have been

outperformed by first-order and higher-order HMMs [11,13,24].

Moreover, these performances can be further improved by

autoregressive higher-order HMMs (AR(M )-HMM(L) with

M§1 and L§1; non-black curves in Figure 3a). Especially,

autoregressive HMMs with an emission process of order two up to

four in combination with a state-transition process of order two up

to three reached the best performances.

In summary, autoregressive higher-order HMMs have the

potential to improve the identification of candidate genes of

overexpression with underlying increased gene copy numbers.

However, this is not limited to the identification of overexpressed

genes with underlying increased copy numbers in general. We

have already previously shown on the same data set that HMMs

with identical initial model parameters as considered here are

valuable for the identification of hotspot genes of differential

expression in breast cancer [13]. Thus, since the autoregressive

HMMs considered here and the previously considered HMMs

were very similar after training, this characteristic is also

transferred to autoregressive HMMs.

Transfer of Autoregressive Higher-Order Hidden Markov
Models to Similar Breast Cancer Gene Expression Profiles

Next, we utilized the remaining fifty percent of the previously

considered breast cancer gene expression data set to test the

performance of the previously trained autoregressive HMMs on

other similar but previously unseen gene expression profiles.

Generally, we note that such a transfer is only convenient if both

data sets have similar measurement characteristics (e.g. distribu-

tion of log-ratios, relatively similar expression profiles). This is also

reflected in closely related array comparative genomic hybridiza-

tion (aCGH) data analysis pipelines, where models are initially

adapted and later used for the analysis of a single individual data

set, but where transfers of trained models to other data sets are

typically not done. However, a successful transfer of trained

HMMs from one data set to a new data set can especially save

time for the analysis of large data sets by avoiding time-consuming

training steps. Thus, we transferred all previously trained

autoregressive HMMs to other similar breast cancer gene

expression profiles to evaluate the reached model performances

after this transfer in analogy to our previous study.

The results are summarized in Figure 3b. Similar results were

obtained for the identification of candidate genes of overexpression

with at least two- or four-fold increased copy numbers (Figure S4b

in Text S1). We find that the transfer of trained autoregressive

HMMs to other similar breast cancer data leads to prediction

characteristics (Figure 3b) that are comparable in shape with the

predictions reached on the data initially used to train the models

(Figure 3a). However, as expected, the transfer of models from the

initially used training data to other independent tumor expression

profiles leads to a reduction of the prediction performance (in

average a reduction of 3.8 in TPR for HMMs excluding mixture

models that gained 1.9 in TPR at a fixed FPR of 5%). Still,

autoregressive higher-order HMMs outperform standard non-

autoregressive first- and higher-order HMMs. Again, second-order

HMMs with autoregressive emissions of order two or four (AR(2)-

HMM(2), AR(4)-HMM(2)) are among the best models. Apart from

that, the relatively unstable predictions of autoregressive HMMs

with a fifth-order emission process (AR(5)-HMM(L) with L§1) on

the training data are also transferred to the test data (grey curves in

Figure 3). Since both data sets have similar measurement

distributions, this tends to reflect an overadaptation due to the

large number of free emission parameters.

Thus, this study indicates that a careful transfer of previously

trained autoregressive HMMs to other similar tumor expression

profiles can be realized, but one should keep in mind that a faster

analysis of large data sets may result in reduced accuracy of

predictions.

Analysis of the Robustness of Predictions Made by
Autoregressive Higher-Order Hidden Markov Models

We additionally performed a sensitivity analysis by systemati-

cally varying initial model parameters and prior parameter settings

to analyze the robustness of the predictions made by autoregres-

sive HMMs. Since this is generally very time-consuming, we

focused on those parameters that are expected to have the greatest

influence on the prediction of differentially expressed genes. We

first tested twelve different model initializations and trained

corresponding autoregressive HMMs on fifty percent of the breast

cancer gene expression data set using identical prior hyperpara-

meter settings. Specific details are given in Table S1 in Text S1.

We considered each AR(M )-HMM(L) with an autoregressive

emission process of order M[f0, . . . ,5g in combination with a

state-transition process of order L[f0, . . . ,5g under consideration

of clearly varying initial model parameters. In analogy to the two

previous model evaluation studies, we evaluated the prediction of

overexpressed genes with underlying increased gene copy numbers

by the different trained autoregressive HMMs on the initially

considered training data and on other similar breast cancer gene

expression profiles. We generally find that the corresponding
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predictions of the different autoregressive HMMs are very stable

(Figure 3c and d) and widely comparable to those reached by

autoregressive HMMs utilizing our generally considered initial

model parameterization specified in the methods section (Figure 3a

and b). Similar results were reached considering the identification

of overexpressed genes with at least two- or four-fold increased

copy numbers (Figure S5 in Text S1).

We next tested twelve different prior parameter settings and

trained the corresponding autoregressive HMMs utilizing our

generally considered fixed initial model parameterization de-

scribed in the methods section. Details of the tested prior

parameter settings are provided in Table S1 in Text S1. Again,

we find that the predictions of the corresponding autoregressive

HMMs are very stable (Figure 3e and f). The predictions reached

by autoregressive HMMs based on the twelve different prior

parameter settings vary slightly more than those reached for the

twelve different model initializations. Still, we clearly find that

autoregressive HMMs have the potential to improve the predic-

tions of overexpressed genes with underlying increased copy

numbers compared to mixture models (AR(0)-HMM(0)) and

standard first- or higher-order HMMs (AR(0)-HMM(L) with

L§1). This is also transferred to predictions of overexpressed

genes with at least two- or four-fold increased copy numbers

(Figure S6 in Text S1).

In summary, this study indicates that changes of the initial

model parameter settings and of the prior parameter settings do

not substantially affect the predictions of autoregressive HMMs.

Thus, the predictions of autoregressive HMMs are robust with

respect to reasonable changes of initial parameter settings.

Comparison of General Characteristics of the
Identification of Differentially Expressed Genes by
Autoregressive Higher-Order Hidden Markov Models to
Related Methods

To compare the identification of differentially expressed genes

by autoregressive HMMs to related methods, we analyzed the

breast cancer gene expression data set [3] using the AR(4)-

HMM(2) and nine other methods. We include ChARM [12],

which has been demonstrated to work on aCGH and tumor

expression profiles into this comparison. We also compare our

model to MixMod and DSHMM, which both were specifically

developed for the analysis of tumor expression profiles [13].

Additionally, we also include methods from the closely related field

of aCGH analysis (Wavelet [46], BioHMM [47], FHMM [48],

CBS [49], CGHseg [50], GLAD [51]) into this comparison. A

more detailed summary of considered methods is given in Table

S2 in Text S1.

We applied all methods with their proposed initial standard

settings to all breast cancer gene expression profiles. We note that

experts of specific methods might be able to further improve the

predictions by fine-tuning of specific model parameters. The

different methods implement specific algorithms to adapt their

initial parameters or test statistics to the data followed by the

prediction step. All methods except ChARM, DSHMM, AR(4)-

HMM(2) and MixMod were run on the ADaCGH web-server

[52]. The ADaCGH output assigns one of the three labels ‘{’,

‘~’, or ‘z’ to each gene in a tumor expression profile. This can be

directly interpreted as underexpressed, unchanged expressed, or

overexpressed in tumor compared to healthy tissue. For ChARM,

each non-significantly changed gene was labeled as unchanged

expressed and each significantly changed gene was labeled either

as underexpressed or overexpressed depending on the sign of the

corresponding log-ratio. For DSHMM, AR(4)-HMM(2) and

MixMod, we utilize the corresponding state-posterior decoding

to assign the most likely label to each gene. We further note that

we utilized the same initial basic settings as reported in the method

sections for DSHMM, AR(4)-HMM(2) and MixMod to enable an

unbiased direct comparison of these three methods.

To characterize the potential of the different methods to identify

differentially expressed genes, we first determined for each method

the proportions of predicted under- and overexpressed genes in

relation to the total number of measured genes. Additionally, we

computed the means and the standard deviations of measured log-

Table 1. Method-specific characteristics for the identification of differentially expressed genes in breast cancer.

Underexpressed Genes Overexpressed Genes

Method Reference Prop. Mean Sd Prop. Mean Sd Runtime

Wavelet [46] 18.58% 20.09 0.63 9.52% 0.13 0.84 3 min 36 s

BioHMM [47] 7.41% 20.30 0.88 9.96% 0.39 0.90 5 min 03 s

FHMM [48] 6.37% 20.37 0.75 5.42% 0.62 0.92 2 min 59 s

CBS [49] 2.66% 20.19 0.72 1.91% 0.47 0.98 3 min 02 s

CGHseg [50] 2.45% 20.11 0.64 0.97% 0.33 1.10 2 min 52 s

ChARM [12] 1.02% 20.30 0.66 1.84% 0.31 0.77 -

GLAD [51] 1.54% 21.95 1.00 1.77% 1.85 0.76 2 min 51 s

DSHMM [13] 1.48% 22.18 0.97 2.25% 1.90 0.70 1 min 26 s

AR(4)-HMM(2) see Methods 1.51% 22.23 0.88 2.19% 1.85 0.66 2 min 56 s

MixMod [13] 1.34% 22.39 0.81 1.84% 2.13 0.57 11 s

The proportion of genes predicted as under- or overexpressed in relation to the total number of measured genes and the corresponding means and standard deviations
of the underlying measured log-ratios are summarized for each method based on the the breast cancer gene expression data set from [3]. The different methods were
grouped into three categories according to their proportion of identified differentially expressed genes and the corresponding mean log-ratio columns. The rightmost
column specifies the runtimes of the different methods required to analyze the data set. All methods except ChARM, MixMod, DSHMM and AR(4)-HMM(2) were run on
the ADaCGH web-server [52] utilizing parallel computations (AMD Opteron 2.2 GHz CPUs with 6 GB RAM). The remaining methods were run on a standard laptop with
Intel CPU T9500 2.6 GHz and 2 GB RAM.
doi:10.1371/journal.pone.0100295.t001
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ratios for genes predicted as under- and overexpressed by each

method. Generally, the proportion of predictions quantifies the

prediction behavior of each method, and this measure in

combination with the mean and the standard deviation of the

log-ratios allows to analyze the ability to predict differentially

expressed genes. Finally, we also measured the runtime of each

method required for the analysis of the breast cancer data set. The

results are summarized in Table 1.

We generally observe that the methods can be grouped into

three classes. The first class represents Wavelet, BioHMM and

FHMM, which all predict a much larger proportion of under-

expressed and overexpressed genes than all other methods.

However, for these methods, the means and the standard

deviations of the corresponding log-ratios show that a large

proportion of predicted differentially expressed genes have log-

ratios that are close to zero. Additionally, genes predicted as

underexpressed can have log-ratios greater than zero. Vice versa,

genes predicted as overexpressed can have log-ratios less than

zero. This does not represent a solid identification of differentially

expressed genes, because underexpressed genes are expected to

have log-ratios much less than zero and overexpressed genes are

expected to have log-ratios much greater than zero. Thus, these

methods should not be transferred to the analysis of tumor gene

expression data. The second class consists of CBS, CGHseg and

ChARM that all predict much less underexpressed and overex-

pressed genes than the methods of the first class. However, still the

same problems as observed for methods from the first class occur.

The methods represented by the third class are GLAD, DSHMM,

AR(4)-HMM(2) and MixMod. These four methods also predict a

much smaller number of genes as underexpressed and overex-

pressed than methods of the first class. Additionally, the predicted

underexpressed and overexpressed genes reflect corresponding

characteristic log-ratios as expected for differentially expressed

genes. That is, genes predicted as underexpressed have log-ratios

clearly less than zero and genes predicted as overexpressed have

log-ratios clearly greater than zero. Thus, the autoregressive

higher-order HMM and the three other methods reach a solid

identification of differentially expressed genes in individual tumor

expression profiles. The runtimes of these methods were all less

than three minutes. Since the standard mixture model (MixMod)

does not model chromosomal dependencies between adjacent

genes, it was extremely fast requiring only 11 seconds. However,

the AR(4)-HMM(2) with a fourth-order emission process and a

second-order state-transition process had nearly the same runtime

as GLAD, which was run on the ADaCGH web-server utilizing

parallel computations. To further evaluate all different methods,

we subsequently study how the more complex modeling of local

chromosomal dependencies by autoregressive higher-order

HMMs influences the predictions of overexpressed genes with

known underlying increased copy numbers in comparison to the

other methods.

Comparison of the Identification of Overexpressed Genes
with Increased Copy Numbers by Autoregressive Higher-
Order Hidden Markov Models to Related Methods

We next exemplarily compare the identification of potential

candidate genes of overexpression with underlying increased gene

copy numbers by the AR(4)-HMM(2) to all nine previously

considered methods. Especially, the comparison to the DSHMM,

a first-order HMM that integrates spatial distances of adjacent

genes into the transition process, is of great interest, because this

model has previously been identified to reach the best perfor-

mance in a similar study [13]. We utilized the predictions from the

previous sections to rank the genes according to their decreasing

potential of being overexpressed. Due to the lack of method-

specific scores for performing rankings of genes for methods run

on the ADaCGH web-server and ChARM, we computed average

segmental log-ratios based on the corresponding discrete segmen-

tations returned for each individual tumor expression profile.

Based on that, we assigned the corresponding average segmental

log-ratio to each gene enabling us to rank the genes according to

their potential of being overexpressed. For AR(4)-HMM(2),

DSHMM, and MixMod, we utilized the state-posteriors of state

‘z’ modeling overexpressed genes to rank the predictions. Based

on that, we evaluated the prediction of candidate genes of

overexpression with at least two-, three- or four-fold increased

copy numbers in the breast cancer data set [3] at different levels of

false positives. The corresponding receiver operating characteristic

(ROC) curves for predicted overexpressed genes with at least

three-fold increased copy numbers are shown in Figure 4. Very

similar ROC curves were obtained for the prediction of

overexpressed genes with at least two- or four-fold increased copy

numbers (Figure S7 in Text S1). An additional comprehensive

summary for true positive rates reached at small fixed false positive

rates and globally reached areas under the ROC curves are given

in Table S3 in Text S1. Generally, we find that the AR(4)-

HMM(2) outperforms all methods including the DSHMM

previously identified as the best performer [13]. This performance

benefit can be attributed to the more complex modeling of spatial

dependencies between genes by utilizing a higher-order state-

transition process in combination with an autoregressive emission

process. That this more complex modeling leads to a gain in

performance is clearly shown by the comparison of the AR(4)-

HMM(2) to the mixture model (MixMod), which does not model

dependencies between genes (see Figure 2 for underlying state

space representation), and by the comparison to the DSHMM,

Figure 4. Comparison of an autoregressive higher-order HMM
to related existing methods. Comparison of the AR(4)-HMM(2) and
related methods with respect to the identification of overexpressed
genes with at least three-fold increased copy numbers based on breast
cancer data from [3]. The performance of each method is quantified by
a receiver operating characteristic (ROC) curve displaying the true
positive rate (TPR) reached at different levels of false positive rates
(FPR). The AR(4)-HMM(2) with a fourth-order autoregressive emission
process and a second-order state-transition process reaches the best
performance (red).
doi:10.1371/journal.pone.0100295.g004
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which specifically models dependencies between directly adjacent

genes on a chromosome.

Together with the previous finding that autoregressive HMMs

can identify differentially expressed genes independent of under-

lying gene copy numbers (Table 1), this analysis further supports

that autoregressive HMMs are useful for the identification of

differentially expressed genes in tumors.

Application of Autoregressive Higher-Order Hidden
Markov Models to Glioma Data

Finally, we apply our autoregressive higher-order HMMs to

different case studies utilizing publicly available glioma gene

expression data sets. Here, we exemplarily report the most striking

findings concerning the systematic analysis of gene expression

changes in known cancer signaling pathways. The other case

studies focusing on the identification of hotspots of differential

expression in glioblastomas based on a data set by de Tayrac [4] and

corresponding expression patterns of hotspot genes in different

types of gliomas from the Rembrandt repository are summarized

in Appendix C in Text S1. Briefly, we were able to identify seven

novel previously unreported hotspots of differential expression in

glioblastomas that we discuss together with other interesting

hotspot genes identified under less stringent hotspot criteria. In the

following, we focus on the in-depth analysis of the predictions

obtained for different types of gliomas with respect to known

cancer signaling pathways.

Systematic Analysis of Gene Expression Changes in

Different Types of Gliomas With Respect to Known

Cancer Signaling Pathways. Here, we investigate the poten-

tial of autoregressive higher-order HMMs to identify alterations of

expression levels of genes in known cancer signaling pathways for

different types of gliomas (oligodendrogliomas, astrocytomas,

glioblastomas). The classification of gliomas according to these

subtypes has important implications for the prognosis and the

treatment of glioma patients [53]. However, differences in gene

expression levels of known cancer signaling pathways are still

poorly understood and not well characterized. We therefore

adapted the AR(4)-HMM(2) based on the initial standard settings

described in the methods section to the average expression profile

of gliomas in the Rembrandt repository and used the obtained

model to predict the expression behavior in each individual glioma

sample. This prediction was done by computing the state-posterior

probabilities of the states ‘{’ and ‘z’ under the AR(4)-HMM(2)

for each individual gene in each individual tumor to obtain a

measure that enables to distinguish how likely it is that a specific

gene is underexpressed or overexpressed in tumor compared to the

normal brain reference. We now summed these gene-specific

probability scores of state ‘{’ and ‘z’ across all oligodendrogli-

omas, astrocytomas and glioblastomas separately to obtain ranking

lists of top candidate genes of under- and overexpression for the

three different types of gliomas. We then analyzed the overlap of

the resulting top genes of under- and overexpression and known

cancer signaling pathways based on the KEGG pathways in

cancer overview (path:hsa05200) for which we compiled corre-

sponding pathway genes based on ConsensusPathDB [54]. We

further extended the initial KEGG cancer pathway view by

systematically adding other known cancer-relevant pathways for

DNA repair, Telomere maintenance, DNA replication and

Hedgehog signaling (see Table S4 in Text S1 for an overview

with functional annotations). Based on this, we systematically

considered increasing numbers of top ranking genes of under- and

overexpression and determined the corresponding numbers of

genes that overlap with the individual cancer signaling pathways.

A representative global overview of how strongly oligodendro-

gliomas, astrocytomas and glioblastomas are affected by under-

and overexpression in specific cancer signaling pathways with

respect to random expectations is shown for the top 300 genes in

Figure S8 in Text S1. Globally looking at all genes in pathways

together, we find a significant enrichment of top-ranking

overexpressed genes across all known cancer signaling pathways

for each type of glioma. These enrichments were at least twice as

much as randomly expected (90 genes in oligodendrogliomas, 91

genes in astrocytomas and 102 genes in glioblastomas compared to

45 expected by chance at the level of the top 300). We do not

observe such global trends across all known cancer signaling

pathways for the top-ranking underexpressed genes. Each type of

glioma showed nearly the same number of underexpressed genes

than randomly expected (48 genes in oligodendrogliomas, 50

genes in astrocytomas and 47 genes in glioblastomas compared to

45 expected by chance at the level of the top 300).

In more detail, considering underexpressed genes, we observe

that the same cancer signaling pathways are always affected by

nearly the same number of genes independent of the type of

glioma (Figure S8a in Text S1). In comparison to random

expectations, the pathways that are most strongly affected by

underexpression are MAPK, ErbB, TGF-Beta and VEGF

signaling. These pathways play important roles in the regulation

of cell proliferation, differentiation, migration, survival, adhesion,

apoptosis and angiogenesis. It is also interesting to note that we do

not observe underexpressed genes in p53 signaling, Notch

signaling, and Hedgehog signaling, Cytokine-cytokine receptor

interaction, DNA replication, DNA repair, and Telomere

maintenance across the three different types of gliomas.

In contrast to this, these pathway-based characteristics are

largely different considering the top 300 overexpressed genes

(Figure S8b in Text S1). The most homogeneous behavior in terms

of number of overexpressed genes across the three different types

of gliomas is observed for the cell cycle, Wnt signaling and p53

signaling pathways. The Wnt pathway plays important roles in cell

polarization, proliferation, differentiation and migration, whereas

the p53 pathway has a central role in cellular signaling with major

functions in controlling apoptosis, cellular senescence and cell

cycle arrest. Dysregulation of both signaling pathways is

commonly found in various cancers [55,56]. Interestingly, in

addition to the homogeneous behavior of these three pathways, we

also observe significant differences between oligodendrogliomas,

astrocytomas and glioblastomas at the level of the top 300

overexpressed genes that we analyze in the following.

Considering increasing numbers of top-ranking overexpressed

genes, we observe robust systematic differences between oligoden-

drogliomas, astrocytomas and glioblastomas for PI3K-Akt signal-

ing, Focal adhesion, ECM-Receptor interaction, TGF-Beta

signaling, VEGF signaling, Notch signaling, Telomere mainte-

nance and DNA repair (Figure 5). Glioblastomas show clearly

more overexpressed genes in PI3K-Akt signaling, Focal adhesion

and ECM-Receptor interaction than astrocytomas, which show a

greater number of overexpressed genes in these pathways than

oligodendrogliomas. Since these pathways are known to be

involved in cell survival, proliferation, migration and metabolism,

a systematic increase in overexpressed genes may lead to increased

pathway activities contributing to the generally observed increased

malignancy of glioblastomas in comparison to astrocytomas and

oligodendrogliomas [53]. Interestingly, we observe an inverse

behavior for TGF-Beta signaling, Notch signaling, Telomere

maintenance, and DNA repair (Figure 5). For these pathways,

oligodendrogliomas show the greatest number of overexpressed

genes followed by astrocytomas, which tend to have a greater
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Figure 5. Most discriminative signaling pathways distinguishing different types of gliomas. Overview of known cancer signaling
pathways identified to show largely distinct patterns of overexpressed genes in oligodendrogliomas, astrocytomas and glioblastomas based on
predictions of the AR(4)-HMM(2). The overlap of the top-ranking overexpressed genes with the specific signaling pathways is quantified from top 100
to top 600. Grey curves show random expectations with respect to the number of genes in a specific pathway. Robust systematic differences
between the different types of gliomas are clearly visible.
doi:10.1371/journal.pone.0100295.g005
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number of overexpressed genes than glioblastomas. Since TGF-

Beta signaling is involved in apoptosis and cell cycle arrest and

since an increased expression of Telomere maintenance and DNA

repair pathways may contribute to more stable tumor genomes,

this increased number of overexpressed genes observed for

oligodendrogliomas may be associated with the generally better

prognosis of oligodendrogliomas in comparison to astrocytomas

and glioblastomas [53]. These observations further sharpen and

support initial findings that expression profiles of oligodendrogli-

omas are enriched in overexpressed genes involved in DNA repair

in a study comparing oligodendrogliomas, astrocytomas and

glioblastomas [57]. Additionally, also the revealed over-represen-

tation of the Notch pathway in oligodendrogliomas and astrocy-

tomas compared to glioblastomas is very interesting. Differences in

the activities of the Notch pathway have been observed between

astrocytomas and glioblastomas [58]. Moreover, the Notch

pathway has been reported to mediate opposite effects either

acting in an oncogenic or tumor-suppressive manner in depen-

dency of the different Notch trans-membrane receptors [58].

While Notch-1 was found to be inhibitory for tumor growth,

Notch-2 was found to promote tumorgenesis in medulloblastoma

[59]. Comparing the rankings of Notch-1 and Notch-2 in our

study, we find that Notch-1 but not Notch-2 is strongly

overexpressed in oligodendrogliomas (rank 108 for Notch-1 vs.

2316 for Notch-2). This indicates that the characteristic overex-

pression of Notch-1 as part of the Notch pathway may contribute

to the better prognosis of oligodendrogliomas [53]. This is further

supported by the observation that Notch-1 is an important hub

gene in proneural oligodendrogliomas, which show improved

survival among different types of gliomas [60]. Indeed, except for

four oligodendrogliomas, we find that all our oligodendrogliomas

are classified as proneural utilizing subtype-specific gene expres-

sion classification signatures from [61]. Thus, our findings further

strengthen the important role of the Notch signaling pathway in

oligodendrogliomas. In addition to this, another important finding

is that the VEGF pathway is only affected in glioblastomas by the

overexpression of the VEGFA gene. This is in accordance with

generally observed histological characteristics of glioblastomas that

are highly angiogenic and characterized by the presence of

vascular proliferations [62].

Finally, we analyze the most discriminative pathways between

oligodendrogliomas, astrocytomas and glioblastomas shown in

Figure 5 at the level of single genes to investigate whether the

different types of gliomas utilize the same sets of genes to alter

pathway activities. Corresponding pathway-specific barplots and

Venn diagrams for the top 300 overexpressed genes are shown in

Figure 6. The Venn diagrams clearly indicate that the different

types of gliomas mainly utilize pathway-specific common core sets

of affected genes. These pathway-specific core gene sets are further

extended towards the type of glioma with the greatest number of

overexpressed genes. Since this observation might be of potential

relevance for the development of tumor-specific markers and

future treatment strategies, we have summarized the underlying

genes and their corresponding pathway memberships in the most

discriminative cancer signaling pathways in Table 2. Interestingly,

it is important to note that of the 41 listed genes 17 genes are

playing a role in at least two pathways and that 12 of these genes

are involved in three pathways. Among the genes involved in three

pathways, the combination of ECM-Receptor interaction, PI3K-

Akt signaling and Focal adhesion is strongly overrepresented,

Figure 6. Systematic characterization of the most discriminative signaling pathways distinguishing different types of gliomas. a)
Characteristic view on the most discriminative pathways between oligodendrogliomas, astrocytomas and glioblastomas at the level of the top 300
overexpressed genes in Figure 5. b) Selected gene-based view on the most discriminative signaling pathways shown in a). The Venn diagrams show
pathway-specific overlaps of overexpressed genes between the different types of gliomas. The strong overlap of genes between the different types
of gliomas indicates the presence of common core sets of affected genes. These pathway-specific core gene sets are further extended towards the
glioma with the greatest number of overexpressed genes. The corresponding genes are summarized in Table 2.
doi:10.1371/journal.pone.0100295.g006
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Table 2. Genes overexpressed in the most discriminative pathways distinguishing different types of gliomas.

Gene OD AS GBM Signaling Pathways Annotation

ANGPT2 0 0 1 PI3K-Akt Angiopoietin-2

CAV1 0 0 1 Focal Adh. Caveolin

COL1A1 0 0 1 ECM, Focal Adh., PI3K-Akt Collagen alpha-1(I) chain

COL4A2 0 0 1 ECM, Focal Adh., PI3K-Akt Canstatin

COL5A2 0 0 1 ECM, Focal Adh., PI3K-Akt Collagen alpha-2(V) chain

FN1 0 0 1 ECM, Focal Adh., PI3K-Akt Ugl-Y3

LAMB1 0 0 1 ECM, Focal Adh., PI3K-Akt Laminin subunit beta-1

LAMC1 0 0 1 ECM, Focal Adh., PI3K-Akt Laminin subunit gamma-1

VEGFA 0 0 1 Focal Adh., PI3K-Akt, VEGF Vascular endothelial growth factor A

RELA 0 1 0 PI3K-Akt Transcription factor p65

TGFB1 0 1 0 TGF-Beta Transforming growth factor beta-1

CDK2 0 1 1 PI3K-Akt Cyclin-dependent kinase 2

COL1A2 0 1 1 ECM, Focal Adh., PI3K-Akt Collagen alpha-2(I) chain

COL4A1 0 1 1 ECM, Focal Adh., PI3K-Akt Collagen alpha-1(IV) chain

LAMB2 0 1 1 ECM, Focal Adh., PI3K-Akt Laminin subunit gamma-1

TLR2 0 1 1 PI3K-Akt Toll-like receptor 2

BMP7 1 0 0 TGF-Beta Bone morphogenetic protein 7

NOG 1 0 0 TGF-Beta Noggin

NOTCH1 1 0 0 Notch Neurogenic locus notch homolog protein 1

PGF 1 0 0 Focal Adh., PI3K-Akt Placenta growth factor

RFC4 1 0 0 DNA Repair, Telomere Replication factor C subunit 4

RFC5 1 0 0 DNA Repair, Telomere Replication factor C subunit 5

RUVBL1 1 0 0 Telomere RuvB-like 1

BMP2 1 1 0 TGF-Beta Bone morphogenetic protein 2

CBLB 1 1 0 TGF-Beta E3 ubiquitin-protein ligase CBL-B

DDIT4 1 1 0 PI3K-Akt DNA damage-inducible transcript 4 protein

DLL3 1 1 0 Notch Delta-like protein 3

E2F5 1 1 0 TGF-Beta Transcription factor E2F5

ID1 1 1 0 TGF-Beta DNA-binding protein inhibitor ID-1

ID4 1 1 0 TGF-Beta DNA-binding protein inhibitor ID-4

MAML2 1 1 0 Notch Mastermind-like protein 2

CD44 1 1 1 ECM CD44 antigen

CDK4 1 1 1 PI3K-Akt Highly similar to Cell division protein kinase 4

COL3A1 1 1 1 ECM, Focal Adh., PI3K-Akt Collagen alpha-1(III) chain

DTX3L 1 1 1 Notch E3 ubiquitin-protein ligase DTX3L

EIF4EBP1 1 1 1 PI3K-Akt, TGF-Beta Euk. transl. initiation factor 4E-binding protein 1

F2R 1 1 1 PI3K-Akt Proteinase-activated receptor 1

ID3 1 1 1 TGF-Beta DNA-binding protein inhibitor ID-3

MYC 1 1 1 PI3K-Akt, TGF-Beta Myc proto-oncogene protein

TNC 1 1 1 ECM, Focal Adh., PI3K-Akt Tenascin

TP53 1 1 1 PI3K-Akt Cellular tumor antigen p53

Overexpressed genes representing the most discriminative cancer signaling pathways distinguishing oligodendrogliomas (OD), astrocytomas (AS) and glioblastomas
(GBM) at the level of the top 300 genes (Figure 6). Genes identified as overexpressed in a specific glioma type are indicated by ‘1’, otherwise ‘0’. The column ‘Signaling
Pathways’ represents the corresponding membership of each gene in one or more of these pathways.
doi:10.1371/journal.pone.0100295.t002
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which underlines the complexity and the interplay of pathway

alterations in tumors.

In summary, we successfully applied our autoregressive higher-

order HMM to the analysis of glioma gene expression profiles. We

were able to identify known important cancer signaling pathway

alterations, and we revealed systematic pathway-specific differ-

ences between different types of gliomas that may contribute to

improve the understanding of glioma development.

Conclusions
We have developed the novel model class of autoregressive

higher-order HMMs that utilize local chromosomal dependencies

of gene expression levels to improve the analysis of individual

tumor expression profiles. Autoregressive higher-order HMMs

form a very general model class that includes several well-known

standard models such as mixture models, autoregressive mixture

models, standard first-order HMMs, and standard higher-order

HMMs as special cases. Based on in-depth comparison studies on

breast cancer gene expression data, we have identified that

autoregressive higher-order HMMs robustly predict overexpressed

genes with known underlying increased copy numbers. These

results were also widely confirmed when we transferred trained

models to other similar but previously unseen breast cancer gene

expression profiles. We have further identified that autoregressive

HMMs are able to reach a solid characterization of differentially

expressed genes independent of the underlying copy number

status. Additional comparisons to closely related methods clearly

indicate that autoregressive higher-order HMMs are very useful

for the analysis of tumor expression profiles. This is also further

supported by the identification of known and previously unchar-

acterized hotspots of differential expression in glioblastomas (see

Appendix C in Text S1 for details).

Moreover, we were able to reveal novel interesting insights on

the alterations of expression levels in known cancer signaling

pathways across different types of gliomas by utilizing autore-

gressive higher-order HMMs. We identified characteristic path-

way-specific expression patterns distinguishing oligodendroglio-

mas, astrocytomas and glioblastomas. Gene-based views on these

pathways clearly indicate the presence of common core sets of

genes that are jointly altered in these gliomas and further extended

towards the specific type of glioma with the greatest number of

affected pathway-specific genes. Additionally, a large fraction of

these genes is involved in more than one pathway highlighting the

complexity and the interplay of affected signaling mechanisms

contributing to the development of gliomas. Our observations may

therefore have important implications for the development of

future treatment strategies.

Generally, the increase in performance reached by autoregres-

sive higher-order HMMs can be attributed to the more complex

modeling of local chromosomal dependencies between neighbor-

ing genes by utilizing a combination of higher-order state-

transitions and autoregressive emissions. The separate usage of

either (i) only higher-order state-transitions or (ii) only autore-

gressive emissions did not lead to performances reached by the

best-performing autoregressive HMMs that combine these two

features simultaneously. The best-performing models had state-

transitions of order two to three in combination with autore-

gressive emissions of order two to four. For the analysis of other

data sets, we suggest to consider the most parsimonious model of

the best-performing models. That is, one may use the HMM with

second-order state-transitions and second-order autoregressive

emissions. Since this only involves second-order state-transitions,

such a model can also be trained within reasonable time on large

data sets. Altogether, our results clearly indicate that autoregres-

sive higher-order HMMs are valuable tools for the analysis of

individual tumor expression profiles.

Currently, autoregressive higher-order HMMs enable to

analyze expression levels of genes in tumor with respect to their

linear chromosomal order. This linear processing of gene

expression levels allows to improve the predictions via the

modeling of existing local chromosomal dependencies. This

provides a solid basis that could be further extended by taking

prior knowledge about underlying transcriptional networks (e.g.

[63]) or spatial genome organization (e.g. [64]) into account.

Supporting Information

Text S1 Mathematical basics of the prior distributions
for initial state, state-transition and emission parame-
ters and details of the chosen prior hyperparameters are
given in the section ’Appendix A: Prior distributions’. A

detailed derivation of the Bayesian Baum-Welch algorithm for

autoregressive higher-order HMMs is given in the section

‘Appendix B: Bayesian Baum-Welch algorithm’. An in-depth

analysis of identified hotspots of differential expression in gliomas

is given in the section ‘Appendix C: Application of Autoregressive

Higher-Order Hidden Markov Models to glioma data’. The

supporting Figures S1–S8 are provided in the section ‘Supporting

Figures’. The supporting Tables S1–S4 are given in the section

‘Supporting Tables’.
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