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Abstract

Background: Babesia bovis is an apicomplexan intraerythrocytic protozoan parasite that induces babesiosis in cattle after
transmission by ticks. During specific stages of the apicomplexan parasite lifecycle, such as the sporozoites of Plasmodium
falciparum and tachyzoites of Toxoplasma gondii, host cells are targeted for invasion using a unique, active process termed
‘‘gliding motility’’. However, it is not thoroughly understood how the merozoites of B. bovis target and invade host red
blood cells (RBCs), and gliding motility has so far not been observed in the parasite.

Methodology/Principal Findings: Gliding motility of B. bovis merozoites was revealed by time-lapse video microscopy. The
recorded images revealed that the process included egress of the merozoites from the infected RBC, gliding motility, and
subsequent invasion into new RBCs. The gliding motility of B. bovis merozoites was similar to the helical gliding of
Toxoplasma tachyzoites. The trails left by the merozoites were detected by indirect immunofluorescence assay using
antiserum against B. bovis merozoite surface antigen 1. Inhibition of gliding motility by actin filament polymerization or
depolymerization indicated that the gliding motility was driven by actomyosin dependent process. In addition, we revealed
the timing of breakdown of the parasitophorous vacuole. Time-lapse image analysis of membrane-stained bovine RBCs
showed formation and breakdown of the parasitophorous vacuole within ten minutes of invasion.

Conclusions/Significance: This is the first report of the gliding motility of B. bovis. Since merozoites of Plasmodium parasites
do not glide on a substrate, the gliding motility of B. bovis merozoites is a notable finding.
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Introduction

The apicomplexan phylum contains obligate intracellular

parasites that are major pathogens of humans and livestock.

During specific stages of the apicomplexan parasite lifecycle, host

cells are targeted for invasion using a unique, active process

termed ‘‘gliding motility’’. Gliding motility by apicomplexan

parasites does not require shape changes like the crawling of

amoebae, nor do the zoite stages of these parasites have cilia or

flagella [1]. Instead, the motility is driven by coupling the

translocation of surface adhesins to an actomyosin motor beneath

the parasite plasma membrane [2]. Gliding motility has been

reported in Plasmodium spp. (sporozoite and ookinete), Toxoplasma

gondii (tachyzoite and sporozoite), Cryptsporidum parvum (sporozoite),

and Eimeria spp. (sporozoite) [3,4,5,6].

Babesia bovis is an apicomplexan intraerythrocytic protozoan

parasite that induces babesiosis in cattle after transmission by ticks.

B. bovis is a representative of the large-type Babesia species.

Sporozoites of the Babesia parasite directly invade host red blood

cells (RBCs), and all parasitic stages in the vertebrate host develop

in the RBCs [7]. Although the precise timing is unknown, once

merozoites invade a RBC, the parasite rapidly escapes from the

parasitophorous vacuole (PV) that is formed by invagination of the

RBC membrane during invasion [8]. Following establishment of

the free parasite within a host RBC, B. bovis produces two

merozoites by binary fission. After erythrocytic lysis, each

merozoite invades a new RBC and successive merogonies occur

[7]. However, the process of merozoite entry into RBCs is not

thoroughly understood, and gliding motility has so far not been

recorded in Babesia parasites.

Gliding motility can be observed by time-lapse video

microscopy or easily detected by staining for surface components

of the parasites that are deposited in trails left on the substrate

[9]. In T. gondii tachyzoites, three forms of gliding motility have

been characterized by video microscopy analysis: circular gliding,

twirling, and helical gliding [4]. Since actin filaments are

required for gliding, chemical agents that disrupt actin filament
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polymerization, such as cytochalasins and latrunculins, can

inhibit the motility [10]. In recent years, genetic manipulation

methodologies have advanced in apicomplexan parasites and

fluorescently labeled parasite populations are being employed in

time-lapse imaging analysis. In Plasmodium, green fluorescent

protein (GFP)-expressing parasites have given unprecedented

insight into their behavior within mammalian hosts and vector

mosquitoes [11,12].

Here we have observed gliding motility using time-lapse video

microscopy of GFP-expressing B. bovis merozoites that were

developed in our previous study [13]. Time-lapse video images

delineated the sequential process of parasite-infected RBC (IRBC)

rupture, merozoite egress from IRBCs, gliding motility of the

merozoites, attachment and invasion of merozoites into new

RBCs, and formation and breakdown of PVs.

Results

B. bovis Merozoites Glide to Infect RBC
From observations of the GFP-expressing B. bovis populations, we

could confirm the gliding motility of the extra-erythrocytic

merozoites in vitro. To characterize the mode of gliding motility,

cultured IRBCs were applied to glass slides and egress of the

merozoites from the IRBC and their subsequent motility were

recorded by confocal laser microscopy. By analyzing the video

recordings, straight or meandering motility, but not retreating

movement, was observed (Fig. 1 and Video S1). The apical end of

the merozoites was at the front position in the direction of

movement. To characterize the gliding mode of B. bovis merozoites,

parasite mitochondria were stained with MitoTracker Red. The red

fluorescence-stained organelles in the cells enabled us to track the

body rotation around the long axis. The merozoites rotated in

a counterclockwise direction with respect to the direction of travel

(Fig. 2 and Video S2). The motility observed in the B. bovis

merozoites was similar to helical gliding, but other modes of gliding

such as circular gliding or twirling were not observed.

B. bovis Merozoites form Trails During Gliding
To confirm that the movement of B. bovis merozoites is due to

gliding, the presence of gliding trails was investigated by an

indirect immunofluorescence antibody test using anti-merozoite

surface antigen 1 (BbMSA-1) antibody. IRBCs were placed on

poly-L-lysine-coated glass slides and the merozoites that egressed

from RBCs were allowed to glide on the slides. The slides were

stained with the antibody. As a result, B. bovis merozoites were

observed to deposit trails that formed straight or winding patterns

in accordance with observations from time-lapse video microscopy

(Fig. 3).

Gliding Motility of B. bovis Merozoites Relies on the
Parasite’s Actin Cytoskeleton

The gliding speed of the merozoites was not constant because

the parasites paused and moved with variable velocity. However,

the maximum net forward speed of the gliding motility was

estimated to be 1.2 mm/sec under the assay conditions (Table 1).

In order to determine whether gliding motility of B. bovis

merozoites depended on an actomyosin motor system, the effect

of an actin filament depolymerizer (cytochalasin D) and poly-

merizer (jasplakinolide) on merozoite motility was analyzed.

Motility of B. bovis merozoites was completely blocked by 1 mM

cytochalasin D or 1 mM jasplakinolide, indicating that the motility

was driven by an actomyosin motor. The IRBCs incubated with

1 mM of cytochalasin D showed unsuccessful egress of the

merozoites and even rupture of the IRBC membrane was

obstructed, suggesting that the actomyosin dependent process

could also be involved in parasite egress from the IRBCs. A 10 nM

cytochalasin D treatment decreased the merozoites’ motility and

the velocity was calculated to be 0.1 mm/sec, while the velocity

under 100 nM jasplakinolide treatment was calculated at 0.3 mm/

sec. A related study with T. gondii tachyzoites showed that a high

dose of jasplakinolide inhibited gliding motility, while under some

conditions the compound made T. gondii tachyzoites more active in

gliding [14]. Although B. bovis merozoites were also treated with

jasplakinolide at 100 mM, only an inhibition of gliding activity was

observed at this concentration and not an increase in activity.

RBC Attachment and Invasion
To observe the invasion of merozoites into new RBCs we

recorded a sequence of merozoite motility after the rupture of the

IRBC. To enable monitoring of merozoite invasion, cell

membranes of bovine RBCs were stained with the red fluorescent

dye, PKH26. We observed numerous instances of parasites having

successfully invaded fresh RBCs (Fig. 4 and Video S3). Some

merozoites attached to several RBCs during their gliding

migration before final invasion into a RBC. The ring-shaped red

fluorescence around the green merozoite indicated its successful

invasion into the new RBC, and it also suggested formation of the

PV, which was observed just after the merozoite invasion. It

should be noted that when merozoites detached from the RBCs

without invasion, the merozoite-RBC interaction was strong

enough that pulling of the RBC membrane by the departing

merozoite could be observed (Video S4).

Formation and Breakdown of the Parasitophorous
Vacuole (PV)

Next, we monitored the fate of the PV, which was observed as

a red fluorescent membrane around the parasite. From the video

Figure 1. Time-lapse video microscopy of a B. bovis merozoite engaged in gliding. In vitro cultured IRBCs were placed on a glass slide and
their motility documented with confocal laser microscopy. The time elapsed between each frame is indicated in seconds. Gliding of the B. bovis
merozoites is characterized as forward movement with the apical end at the front position.
doi:10.1371/journal.pone.0035227.g001

Gliding Motility of Babesia bovis Merozoites
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images, a strongly fluorescent dot appeared beside the parasite

and, simultaneously, the ring-shaped red fluorescence disappeared

(Fig. 5 and Video S5). The dot fluorescence appeared within

10 min after the invasion of the merozoite into the RBC (the

Video S5 shows it appearing approximately 300 sec after

invasion). This result suggested that the PV was broken down

within several minutes of merozoite invasion into the RBC.

Discussion

To our knowledge this is the first time that B. bovis merozoites

have been demonstrated as displaying gliding behavior in vitro.

Gliding motility of apicomplexan parasites was recorded in time-

lapse video images by early work in Eimeria sporozoites [15], and

detailed observation of such locomotion has been conducted

mainly in sporozoites of Plasmodium spp. and tachyzoites of

Toxoplasma gondii (former reports and our findings are summarized

in Table 2) [2,4,5,16,17,18]. Although both Plasmodium and Babesia

merozoites parasitize host RBCs, Plasmodium merozoites observed

in vitro do not move across a substrate at all, until contacting the

RBC surface [19]. From the analysis of the gliding motility, it

seems that Babesia merozoites can glide in any direction. The

merozoites of B. bovis rotated their body around the long axis,

which was similar to the helical gliding mode of motility defined in

Toxoplasma gondii tachyzoites, for which the force is generated by

the actomyosin motor using myosin A proteins anchored on the

inner membrane complex, a specialized membranous structure

beneath the parasite’s plasma membrane [4]. The rotating

direction was counterclockwise, which was also similar to T.

gondii. In T. gondii, it is proposed that closely arranged particle on

the inner membrane complex may be connected to the

subpellicular microtubule and that the subpellicular microtubule

was necessary for the gliding motility [14,20]. In Babesia parasite,

the existence of subpellicular microtubule was also reported in B.

major [21] and freeze-fracture electron microscopy of the

intraerythrocytic B. ovata merozoites have shown helically ar-

ranged intramembranous particles on the inner membrane (S. K.,

unpublished data), suggesting that there might be helical

arrangements of the submembrane cytoskeleton in Babesia

merozoites, and that the direction of this arrangement is consistent

with the counterclockwise rotation of B. bovis merozoites. On the

other hand, we did not observe other modes of gliding. In contrast

to the crescent shape of Toxoplasma tachyzoites and Plasmodium

sporozoites, B. bovis merozoites have a pyriform shape. It seems

that this pyriform shape provides B. bovis merozoites with flexibility

in the direction of movement, and therefore the other two forms of

motility (circular gliding, upright twirling) observed in Toxoplasma

tachyzoites might not be necessary. The cell membrane staining of

bovine RBCs facilitated confirmation of the successful invasion of

merozoites into the RBCs, which was observed by z-stack analysis

from confocal laser microscopy. The recorded images revealed

that gliding motility led to invasion RBCs by B. bovis merozoites by

a different manner to the well confirmed process in Plasmodium

merozoites [22]. In our study, after the attachment of B. bovis

merozoites, clear reorientation was not observed. Although further

detailed analysis is necessary, the video images suggest that the

B. bovis merozoite might act like a screw as it enters the RBC

rather than following the serial invasion process observed for

Figure 2. Helical motility of B. bovis merozoites. In vitro cultured IRBCs were stained with a fluorescent mitochondrial probe (MitoTracker Red)
and placed on a glass slide for confocal laser microscopy analysis. The shift in red fluorescence on the merozoites (top to bottom) indicates helical
motility of the merozoites. The arrow indicates the direction of merozoite movement.
doi:10.1371/journal.pone.0035227.g002

Figure 3. B. bovis merozoites deposited surface membrane trails during gliding on a solid substrate. An indirect immunofluorescence
antibody assay was performed by using anti-B. bovis MSA-1 mouse antiserum. Arrow heads show the fluorescence from the merozoites.
doi:10.1371/journal.pone.0035227.g003
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Plasmodium merozoites. The force generated by the actomyosin

motor during gliding motility is transmitted to the outside of the

merozoite through interaction of the motor with a transmembrane

protein that serves as an adhesion molecule to the substrate.

Recent studies in Plasmodium have highlighted the essential role of

the thrombospondin related anonymous (or adhesive) protein

(TRAP) family in gliding and cell invasion of the parasites [23,24].

In Babesia spp., several TRAP family genes have been identified

[25]. However, the role of the TRAP-family in gliding motility of

Babesia merozoites is still unclear.

The experiments with the membrane-stained RBCs enabled us

to analyze the PV formation in B. bovis. Since neither the IRBCs

nor the merozoites were stained with PKH26 in Fig. 5, the

appearance of the ring-shaped red fluorescence around the

merozoite indicated that the PV originated from the cell

membrane of newly infected RBC. Time-lapse video images

revealed that a strongly fluorescent dot appeared beside the

merozoite within 10 min after the invasion, and that the ring-

shaped fluorescence disappeared. This observation supports the

idea that the B. bovis merozoites rapidly escape or are released

from the PV. The video images indicate the timing of the event,

whereas the molecular mechanism behind this phenomenon is still

unclear. Studies of the blood stage of Plasmodium parasites have

revealed that the PV membrane is retained until late schizogony

[26,27]. This finding suggests that the PV of B. bovis may not be

formed in the same way or sealed as securely as in Plasmodium.

Alternatively, because the PV formation is coupled with the

merozoite invasion, the difference in the invasion process by these

two parasites may result the difference in the PV formation: in

contrast to a relatively slow serial invasion process of Plasmodium

merozoites, quick vivid invasion of Babesia merozoites might be too

strong to form PV in the RBC and forced this parasite to survive in

RBC without forming PV.

In conclusion, our study of B. bovis movement is the first real-

time characterization of its motility. How gliding motility functions

in vivo and regulated is of great interest, especially with respect to

future drug and vaccine development. Since gliding motility is not

just restricted to B. bovis but also found in most members of the

apicomplexan group, further study will provide new insight into

the molecular mechanisms of gliding motility of these parasites. In

addition, we monitored the fate of the PV and revealed the timing

of PV breakdown. The escape or release of the merozoite from the

PV is a unique point in the lifecycle of Babesia parasites, and it

seems to be a critical process for the parasite to establish the

intraerythrocytic growth stage. Comparative genome analysis

between Babesia and Plasmodium in terms of PV formation might

be an interesting subject to be addressed in future studies.

Materials and Methods

Ethics Statement
Bovine RBCs were collected every two weeks from healthy

animals. This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the Obihiro University of Agriculture

and Veterinary Medicine. The protocol was approved by the

Committee on the Ethics of Animal Experiments of the Obihiro

University of Agriculture and Veterinary Medicine (Permit

number 23–26).

Parasite Culture
The Babesia bovis Texas strain was maintained in purified bovine

RBCs with GIT medium (WAKO, Osaka, Japan) by a micro-

aerophilic stationary-phase culture system [28]. The parasites were

cultured in 1 ml culture medium containing 10% bovine RBCs in

24-well culture plates (Corning, NY, USA). Culture medium was

replaced every day and the level of parasitemia was monitored

daily by staining thin blood smears with Giemsa solution.

GFP-fluorescent B. bovis populations were established previously

[13]. Briefly, the GFP-expressing plasmid was constructed. Then,

the DHFR expression cassette was cloned into the plasmid with

the GFP expression cassette. The plasmid constructs were

introduced into the Texas strain of B. bovis by transfection with

a NucleofectorH device (Amaxa Biosystems, Cologne, Germany).

The transfected parasite population was selected with 5–10 nM of

WR99210 and the parasite population with GFP expression was

cloned using a limiting dilution. The fluorescent parasite was

maintained for more than 7 months under WR99210 drug

pressure.

Table 1. Effects of inhibitors on B. bovis motility as
determined by time-lapse video microscopy.

Distance traveled in microns per second

Control 1.2 6 0.2

Cytochalasin D (1 mM) 2

(10 nM) 0.1 6 0.1

Jasplakinolide (1 mM) 2

(100 nM) 0.3 6 0.2

Estimates of rates of motility were based on ten documented individual
parasites from two independent experiments. (2) indicates no motility
observed with at least three experiments.
doi:10.1371/journal.pone.0035227.t001

Figure 4. Time-lapse video microscopy of B. bovismerozoite egress from a RBC, gliding to and invasion of a new RBC. The arrow head
shows merozoite invasion into a new RBC. The red ring-shaped fluorescence around the merozoite indicates the parasitophorous vacuole. The time
elapsed between each frame is indicated in seconds.
doi:10.1371/journal.pone.0035227.g004
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Video Microscopy
In vitro cultured IRBCs were applied to glass slides for time-lapse

analysis. Time-lapse video microscopy was conducted using

a TCS-SP5 confocal laser scanning microscope (Leica Micro-

systems, Wetzlar, Germany). Confocal fluorescence images and

transmitted images were recorded digitally at approximately one

frame per second (0.8–1.5 frame/sec). Time-lapse images were

recorded continuously for up to 30 min at room temperature (RT)

and merozoite egress from the IRBC and their gliding were

monitored. Frames used to create the time lapse series were taken

from avi movies and processed using AviUtl software.

Immunofluorescence Detection of Trails
Staining of surface protein in trails was performed by indirect

immunofluorescence using the antiserum against B. bovis merozoite

surface antigen 1 (BbMSA-1) [29]. Glass slides were coated in 10 mg/

ml poly-L-lysine in PBS for 30 min at RT and rinsed in phosphate

buffer saline (PBS). IRBCs were resuspended in GIT medium, added

onto the slides, and incubated at 37uC for 30 min. Slides were briefly

washed by PBS, dried and fixed with 50% acetone-50% methanol for

5 min at -20uC. Anti-BbMSA-1 mouse antiserum was used at 1:50

and Alexa-Fluor 488 conjugated goat anti-mouse IgG (Molecular

probes, OR, USA) was used at 1:200. The slides were incubated with

each antibody for 45 min at RT, and then observed with a TCS-SP5

confocal laser scanning microscope.

Gliding Inhibition Assays
For the gliding inhibition assays, cytochalasin D (Wako Pure

Chemical, Osaka, Japan) and jasplakinolide (Enzo life sciences,

NY, USA) was dissolved in DMSO at 1 mM and stored at 230uC.

IRBCs were resuspended in GIT medium, and treated with 10 nM

or 1 mM cytochalasin D, 100 nM or 1 mM of jasplakinolide, or

0.1% DMSO for 30 min, respectively. Parasite tracks were traced

from the pictures onto transparent sheets and gliding velocity was

analyzed for each merozoite. Velocities were calculated over

periods of five seconds and the highest speed was taken as the

gliding speed. A total of 10 merozoites from two independent

experiments were analyzed to obtain mean 6 SD values.

Mitochondrial Staining of B. bovis
To stain the mitochondria of B. bovis merozoites, MitoTracker

Red CM-H2XRos (Molecular Probes, OR, USA) was used. The

fluorescent probe was diluted to 200 nM in GIT medium, and

mixed with an equal amount of IRBCs. The mixture was

incubated for 30 min at 37uC and washed with GIT medium

3 times. Parasites with mitochondrial staining were used for

analysis on mode of gliding.

Figure 5. Time-lapse video microscopy of the formation and breakdown of the parasitophorous vacuole. To enable monitoring the PV,
PKH26 stained fresh RBC was added to the unstained IRBCs. PKH26 fluorescence can be observed around the merozoite just after invasion into the
new RBC (arrow). Subsequently, red dot-shaped fluorescence appears (arrow head), and the ring-shaped fluorescence becomes weaker. The time
elapsed between each frame is indicated in seconds.
doi:10.1371/journal.pone.0035227.g005

Table 2. Comparison of gliding motility among apicomplexan parasites.

Babesia bovis Plasmodium spp. Toxoplasma gondii

Gliding stages Merozoite Sporozoite, Ookinate[2] Sporozoite, Tachizoite[2]

Gliding Mode Helical gliding Stick-and-slip, Circular gliding, Back-and-
Forth[16,17]

Helical gliding, Circular gliding, Twirling[4]

Gliding Speed 1.2 6 0.2 mm/sec 1 – 2 mm/sec[12] 1.1 – 2 mm/sec[4]

Gliding trails Can be detected Can be detected[9] Can be detected[4]

Cytochalasin D Inhibits gliding, inhibits merozoite
egress at high concentration

Inhibits gliding[18] Inhibits gliding[4]

Jasplakinolide Inhibits gliding Inhibits gliding[18] Inhibits gliding at high concentration,
accelerates at low concentration[5]

Parasitophorous vacuole Breakdown within 10 min Remains[24,25] Remains[4]

doi:10.1371/journal.pone.0035227.t002
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Membrane Staining of the Bovine RBCs
To stain the cell membrane of the bovine RBCs, a PKH26 red

fluorescent cell membrane labeling kit was used (Sigma-aldrich,

MO, USA). Fifty micro liters of packed bovine RBCs were washed

once with PBS, then 250 ml of diluent C followed by 1 ml of PKH

dye stock were added to the RBCs. The reaction mix was

incubated for 10 min at RT. After staining, RBCs were washed

3 times with PBS and used for time-lapse image analysis.

Supporting Information

Video S1 Time-lapse video microscopy of a B. bovis
merozoite engaged in gliding. Video S1 is shown at 6.76real

time.

(AVI)

Video S2 Helical motility of B. bovis merozoites. Video

S2 is shown at 2.86 real time.

(AVI)

Video S3 Time-lapse video microscopy of B. bovis
merozoite egress from a RBC, gliding to and invasion
of a new RBC. Video S3 is shown at 15.46 real time.

(AVI)

Video S4 Attachment of B. bovis merozoites on the
RBC. Furrowed RBC surface could be observed at the position

where merozoite attached. The video is shown at 15.46real time.

(AVI)

Video S5 Time-lapse video microscopy of the formation
and breakdown of the parasitophorous vacuole. Video S5

is shown at 15.46 real time.

(AVI)
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