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ABSTRACT

Recent studies have established that mutations or deletions in microRNA (miRNA) processing enzymes resulting in a global decrease
of miRNA expression are frequent across cancers and can be associated with a poorer prognosis. While very popular in miRNA
profiling studies, it remains unclear whether miRNA microarrays are suited or not to accurately detecting global miRNA
decreases seen in cancers. In this work, we analyzed the miRNA profiles of samples with global miRNA decreases using
Affymetrix miRNA microarrays following the inducible genetic deletion of Dicer1. Surprisingly, up to a third of deregulated
miRNAs identified upon Dicer1 depletion were found to be up-regulated following standard robust multichip average (RMA)
background correction and quantile normalization, indicative of normalization bias. Our comparisons of five preprocess steps
performed at the probe level demonstrated that the use of cyclic loess relying on non-miRNA small RNAs present on the
Affymetrix platform significantly improved specificity and sensitivity of detection of decreased miRNAs. These findings were
validated in samples from patients with prostate cancer, where conjugation of robust normal-exponential background correction
with cyclic loess normalization and array weights correctly identified the greatest number of decreased miRNAs, and the lowest
amount of false-positive up-regulated miRNAs. These findings highlight the importance of miRNA microarray normalization for
the detection of miRNAs that are truly differentially expressed and suggest that the use of cyclic loess based on non-miRNA small
RNAs can help to improve the sensitivity and specificity of miRNA profiling in cancer samples with global miRNA decrease.
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INTRODUCTION

MicroRNAs (miRNAs) are small RNAs of ~22 nt involved in
the translation control of complementary target messenger
RNAs. miRNAs are processed in the nucleus from longer
RNA polymerase II transcripts with hairpin-like secondary
structures that are excised by the endonuclease Drosha to re-
lease miRNA precursors (pre-miRNAs) (Krol et al. 2010).
Pre-miRNAs are subsequently exported to the cytoplasm
through recruitment by exportin-5 (XPO5), where they are

sequence-specific messenger RNA (mRNA) sequences. Be-
cause mRNA target recognition by an miRNA only relies
on complementarity with the 6-8 5" nucleotides of the mi-
RNAs, a single miRNA can affect several hundred target
mRNAs (Gantier 2010). There are currently more than 2000
and more than 1200 mature miRNAs reported in human
and mice, respectively (Griffiths-Jones 2010), but the func-
tion of most of these remains poorly defined.

Nevertheless, it is now well established that the translation-

finally processed by a second endonuclease, Dicerl, which
cleaves the loop structure of the hairpin and generates two
separate ~22-nt molecules (Krol et al. 2010). The resulting
mature miRNA is recruited to a protein complex made up
of several proteins, including TAR RNA-binding protein 2
(TARBP2) and Argonaute proteins, to direct regulation of
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al control assured by miRNAs is crucial to most aspects of
normal cellular function. Through the regulation of tumor
suppressors and/or oncogenes, several miRNAs have now
been shown to be directly involved in cancer development
(e.g., miR-19b or miR-15a/16-1) (Mu et al. 2009; Aqeilan
etal. 2010). miRNA expression is altered in most types of can-
cers (Melo and Esteller 2011), and early reports of miRNA
profiling using PCR-based strategies demonstrated a preva-
lent global miRNA decrease in tumor samples of various or-
igins (Lu et al. 2005; Gaur et al. 2007). It has recently been
suggested that this global miRNA decrease in tumor samples
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could originate from genetic alterations affecting components
of the miRNA biogenesis machinery (Dicerl, XPO5, and
TARBP2). Indeed, 30% of human tumors analyzed in a study
using 322 tumor samples (from breast, kidney, large intestine,
liver, lung, ovary, pancreas, and stomach cancers) exhibited
monoallelic loss of Dicer]l (Kumar et al. 2009), and 60% of
ovarian cancers (from 111 patients) had decreased Dicerl
mRNA levels (Merritt et al. 2008). Similarly, studies in tumors
with microsatellite instability, such as hereditary nonpolypo-
sis colon cancer, apparently sporadic colorectal, gastric, or
endometrial cancers, revealed an important proportion of
monoallelic XPO5 (22.8% over 337 tumors) (Melo et al.
2010) or TARBP2 (26% in 282 tumors) (Melo et al. 2009)
frameshift mutations resulting in decreased miRNA levels.
Collectively, these findings establish that a significant propor-
tion of tumors display a global miRNA decrease through the
impairment of miRNA processing.

While a global miRNA decrease is relatively frequent
in cancer samples, the majority of early microarray-based
miRNA profiling studies have found relatively balanced pro-
portions of miRNAs being up- and down-regulated in cancer
(Volinia et al. 2006; Yanaihara et al. 2006). Given that the
original reports of global miRNA decrease relied on PCR-
based detection of miRNAs rather than microarray profiling
(Lu et al. 2005; Gaur et al. 2007), we postulated that miRNA
microarray profiling using methods carried over from mRNA
microarrays could introduce a bias in the analysis of samples
with global miRNA decrease. To determine whether miRNA
microarray profiling could accurately identify samples with
global miRNA decrease, we decided to analyze miRNA levels
following Dicerl deletion (Gantier et al. 2011, 2012), using a
single-color miRNA microarray platform (Affymetrix).

The robust multichip average (RMA) algorithm is a stan-
dard method for background correcting, summarizing, and
normalizing data from Affymetrix gene expression Gene-
Chips (Irizarry et al. 2003). RMA background correction is
achieved by modeling the intensity values in terms of signal
plus noise (Irizarry et al. 2003; Bolstad 2004). The final
step in the RMA algorithm is quantile normalization, which
has the effect of forcing the distribution of normal-
ized expression values to be identical for every microarray
(Bolstad et al. 2003). This assumes, in effect, that the bulk
of genes are not differentially expressed and that up and
down expression changes are roughly balanced between ex-
periment conditions. Although very popular for mRNA mi-
croarrays, the RMA algorithm does not make use of control
probes and is not well suited to experiments showing global
expression changes (Wu and Aryee 2010). The RMA back-
ground correction model was further developed to achieve
more accurate estimates of the signal and noise components
in the context of two-color microarrays (Ritchie et al. 2007;
Silver et al. 2009) and was adapted to make use of control
probes in the context of Illumina BeadChips (Ding et al.
2008; Shi et al. 2010b). In particular, a robust model-estima-
tion strategy was developed to guard against the possibility

that a minority of negative control probes represented real
signal (Shi et al. 2010b).

Loess normalization is a popular method for two-color mi-
croarrays (Yang et al. 2002). Loess normalization has also
been applied to one-channel microarrays by applying it cy-
clically to each possible pair of arrays (Bolstad et al. 2003).
Unlike quantile normalization, loess normalization can be
generalized to use unequal probe-weights (Smyth and Speed
2003). Probe-weighted loess normalization in conjunction
with control probes was shown to be effective for normaliz-
ing two-color microarrays even in the presence of unbal-
anced global changes in gene expression (Oshlack et al. 2007).

In this article, we explore the effectiveness of probe-
weighted cyclic loess for normalizing Affymetrix miRNA mi-
croarrays when a global change in expression is present. A
potential advantage of this approach is that a variety of
non-miRNA probes can be treated as invariant controls in
order to stabilize the normalization curves. Comparison of
five combinations of preprocessing steps performed at the
probe level suggested that the use of cyclic loess relying on
non-miRNA small RNAs could help to reduce detection of
false-positive up-regulated miRNAs and improve detection
of truly down-regulated miRNAs. These findings were vali-
dated in prostate cancer samples where miRNAs are prefer-
entially down-regulated (Ozen et al. 2008). Our results
suggest that the use of robust normal-exponential (normexp)
background correction (Shi et al. 2010b) with probe-weight-
ed cyclic loess normalization can help to reduce the incidence
of false-positive up-regulated miRNAs and improve detec-
tion of truly down-regulated miRNAs during microarray
normalization of cancer samples.

RESULTS

Generation of samples with global miRNA decrease

We generated samples with gradual global miRNA depletion
relying on Dicer"1°* x Cre/Esr1 mouse embryonic fibro-
blasts (MEFs) in which the majority of the second RNase
III domain of Dicerl can be deleted following 4-hydroxy-ta-
moxifen (OHT) treatment of the cells (Gantier et al. 2011).
Having previously established that the intracellular levels of
miRNAs were mostly affected by cell division in this model
(Gantier et al. 2011), we conducted a series of cell passages
following OHT-induced Dicerl deletion to ensure active
cell division over the course of the experiment (Fig. 1A).
Preliminary experiments demonstrated that intracellular
miRNA levels decreased from day 2 following OHT (data
not shown). Cells were, therefore, collected on days 2, 3, 4,
and 5 following OHT treatment, and validation of global
miRNA decrease was assessed using TagMan reverse tran-
scription quantitative PCR (RT-qPCR) low density arrays
for one set of samples (Fig. 1B). Two hundred and twenty-
two miRNAs were found to be detected on day 2 (i.e., with
a Cq <35). The overall distribution of miRNA expression
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FIGURE 1. Gradual depletion of miRNAs following OHT treatment of
the cells. (A) Schematic representation of the experimental setup.
Dicer™/1°% % Cre/Esr1 MEFs were plated in 100-mm dishes, treated
overnight with 500 nM OHT, and washed with fresh complete
DMEM the next day (day 1). The cells were passaged with 1/10 splits
on days 2 and 4 as depicted in the schematic. Cells were lysed, and total
RNA was collected from each biological replicate set on days 2, 3, 4, and
5 as indicated. Three biological triplicates were collected for each time
point. (B) Box and whiskers plots of 222 miRNAs detected on day 2,
from one set of biological samples, by TagMan low-density RT-qPCR
arrays. Whiskers indicate the minimum to maximum values. The ampli-
fication data are given in Supplemental Table 1. To compensate for a
skewed distribution, the data were log,-transformed prior to statistical
analysis. One-tailed paired f-tests comparing the levels of each
miRNA at different time points are shown. (****) P<0.0001 (day 3
vs. day 2: P<2.2x 107" day 4 vs. day 3: P=1.74x 107"%; day 5 vs.
day 4: P=1.451X 107%). (C) Individual miRNA RT-qPCRs carried
out on the samples generated in A confirm gradual depletion of select
miRNAs. The results from biological triplicates normalized to the ex-
pression of snoRNA202 were reported to the average values for day 2.
Error bars show the standard error of the mean (SEM).

for these 222 miRNAs showed a significant decrease in
miRNA expression with time following OHT treatment. To
confirm these results, we next analyzed the expression profile
of four miRNAs by individual RT-qPCR assays of miR-125b,
miR-21, miR-19b, and miR-155 (Fig. 1C). These results
showed a significant decrease in miRNAs averaging ~25%
(ranging between 17% and 37% for the miRNAs analyzed)
between days 2 and 3 following OHT treatment of the cells.
Similarly, we observed an ~64% decrease in miRNA levels
(ranging between 58% and 70%) between days 2 and 4 fol-
lowing OHT-deletion of Dicerl. Importantly, the variability
among the biological replicates was very low according to
the RT-qPCR results. With the exception of miR-451, all
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mouse pre-miRNAs are dependent on Dicer1 to be processed
into mature miRNAs (Cheloufi et al. 2010). Collectively, the
results thereby indicate that these samples reproduced a glob-
al miRNA decrease, as can be observed in cancer samples.

miRNA microarray analysis with RMA
background correction

To investigate the ability of miRNA microarrays to detect
global miRNA decrease, we next analyzed three sets of bio-
logical samples with gradual miRNA depletion, collected
on days 2, 3, and 4, using Affymetrix GeneChip miRNA mi-
croarrays (previously analyzed for miRNA expression in Fig.
1C). Given that the average decrease in miRNA levels mea-
sured between days 2 and 4 was greater than twofold in indi-
vidual RT-qPCR assays (Fig. 1C), we anticipated that most
miRNAs expressed by the MEFs would display a significant
reduction between these two time points. Quality control
analyses of the arrays indicated important variations of aver-
aged log, intensities between the replicate arrays, warranting
the need for array normalization (Fig. 2A). Importantly, an
MA plot of the distribution of day 4/day 2 indicated a diver-
gence of an important proportion of the points from log,
intensity ratio M = 0, which was particularly pronounced for
the miRNA probes and the non-miRNA small RNA probes
(Fig. 2B). Given previous reports that quantile normalization
worked well for single-color miRNA microarrays (Rao et al.
2008; Zhao et al. 2010), we initially performed a standard
RMA background correction/normalization. RMA relies on
a model-based background correction, quantile normaliza-
tion, log, transformation, and probe-set summarization
(Irizarry et al. 2003). It is a standard background correction/
normalization procedure for Affymetrix GeneChip data and
is recommended by Affymetrix for its miRNA microarray
analyses, through the miRNA QC tool. Surprisingly, such nor-
malization identified an important number of miRNAs to be
up-regulated following Dicer] deletion (Table 1; see RMA +
quantile + RMA condition). Indeed, up to 38% (30 out of a to-
tal 79) of differentially expressed miRNAs were found to be
up-regulated (when comparing miRNA levels between days
4 and 2). This was unexpected, given our previous results of
global miRNA decrease in these samples by RT-qPCR (Fig.
1B,C). In addition, an MA plot of the distribution of day 4/
day 2 following RMA background correction, quantile nor-
malization, and RMA probe-set summarization did not help
to identify further the expected global miRNA decrease (Fig.
2B,C; cf. the distribution of miRNA probes in black), thereby
suggesting a bias of the microarray analyses in the identifica-
tion of false-positive up-regulated miRNAs.

Normexp background correction with quantile
normalization

Because of the limited length of miRNAs (<25 nt), probes de-
tecting miRNAs are designed to be directly complementary
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by a maximum-likelihood estimation in
normexp (Ritchie et al. 2007; Silver et al.
2009). In addition, Shi et al. demonstrated
that the use of normexp optimized the
noise vs. bias trade-off in Illumina mi-
croarrays and developed normexp using
control probes (Shi et al. 2010b). Al-
though not directly accounting for the dif-
ferent GC content in different probes, the
use of normexp relying on the GC control
probe sets allowed us to take into account
some of the effects of GC content on the
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FIGURE 2. Quality control of the raw data and MA plots. (A) Box plot of the raw PM log, in-
tensities for the 46,227 probes on each array, shown on log, scale. The majority of the log, inten-
sities are low, and the interquartile range (IQR, which is the range of the box) is very narrow. (B)
MA plot of the raw PM log, intensity data of the array c at day 4 vs. the array b at day 2. (C,D) MA
plots of the PM log, intensity after RMA + quantile + RMA (C) or normexp + cyclic loess + RMA
(D) normalization for the same arrays. In the MA plot, the y-axis represents the log, intensity ratio
(M:) between the two arrays (day 4 to day 2). The x-axis represents the average log, intensity of the

two arrays (A:). The colors represent the different types of probes.

to the mature miRNA sequence. Consequently, the probe GC
content is directly constrained to that of the miRNA. It is,
therefore, expected that GC-rich miRNAs (or other RNAs)
will have better affinity for the microarray probes and yield
increased signal. To take this potential bias into account,
the Affymetrix miRNA microarrays contain a set of GC con-
trol probes. Close examination of the 95 background control
probe families of 8221 probes on the array (green dots in Fig.
2B-D) showed that these range from 17 to 25 nt long, with
increasing GC content (for instance, ranging from 3 to 25
G/C for 25-nt-long control GC probes). Noteworthy is that
each probe family is composed of non-miRNA random se-
quence variants with the same amount of GC. Analysis of
the log, intensity for these non-miRNA probe families con-
firmed a direct impact of the GC content on background
intensities (Supplemental Fig. 1A). In addition, there was a

background signal of the array. We next
performed normexp background cor-
rection based on these control probe
sets (Shi et al. 2010b), prior to quantile
normalization, log, transformation, and
probe-set summarization. As shown in
Table 1, the normexp background cor-
rection with use of the GC background
control probe sets substantially reduced
the number of false-positive up-regulated
miRNAs to 0, between days 3 and 2, but
only marginally improved the results between days 4 and 2,
with 24 false-positive up-regulated miRNAs vs. 30 compared
to the RMA background correction. This indicated that the
control probe-based normexp was slightly better than RMA
background correction at limiting the detection of false pos-
itives. Note that we refer to the control probe-based normexp
when mentioning normexp in the rest of the paper.

Normexp background correction with cyclic loess
normalization

After determining that normexp was a more suitable back-
ground correction method for analyses of microarrays with
global miRNA decrease, we then considered the normali-
zation method. Given the strong divergence of the points
from M=0 (M for log fold-change between samples) on
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TABLE 1. Impact of background correction and normalization
procedures on number of significantly deregulated miRNAs in
Dicer1-deficient samples

Methods d3 vs.d2 d4vs.d2 d4vs.d3
RMA + quantile + RMA M4 10 30 J49 M2 49
normexp + quantile + RMA MOU7 124 437 3 Y11
normexp + cyclic loess+ RMA 10 427 112 |64 70 Y0
RMA + cyclic loess + RMA 10 Y10 M13 468 MO Y2
Robust normexp + cyclic M U28 11 Y61 Mo U3

loess + RMA

Methods with array weights d3vs.d2 d4vs.d2 d4vs.d3

RMA + quantile + RMA M9 Y17 36 Y60 M3 Y17
normexp + quantile + RMA ™ 20 29 48 5 Y15
normexp + cyclic loess+ RMA 114 442 2 475 M0 40
RMA + cyclic loess + RMA M3 Y18 114 38 M0 46
Robust normexp + cyclic M2 4032 6 Y87 M1 Y12

loess + RMA

These results were obtained using the methods indicated with and
without array weights, at a false discovery rate (FDR) cutoff of 0.1.
Each method consists of (1) background correction, (2) normaliza-
tion procedure, and (3) linear RMA summarization. ff denotes the
number of probes significantly up-regulated, while | refers to the
number of down-regulated probes between days 3 and 2 (d3 vs.
d2), days 2 and 4 (d4 vs. d2), or days 4 and 3 (d4 vs. d3). The
results are restricted to murine miRNAs (609 probes).

MA plots previously calculated (Fig. 2B,C), we hypothesized
that another normalization procedure, which does not as-
sume equal distribution of up- and down-regulated probes,
would be more appropriate. Risso et al. recently reported
the use of a modified loess method, which allowed them to
identify a strong prevalence of down-regulated miRNAs in
samples that were previously shown to have equal propor-
tions of up- and down-regulated miRNAs (Risso et al.
2009). However, that loess method (coined loessM as it relies
on median intensities for normalization) is restricted to two-
color microarrays and was, therefore, not suitable for our
analyses. As an alternative, we decided to investigate whether
cyclic loess for single-color microarrays (Bolstad et al. 2003)
could help to limit the detection of false-positive up-regulat-
ed miRNAs, as seen with loessM for two-color arrays (Risso
et al. 2009). Cyclic loess is a nonlinear method applied to the
probe intensities from two separate arrays at a time, which
helps to center the probe intensities around the M =0 axis
(Bolstad et al. 2003). Importantly, the loess curves can be
tuned to give special weight to control probes or to probes ex-
pected to be invariant between experimental conditions
(Oshlack et al. 2007). The technique of Oshlack et al. involves
giving a small positive weight to all regular probes on the ar-
ray but much higher weight to control probes (Oshlack et al.
2007). Different classes of probes can receive different
weights depending on their reliability as invariant controls.
Affymetrix miRNA microarrays contain about one-fifth of
non-miRNA small RNA probes (small nucleolar RNAs—
snoRNAs—comprising small Cajal body-specific RNAs,
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and C/D box and H/ACA box small RNAs), which are mostly
independent of the miRNA processing pathway (Langen-
berger et al. 2013). We postulated that such non-miRNA
probes from the Affymetrix platform could be used as invari-
ant probes for cyclic loess. Accordingly, snoRNAs were given
the highest weight (100), while miRNA probes were attribut-
ed a weight of 0.001, and all other probes (GC control, spike
in, hybridization control, 5.85 rRNA) were given a weight of 1
for cyclic loess normalization. When combining normexp
background correction with cyclic loess normalization based
on snoRNAs, we saw a visible shift of down-regulated miRNA
probes on the MA plot compared to the other non-miRNA
small RNAs and control probes present on the array (Fig.
2D). This resulted in the near ablation of false-positive up-
regulated miRNAs at each time point (Table 1). Critically,
this effect was not detrimental to the overall number of
probes differentially regulated, as seen with the results be-
tween quantile normalization and cyclic loess with a total
of 61 and 66 differentially regulated miRNAs between days
4 and 2, respectively. However, cyclic loess gave the most
down-regulated probes, with 64 between days 4 and 2 (vs.
37 for quantile normalization).

To determine the contribution of non-miRNA small RNA
(snoRNA) probes in the reduction of false-positive up-regu-
lated miRNAs, we next compared the effect of normexp back-
ground correction with cyclic loess normalization based on
weights varying between 0 and 1000 for the snoRNA probes
—the weight of miRNAs and other control probes being fixed
at 0.001 and 1, respectively (Table 2). In accordance with an
important contribution of snoRNA probes in the effect of

TABLE 2. Impact of non-miRNA probes on effect of cyclic loess
normalization on number of significantly deregulated miRNAs in
Dicer1-deficient samples

snoRNA  With array  # miRNA  # miRNA

Methods weight weights up down
normexp + cyclic 0 No 12 48
loess + RMA Yes 9 50
10 No 2 65
Yes 2 76
100 No 2 64
Yes 2 75
1000 No 2 64
Yes 2 75
Robust normexp 0 No 18 54
+ cyclic loess Yes 17 64
+ RMA 10 No 2 66
Yes 6 83
100 No 1 61
Yes 6 87
1000 No 1 61
Yes 6 87

DE miRNAs detected by the miRNA microarrays between days 2
and 4, at FDR cutoff of 0.1, with weights of 0.001 for miRNA
probes and 1 for all other probes (GC control, spike in, hybridiza-
tion control, 5.85 rRNA).
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FIGURE 3. The impact of robust estimation on normexp background correction. Box plots of
log, (A) raw intensities, (B) normexp background corrected intensity, and (C) robust normexp
background corrected intensity. All 46,227 probes were used in these plots. After normexp back-
ground correction (B), the variability between the arrays is smaller, as the IQR in each array is
smaller. However, two arrays, day 3 array ¢ and day 4 array a, have abnormal higher intensities
for both miRNA and GC background control probes (here called negative control probes
—“neg. controls”) following normexp background correction. This does not agree with the
RT-qPCR results shown in Figure 1C, which showed very small variations between the biological
replicates. These two arrays have the largest log-variance from normexp model parameter esti-
mates, suggesting that “robust normexp” could resolve these variations. Using robust normexp,
the log-variance was estimated to be smaller than ordinary normexp, and the background correct-
ed log, intensities of each array were in similar ranges, with small IQR (C), indicating that robust
normexp is more suitable than ordinary normexp.

cyclic loess, reduction of the snoRNA weight to 0 resulted in a

probes from replicate arrays of days 2
and day 4 (Fig. 4A) following robust nor-
mexp background correction with cyclic
loess normalization and summarization.
Based on the normalized and summarized
miRNA data, we calculated the ar-
ray quality weights with the design matrix
allowing for compensation of variations
observed between the arrays (Fig. 4B;
Ritchieetal.2006). Thelinear model fitted
with array weights increased the number
of significantly down-regulated probes
with both standard and robust normexp
background correction with cyclic loess
normalization, with a more pronounced
effect between days 3 and 2 and days 4
and 3 (where miRNA levels varied only
modestly, according to the PCR data)
(Table 1). However, array weights also in-
creased the number of false-positive up-

large increase of false-positive up-regulated miRNAs (from A
two miRNAs for all other weights to 12 miRNAs for the weight 04 1 Gyt
of 0, between days 4 and 2). Nonetheless, even without taking 031
the snoRNA probes into account (i.e., with a weight of 0), cy- 02 ]
clic loess outperformed quantile normalization and identi- 5
fied half the amount of false up-regulated miRNAs between g2 o1 day 30
days 4 and 2 (12 vs. 24 miRNAs) (Tables 1 and 2). & 00 |
We also assessed the contribution of normexp background 041 day 4c
correction by comparing these results to RMA background os ) ! day 4b
correction followed by cyclic loess normalization. As seen L : : : :
. . N 04 02 00 02 04
with quantile normalization, normexp background correc- Dimension 1
tion performed better than RMA background correction, B 15 - mouse miRNAs
when combined with cyclic loess, by identifying fewer false- 10
positive up-regulated miRNAs (2 vs. 13 between days 4 and
2 for normexp and RMA, respectively) but led to similar £ 57
numbers of decreased miRNAs (64 vs. 68 between days 4 g (2)-‘5):
and 2 for normexp and RMA, respectively). £ 5 { mouse miRNAS with design matrix
15 -
Robust normexp background correction with cyclic ;Zg:
loess normalization and array weights 0.0 - )
@ @ @ < < <
In order to investigate whether we could increase the sensitivity g 85 8 § 8 §

of our analyses, we next studied the impact of robust estimation
on normexp background correction (Shi et al. 2010b). Robust
estimation takes into account the possible cross-hybridization
of control probes with miRNAs (Shi et al. 2010b). Box plots of
the log, intensities following normexp indicated a specific bias
on certain arrays, which was prevented with the use of robust
normexp (Fig. 3). Robust normexp and standard normexp
background correction with cyclic loess normalization per-
formed very similarly (Tables 1 and 2; cf. normexp and robust
normexp lines). A multidimensional scaling plot of the arrays
indicated that a significant difference remained between

FIGURE 4. Examination of the relationship between samples and cal-
culation of array quality weights, restricted to the mouse miRNA probe
sets. (A) Multidimensional scaling (MDS) plot of the summarized mi-
croarray data following robust normexp background correction with cy-
clic loess normalization. This MDS plot shows the relationship between
samples. Arrays day 2c and day 4a were not well grouped with arrays
from the matching biological replicates, as indicated with the arrows.
(B) Array quality weights were calculated using arrayWeightsSimple in
limma, with or without considering the design matrix. The array weights
calculated with the design matrix reflect the relationship between the
samples seen in the MDS plot (A), with sample 2c and 4a having lower
weights compared to 2a/2b and 4b/4c, respectively. These weights were
used in the further comparisons of the normalization methods.
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FIGURE 5. Assessment of true down-regulated and false up-regulated miRNAs in Dicer-defi-
cient samples. Curves showing the number of differentially expressed miRNAs detected by the
miRNA microarrays between days 2 and 4, at various FDR cutoffs, for each normalization tech-
nique applied (see Table 3). The analyses shown are restricted to 209 miRNAs that were validated
as true down-regulated miRNAs by TagMan RT-qPCR arrays, also present on the Affymetrix
platform (see Materials and Methods). The number of miRNAs confirmed to be significantly
“true down-regulated” (A) and significantly “false up-regulated” (B), using the qPCR data as a
reference, are given. The arrows highlight the better performance of normexp + cyclic loess +
RMA and robust normexp + cyclic loess + RMA with array weights, which gives the highest
amount of true down-regulated miRNAs at the most stringent FDR cutoffs of 0.05 and 0.1

20 matched normal tissues) (Wach et al.
2012) in order to further validate our ap-
proach using cancer samples in which
miRNAs are preferentially down-regulat-
ed. Previous analyses of similar prostate
cancer samples have indicated a preva-
lent global down-regulation of miRNAs
in prostate cancer (Lu et al. 2005; Ozen
et al. 2008). RNA-seq data from 10 nor-
mal and 10 prostate cancer pooled sam-
ples from the same group that reported
the Affymetrix study (Szczyrba et al.
2010) were used as a reference for the
identification of “truly differentially ex-
pressed” miRNAs (206 miRNAs were
present in both Affymetrix and RNA-
seq data sets). Noteworthy, our own anal-

(A), while giving a minimum of false up-regulated miRNAs (B).

regulated miRNAs, with a lesser impact on standard normexp
with cyclic loess normalization (Tables 1 and 2).

Evaluation of the accuracy of microarray
analyses using RT-qPCR

In order to define the accuracy of the microarray normaliza-
tion analyses described above, we analyzed the overlap of pre-
dicted down-regulated miRNAs with 209 miRNAs (referred
to as “truly expressed”) that we had previously identified
to be down-regulated between days 2 and 4 by TagMan
RT-qPCR low-density array (Fig. 1B; Supplemental Table 1)
and that were also present on the Affymetrix microarray
platform. The associated results, summarized in Figure 5
and Table 3, confirmed that cyclic loess normalization proce-
dures performed better than quantile normalization proce-
dures at reducing the number of false-positive up-regulated
miRNAs. The impact of array weights was particularly visible
for low false discovery rate (FDR) cutoffs (0.05 and 0.1), where
it strongly increased the number of true down-regulated
miRNAs for robust and standard normexp + cyclic loess
normalizations, while not increasing the number of false-pos-
itive miRNAs. Robust normexp performed marginally better
than standard normexp for the detection of true down-regu-
lated miRNAs at low false discovery rates. Collectively, these
results suggest that robust normexp background correction
with cyclic loess normalization and RMA summariza-
tion together with array weights is the most sensitive and spe-
cific normalization method for this platform.

Validation of the accuracy of robust normexp
background correction with cyclic loess normalization
and array weights on an independent data set

We next analyzed a published data set of Affymetrix miRNA
microarrays from a cohort of 20 prostate cancer samples (and
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ysis of the RNA-seq data from Szczyrba

et al. (2010) also suggested a prevalent
down-regulation of miRNAs in prostate cancers. We found
that cyclic loess normalization methods preferentially de-
tected down-regulated miRNAs, while quantile normali-
zation methods favored up-regulated miRNAs (Table 4).
Robust normexp background correction with cyclic loess
and array weights allowed for the detection of the greatest
amount of differentially expressed (DE) miRNAs with the
minimum of false-positive DE miRNAs (compared to robust
normexp and RMA background correction with quantile
normalization) (Table 4; Fig. 6; Supplemental Table 2).
Collectively, these results establish that the use of robust nor-
mexp background correction with cyclic loess and array
weights can help to improve the sensitivity and specificity
of miRNA profiling in cancer samples with global miRNA
decrease.

DISCUSSION

As with whole-genome microarrays, miRNA microarray an-
alyses can be strongly biased by hybridization, labeling, or
batch-to-batch variations. Recent reports suggest that back-
ground correction and normalization procedures are benefi-
cial for the identification of differentially regulated miRNAs
(Hua et al. 2008; Rao et al. 2008; Pradervand et al. 2009;
Risso et al. 2009; Meyer et al. 2010, 2012). However, all nor-
malization procedures do not equate, and Risso et al. recently
demonstrated that the choice of normalization procedure
used could strongly impact on the overall identification of
miRNAs as up- or down-regulated (Risso et al. 2009). The
misidentification of deregulated miRNAs as up-regulated
miRNAs is a critical issue in microRNA profiling studies,
where miRNA profiles are used to classify tumors and bear
prognostic value. Mutations resulting in global miRNA de-
crease are frequent across cancers and are associated with
poorer outcomes (Karube et al. 2005; Merritt et al. 2008;
Grelier et al. 2009).
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TABLE 3. Specificity and sensitivity of normalization procedures
for analyses of Diceri-deficient samples

d4 vs. d2
Methods

Down Up

RMA + quantile + RMA FDR 0.05 24 1
FDR 0.1 36 2

FDR 0.15 40 3

FDR 0.2 43 7

normexp + quantile + RMA FDR 0.05 23 1
FDR 0.1 27 1

FDR 0.15 35 1

FDR 0.2 40 4

normexp + cyclic loess + RMA FDR 0.05 34 0
FDR 0.1 45 0

FDR 0.15 49 0

FDR 0.2 53 0

RMA + cyclic loess + RMA FDR 0.05 32 0
FDR 0.1 46 1

FDR 0.15 58 1

FDR 0.2 65 3

Robust normexp + cyclic loess+ RMA  FDR 0.05 32 0
FDR 0.1 43 0

FDR 0.15 46 0

FDR 0.2 55 0

Methods with array weights d4 vs. d2

RMA + quantile + RMA FDR0.05 33 2
FDR 0.1 45 4

FDR 0.15 50 8

FDR 0.2 60 14

normexp + quantile + RMA FDR 0.05 31 1
FDR 0.1 36 6

FDR 0.15 43 8

FDR 0.2 53 13

normexp + cyclic loess + RMA FDR 0.05 46 0
FDR 0.1 54 0

FDR 0.15 58 0

FDR 0.2 65 0

RMA + cyclic loess + RMA FDR 0.05 17 0
FDR 0.1 26 0

FDR 0.15 40 0

FDR 0.2 53 0

Robust normexp + cyclic loess+ RMA  FDR 0.05 52 0
FDR 0.1 61 0

FDR 0.15 66 0

FDR 0.2 67 1

DE miRNAs detected by the miRNA microarrays between days 2
and 4, at various FDR cutoffs, for each normalization technique
applied (see Fig. 5).

Following their original description (Liu et al. 2004), glass-
based microarray detection of miRNAs has rapidly become a
very popular means of profiling miRNA expression in vari-
ous samples, making up a vast proportion of the current lit-
erature. In addition to custom-made microarrays (where the
probes are simply complementary to the miRNAs), several
commercial platforms have been developed, with single-col-
or miRNA microarrays being predominantly used (Meyer
et al. 2010).

Interestingly, previous microarray profiling studies of sam-
ples with global miRNA decrease indicate a strong bias of mi-
croarrays in the identification of globally decreased miRNAs.
Melo et al. recently reported monoallelic frameshift muta-
tions impacting on XPO5 function in cancer cells. miRNA
microarray analyses of such samples, while expected to reveal
a global decrease in miRNAs, only identified 85 miRNAs that
were significantly down-regulated out of about 300 that were
expressed, through median normalization (Melo et al. 2010).
Relying on the observations from Risso et al. (2009), we
speculated that microarray analyses of samples with global
decrease of miRNAs, as in those of Melo et al. (2010), could
be strongly affected by the normalization method applied.
This would be consistent with the fact that original analyses
of large-scale cancer miRNA microarrays were performed
with simple normalization procedures, such as median nor-
malization (Volinia et al. 2006; Yanaihara et al. 2006). Median
normalization assumes that there are few up- and down-reg-
ulated miRNAs among samples (with similar proportions
of up- and down-regulated miRNAs) and, consequently, did
not find the global miRNA decrease found with PCR-based
technologies in cancer (Volinia et al. 2006; Yanaihara et al.
2006).

In this work, the use of an inducible deletion of miRNA
biogenesis through Dicer] deletion allowed us to generate
samples with varying levels of decreased miRNAs to assess
directly (1) the impact of normalization procedures on the

TABLE 4. Impact of background correction and normalization
procedures on number of significantly deregulated miRNAs in
prostate cancer samples

Methods Cancer vs. normal
RMA + quantile + RMA 20 Y10
normexp + quantile + RMA M8 Y12
Robust normexp + quantile + RMA ™9 410
RMA + cyclic loess + RMA M3 15
normexp + cyclic loess + RMA 10 §2
Robust normexp + cyclic loess + RMA 17 423

Methods with array weights Cancer vs. normal

RMA + quantile + RMA f©22 Y13
normexp + quantile + RMA M9 410
Robust normexp + quantile + RMA M™M8 Y12
RMA + cyclic loess + RMA MY3
normexp + cyclic loess + RMA 10 40
Robust normexp + cyclic loess + RMA 18 430

These results were obtained using the methods indicated, with
and without array weights, at an FDR cutoff of 0.1. Each method
consists of (1) background correction, (2) normalization procedure,
and (3) linear RMA summarization. f¢ denotes the number of sig-
nificantly up-regulated probes, while | refers to the number of
down-regulated probes between “Normal” and prostate “Cancer”
samples (n=20), limited to 847 human miRNAs. The cyclic loess
normalization results in the predominant detection of down-regu-
lated miRNAs, with a small number of up-regulated miRNAs, con-
sistent with previous reports of global miRNA decrease in prostate
cancers (Lu et al. 2005; Ozen et al. 2008).
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FIGURE 6. Comparison of different miRNA array normalization strat-
egies and their consistency between miRNA arrays and RNA-seq in
prostate cancer samples. Stacked bar graph showing the number of
DE miRNAs in normal vs. prostate cancer miRNA microarrays (n =
20), with each normalization technique applied (see Supplemental
Table 2 for details) at FDR cutoff of 0.1 with array weights. The analyses
shown are restricted to 206 miRNAs detected by independent RNA-seq
analyses of normal vs. prostate cancer samples. “True” DE miRNA refers
to miRNAs that were DE in the same direction in the miRNA microarray
and RNA-seq data. “False” DE miRNAs refer to miRNAs that were not
validated to be up- or down-regulated in the RNA-seq analyses (see
Supplemental Table 2). The precision (also called positive predictive val-
ue) of DE miRNA detection is shown as the ratio of the number of the
“true” DE miRNAs to the number of the combined “true” and “false”
DE (i.e., the black bar relative to the sum of black and gray bars).

identification of significantly deregulated miRNAs, and (2)
the accuracy of these methods in a system where miRNAs
are globally decreased. To our knowledge, this is the first de-
scription of a comparative study of miRNA normaliza-
tion procedures on samples with truly defined miRNA
expression. We opted for the commercial Affymetrix plat-
form, which can conveniently be scanned using Affymetrix
GeneChip scanners. We show that the use of the non-miRNA
small RNA probes present on the Affymetrix arrays for the
cyclic loess normalization procedure can help to improve
substantially the identification of truly decreased miRNAs.
Critically, we show that the better performance of cyclic loess
is directly applicable to cancer samples with global miRNA
decrease, where it strongly reduces the amount of false-pos-
itive up-regulated miRNAs while detecting a greater amount
of decreased miRNAs. Our approach is, however, not limited
to the Affymetrix platform and could be extended to other
platforms, assuming that they have appropriate sets of con-
trol non-miRNA small RNA probes.

Quantile normalization has previously been proposed to
be one of the most robust methods for the analysis of sin-
gle-color miRNA microarrays (Rao et al. 2008; Pradervand
et al. 2009; Meyer et al. 2010). This is in opposition to our
findings, which clearly demonstrate the better performance
of cyclic loess vs. quantile normalization in the accuracy
and sensitivity of miRNA detection. This can, in part, be at-
tributed to the fact that quantile normalization assumes sta-
ble intensities for most probes across microarrays, while our
samples have a global decreased expression of all miRNAs.
Conversely, loess normalization, when properly implement-
ed, is able to tolerate 20%—-30% of genes changing in one di-
rection (Oshlack et al. 2007). However, the use of cyclic loess
normalization is not restricted to the analyses of samples with
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unidirectional changes of miRNA expression. Rao et al. found
an overall good performance for cyclic loess in their analyses
of various tissues where miRNAs were both up- and down-
regulated between samples (Rao et al. 2008). Our analyses
of prostate cancer samples, where, although preferentially de-
creased (Ozen et al. 2008), some miRNAs are also up-regulat-
ed (Szczyrba et al. 2010; Wach et al. 2012), demonstrate that
cyclic loess also performs well to detect “truly” up-regulated
miRNAs with minimal false-positives. Note that cyclic loess,
but not quantile normalization, allowed for the significant
identification of miR-143 as being down-regulated in pros-
tate cancer (Supplemental Table 2); this was independently
validated by RT-qPCR and proposed to be a useful marker
of prostate cancer (Wach et al. 2012). In contrast to our find-
ings, Rao et al. found that cyclic loess performed slightly
worse than quantile normalization in their studies (Rao
et al. 2008). We note that the platform used by this group
did not contain any non-miRNA small RNA probes, which
we considered as “invariant” probes in our analysis. This fur-
ther suggests an important role for such invariant probes in
the ability of cyclic loess to outperform quantile normaliza-
tion (as also indicated by the results shown in Table 2).

Our findings that cyclic loess normalization strongly re-
duces the misidentification of false up-regulated miRNAs re-
inforce the previous findings from Risso et al. and Meyer et al.
that loess and loessM perform best (Risso et al. 2009; Meyer
et al. 2012). While cyclic loess and loessM both address the
normalization problems associated with the asymmetric
modulation of a large proportion of miRNAs between mi-
croarrays, the two techniques, nonetheless, have important
differences. Critically, loessM is currently restricted to two-
color microarrays, which precluded its use for our analyses
of the Affymetrix platform. Cyclic loess, which is used with
single-color microarrays, uses pairs of microarray sam-
ples and allows the user to add varying weights to individu-
al probes in order to calculate the normalizing constants.
LoessM, on the other hand, does not pair microarrays and
uses the data from the entire array to obtain median inten-
sities used in the normalization. In the specific case of the
Affymetrix platform, where about half of the probes are
non-miRNA small RNAs and control RNAs and are, there-
fore, not expected to vary between samples, such an approach
would likely introduce an important bias into the overall sen-
sitivity of the analyses.

Our analyses point to an important contribution of non-
miRNA small RNAs (snoRNAs) in the effect of cyclic loess
normalization. To understand the contribution of these
probes in cyclic loess normalization, it should be underlined
that they represent a total of 10,090 probes (for 922 probe
sets) on the Affymetrix microarray, which is about 2.5 times
less than the total amount of miRNA probes (26,812). How-
ever, in our Dicer]-deficient cells, many of these non-miRNA
snoRNAs cannot be detected due to species specificity of the
probes (which are targeted to human snoRNAs, not mouse)
or lack of expression in the cells. This suggests that only a small
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proportion of snoRNA probes are necessary for cyclic loess
to improve sensitivity and sensibility. The non-miRNA
snoRNAs used on the Affymetrix platform are families of
small RNAs involved in the site-specific modifications of ri-
bosomal RNAs, transfer RNAs, and spliceosomal RNAs.
While snoRNA-driven specific nucleotide modifications of ri-
bosomal RNAs are not essential to cell survival/division, they
are thought to fine-tune the biological activities of ribosomal
RNAs (Bachellerie et al. 2002). As housekeeping RNAs, their
expression is expected to be stable overall across samples, in-
cluding cancer vs. normal samples. Evidently, some of these
snoRNAs will vary between treatments, but our findings with
the cancer cohort samples indicate that the use of snoRNAs as
“invariant” probes works well with cyclic loess in cancer sam-
ples with preferential global miRNA decrease.

As shown in Figure 4, the array weights can be useful to
decrease the variation between replicates with the same bio-
logical significance. In the case of our MEF samples, array
weights correction allows the incorporation of more diver-
gent samples (day 2c and day 4a) and increased detection
of decreased miRNAs (Table 1). However, this is a case-by-
case issue, and we recommend performing analyses with
and without array weights to see how this affects the reparti-
tion of samples with similar biological origin. With biological
samples from cancer patients that have inherent variability,
array weights should generally yield better results (as indicat-
ed in our prostate cancer analyses).

In conclusion, our analyses demonstrate that miRNA mi-
croarrays can be suitable for the identification of samples
with globally decreased miRNAs, which are frequent across
cancers. Our data show that the use of normexp background
correction with cyclic loess normalization and array weights
strongly reduces the number of false-positive up-regulated
miRNAs in samples with globally decreased miRNAs for
the single-color Affymetrix miRNA microarray platform.
This approach also yielded a strong reduction in false-posi-
tive up-regulated miRNAs and the detection of the greatest
amount of truly down-regulated miRNAs in the analysis of
prostate cancer samples where miRNAs were preferentially
down-regulated (Ozen et al. 2008; Szczyrba et al. 2010;
Wach et al. 2012). Given their relatively low cost compared
to other technologies such as RNA sequencing, miRNA mi-
croarrays remain a very popular method of characterizing
miRNA profiles across samples. Nonetheless, as RNA-seq be-
comes more affordable, questions regarding miRNA normal-
ization of RNA-seq data are becoming more important. A
recent study comparing seven normalization procedures
for the analysis of microRNA-seq data reported that loess
and quantile performed best (Garmire and Subramaniam
2012). Given that small RNA-seq generates a high level of
non-miRNA small RNA sequences, it will be interesting to
define whether the use of cyclic loess relying on such non-
miRNA sequences could improve microRNA-seq normaliza-
tion compared to loess and quantile normalization (Garmire
and Subramaniam 2012), as reported in this study.

MATERIALS AND METHODS

Cell culture

Dicer°% x Cre/Esr1 MEFs used in the study have been reported

previously (Gantier et al. 2011, 2012). MEFs were cultured in com-
plete Dulbecco’s modified Eagle medium (DMEM) (Invitrogen
Corporation) supplemented with 10% sterile fetal bovine serum
(ICPBio Ltd.) and 1x antibiotic/antimycotic (referred to as com-
plete DMEM). OHT (Sigma Aldrich) was resuspended in 0.5 mL
of 100% ethanol (resulting in stock solution at 25 mM) kept at
—80°C. Prior to cell treatment, the stock solution was first diluted
to 2.5 mM in 100% ethanol before being diluted further to the final
concentration of 500 nM in complete DMEM. The cells were incu-
bated overnight with 500 nM OHT before being rinsed with fresh
complete DMEM the next day (day 1).

miRNA microarray

Total RNA containing small RNAs was purified from cultured MEFs
using the mirVana miRNA Isolation Kit (Applied Biosystems) and
further processed by the Adelaide Microarray Centre, Adelaide,
Australia. This study relies on the analyses of nine miRNA microar-
rays from RNA collected on days 2, 3, and 4 following Dicerl dele-
tion, with three independent biological samples per time point
(see Fig. 1A). The RNA was labeled using the FlashTag Biotin
RNA Labeling Kit (Genisphere LLC) and hybridized to GeneChip
miRNA 1.0 microarrays (Affymetrix Inc.) as per the Genisphere
manual. Briefly, 500 ng of RNA was poly-A tailed and a proprietary
biotin-labeled dendramer molecule was joined to the 3’ end using
DNA ligase. Labeled samples were hybridized to the arrays at 48°C
for 16 h and then washed and stained with a Streptavidin-PE solu-
tion prior to imaging. Array images were scanned using Genepix.
The Affymetrix miRNA 1.0 microarray contains perfect match
probes (PM) only. There are 46,227 PM probes on the array, includ-
ing 38,006 regular probes and 8221 background (called “BkGr” in
the manufacturer annotation file). The regular probes comprise
6703 miRNA probe sets from different species and 922 non-
miRNA small RNAs. Each probe set represents one miRNA/
snoRNA. Among the 6703 miRNA probe sets, 609 are mouse (cor-
responding to 609 mouse miRNAs), while 847 are human. The
BkGr probes are not specific to any miRNA and consist of 95 families
of GC-binned negative controls. The annotation file was obtained
from the manufacturer’s web site. The Dicer] deletion miRNA mi-
croarray data have been submitted to GEO with accession number
GSE45886. The prostate cancer miRNA microarray data were down-
loaded from GEO accession number GSE23022 and RNA-seq data
from published supplemental data from Szczyrba et al. (2010).

Low-density miRNA arrays

TagMan Array Rodent MicroRNA (A Cards v2.0, Applied Bio-
systems) were used for the detection of 335 murine miRNAs from
one biological sample set, as previously reported (Gantier et al.
2011). Briefly, 900 ng of total RNA containing small RNAs was re-
verse-transcribed using the Megaplex RT Primers, Rodent Pool A
(Applied Biosystems) with the TagMan MicroRNA Reverse Tran-
scription Kit, and each plate was run using the TagMan Universal
Master Mix II on the 7900 RT-qPCR system, according to the
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manufacturer’s instructions. Simultaneous analysis of the four dif-
ferent plates (one plate at days 2, 3, 4, and 5 following OHT treat-
ment) was carried out using the RQ Manager software and using
the RNAU6 probes as reference. We identified a list of 222
miRNAs that were significantly detected in our cells (with Cq—
quantification cycle—inferior to 35) and are shown in Figure 1B
(see Supplemental Table 1 for details). Two hundred twenty of these
miRNAs were also present on the Affymetrix platform, and 209 were
decreased with time in such a manner that Cq at day 2 < Cq at day
4.In our analyses presented in Figure 5 and Table 3, we define as true
“positives” all miRNAs that change significantly in the microarray in
the same direction as in the qPCR data. Eleven of the 220 probes that
are present in both the miRNA microarray and the qPCR array are
up-regulated between day 4 and day 2 in the qPCR data (see
Supplemental Table 1 for details). However, none of these probes
are significantly up- or down-regulated between day 4 vs. day 2 in
the microarray data at an FDR of 0.05 or 0.1. In other words,
none of the miRNAs found to be up-regulated in the microarray
were also up-regulated in the PCR data, and none of the down-reg-
ulated miRNAs in the microarray data were up-regulated in the PCR
data. True “positives” are, therefore, limited to miRNAs that are
down-regulated in both the microarray and the qPCR data, while
true “negatives” are limited to miRNAs that are down in the PCR
data and falsely up-regulated in the microarray.

Reverse transcription quantitative real-time PCR

For validation of global miRNA decrease following OHT treatment
of the MEFs, individual miRNA TaqMan assays (Applied Biosys-
tems) for the indicated miRNAs were used according to the manu-
facturer’s instructions, where 10 ng of total RNA was reverse-
transcribed with pools of five miRNA specific reverse transcription
primers (with the TagMan MicroRNA Reverse Transcription Kit).
miRNA levels were determined by RT-qPCR with the TagMan
Universal PCR Master Mix on a 7900 RT-qPCR system (Applied
Biosystems), and fold-changes in expression were calculated by
the 27444 method using snoRNA202 as a reference.

Microarray background correction and normalization
procedures

All of the methods used in these analyses have previously been re-
ported and are available as part of the R package Affy and limma
(Gautier et al. 2004; Smyth 2005; R Development Core Team
2011), which are part of the Bioconductor project (http:/www.
bioconductor.org) (Gentleman et al. 2004). The version 2.15.1 of
R was used. The raw CEL microarray files were read using the Read-
Affy function in the Affy package. After background correction, nor-
malization, and summation, the normalized data were fit to a linear
model by using ImFit. The design matrix included the days after
OHT treatment. An empirical Bayesian method was used to estimate
the significance of differential expression of miRNAs (Smyth 2004).
The comparisons between days after OHT treatment were made. To
determine the differentially expressed miRNAs, we performed the
following: We first obtained the nominal P value for each miRNA;
we then applied the multiple testing adjustment using the Benja-
mini-Hochberg (BH) method to control the false discovery rate, al-
lowing for getting adjusted P values for mouse miRNAs. We used a
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FDR cutoff. No log fold-change cutoff has been used to define dif-
ferential expression.

RMA background correction

RMA, originally developed for the analysis of Affymetrix Gene-
Chips, allows for the averaging of probes for the same miRNA target
(four probes per miRNA on the Affymetrix GeneChip miRNA 1.0
microarrays) through the use of median polish. The default setup
of the rma function in the Affy package includes RMA background
correction, quantile normalization, and RMA summarization. For
RMA background correction, we set normalization and summariza-
tion as FALSE. The expresso function was used to generate data for
the MA plots.

Normexp-by-control background correction

Affymetrix GeneChip miRNA 1.0 microarrays include a set of 95 GC
control probe families with varying probe length (17 to 25 nt long)
and for each length, increasing numbers of GC content (for instance,
ranging from 3 to 25 G/C for the 25-nt-long control GC probes).
Each probe set contains many repeats over the microarray, as seen
with the AFFX-BkGr-GCO03 st family (25-nt-long probes with three
GC), which has 25 different variants across the array. The total num-
ber of control probes represented by these 95 families is 8221, which
is ~17% of the total features present on the array. Previous studies
of mRNA microarrays indicate that the use of negative control
probes can provide a good estimate of the background noise
(Ding et al. 2008; Shi et al. 2010a). We, therefore, relied on this
set of GC control probes for background correction, as previously
reported for mRNA microarrays (Shi et al. 2010b). To allow for
the possibility that some negative control probes are subject to
cross-hybridization with some miRNAs, we also used the option
of robust estimation of the background mean and variance as pre-
viously published (Shi et al. 2010b). Nec stands for NormExp back-
ground Correction using control probes. The nec function in limma
was used here. It returns a matrix of the same dimensions as the
input, containing background-corrected intensities, on a raw scale.

Robust normexp-by-control background correction

The nec function with the robust option from the limma package
was used, in which the robust estimators are used for the determi-
nation of the background mean and standard deviation.

Quantile normalization

Quantile normalization is an inter-array normalization procedure
aimed at equalizing the distribution of probe intensities in a set of
arrays (Bolstad et al. 2003). It assumes that the overall distribution
of probe intensities is constant between arrays, which works very
well for mRNA microarrays but is a strong assumption for
miRNA microarrays. The rma function of the affy package was
used (Gautier et al. 2004).

Cyclic loess normalization

Cyclic loess relies on an MA plot of the distribution of log, intensity
ratio (M) by the average log, intensity (A) values and is applied to
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the intensities of probes from two arrays at a time, with the aim of
reducing the divergence of the points from the M = 0 axis (Bolstad
etal. 2003). This normalization method usually relies on normaliza-
tion curves computed using ranked sets of invariant probes (Bolstad
et al. 2003). In our analyses (with the exception of Table 2), this was
achieved by using the set of non-miRNA probes (composed of small
nucleolar RNAs, including small Cajal body-specific RNAs and C/D
box and H/ACA box small RNAs) with a weight of 100 (representing
10,090 probes for 922 probe sets), while miRNA probes were attrib-
uted a weight of 0.001 (representing 26,812 probes for 6703 probe
sets), and all other probes (GC control, spike in, hybridization con-
trol, 5.8S rRNA—totaling 9,325 probes) were given a weight of
1. The function normalizeCyclicloess in the limma package was
used. It normalizes the columns of a matrix, cyclically applying loess
normalization to normalize each pair of columns to each other
(Ballman et al. 2004). Here, the default “pair” method was used
(Ballman et al. 2004). Given that we were dealing with a total of
nine microarrays, the loess normalization was applied to all distinct
pairwise combinations (for a total of 36 combinations). This was re-
peated for several iterations.

DATA DEPOSITION

The Dicerl deletion miRNA microarray data have been submitted
to Gene Expression Ominbus (GEO) with accession number
GSE45886.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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