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Abstract

Background: Recent studies have suggested that essential tremor (ET) is a more complex and heterogeneous clinical entity
than initially thought. In the present study, we assessed the pattern of cortical thickness and diffusion tensor white matter
(WM) changes in patients with ET according to the response to propranolol to explore the pathogenesis underlying the
clinical heterogeneity of ET.

Methods: A total of 32 patients with drug naive ET were recruited prospectively from the Movement Disorders outpatient
clinic. The patients were divided into a propranolol-responder group (n = 18) and a non-responder group (n = 14). We
analyzed the pattern of cortical thickness and diffusion tensor WM changes between these two groups and performed
correlation analysis between imaging and clinical parameters.

Results: There were no significant differences in demographic characteristics, general cognition, or results of detailed
neuropsychological tests between the groups. The non-responder group showed more severe cortical atrophy in the left
orbitofrontal cortex and right temporal cortex relative to responders. However, the responders exhibited significantly lower
fractional anisotropy values in the bilateral frontal, corpus callosal, and right parietotemporal WM compared with the non-
responder group. There were no significant clusters where the cortical thickness or WM alterations were significantly
correlated with initial tremor severity or disease duration.

Conclusions: The present data suggest that patients with ET have heterogeneous cortical thinning and WM alteration with
respect to responsiveness to propranolol, suggesting that propranolol responsiveness may be a predictive factor to
determine ET subtypes in terms of neuroanatomical heterogeneity.
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Introduction

Essential tremor (ET) is one of the most common movement

disorders and has been widely regarded as a monosymptomatic

condition, characterized by kinetic arm tremor [1,2]. However, as

our understanding of ET is advancing, the concept of ET as a

more complex and heterogeneous clinical entity has been rapidly

gaining acceptance, although evidence suggesting that ET is likely

a neurodegenerative disorder is still inconclusive. Several clinical

series indicated that patients with ET had additional neurological

signs including cognitive impairment, cerebellar disturbances, and

olfactory deficits [3–6]. Additionally, the neuropathological studies

indicated that the majority of ET cases have changes in the

cerebellum, whereas some had Lewy bodies (LB) or neuronal

depletion in the brainstem, mainly in the locus coeruleus (LC) [7–

9].

The pathophysiology of ET also remains unclear. One possible

explanation is that the abnormal intrinsic oscillations influence the

cerebello–thalamo–cortical loop. Several neuroimaging studies

using positron emission tomography (PET), voxel-based mor-

phometry, and diffusion tensor imaging (DTI) in patients with ET

supported the disintegration of this loop [10–18]. However, no

neuroimaging studies have evaluated the neuroanatomical sub-

strates for complex clinical characteristics of ET. Only recently

have postmortem studies attempted to correlate the heterogeneous

clinicopathological findings, and these showed that some clinical

characteristics tended to differ between ET patients with and

without LB pathologies [7,8].

We hypothesized that the variable responsiveness to propran-

olol, which is one of the most widely used and efficacious anti-

tremor drugs, may reflect underlying structural or functional

changes in individuals with ET. Indeed, about 30% of patients

with ET do not respond to propranolol, and some cases show

tolerance to the drug effect with chronic treatment [19].

Therefore, we assessed the pattern of cortical thickness and

diffusion tensor white matter (WM) changes in patients with ET
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according to the response to propranolol to explore the

pathogenesis underlying the clinical heterogeneity of ET.

Patients and Methods

Subjects
The study population consisted of 32 patients with drug naive

ET recruited from the Movement Disorders outpatient clinic at

Severance Hospital, Seoul, Korea, between March and October

2012. ET was diagnosed according to the criteria of the

Movement Disorder Society on Tremor [20]. Patients had no

history of exposure to ET medications, such as beta-blockers and

primidone. Each subject underwent brain magnetic resonance

imaging (MRI), the cross-cultural smell identification test (CCSIT)

[21], and a neuropsychological test battery. The severity of ET

was assessed with the Fahn–Tolosa–Marin tremor rating scale

(TRS) [22].

Exclusion criteria included the presence of medical comorbid-

ities interfering with the use of beta-blockers (e.g., asthma,

atrioventricular block), other neurological signs (e.g., dystonia,

parkinsonian features), a history of exposure to tremorgenic drugs

(e.g., gastrointestinal drugs, neuroleptics), and evidence of focal

brain lesions, multiple lacunes, or diffuse areas of WM

hyperintensity on brain MRI.

This study was approved by the Yonsei University Severance

Hospital institutional review board. Written informed consent was

obtained from all subjects who participated in this study.

Assessment of response to propranolol
Each subject was initially treated with the beta-blocker,

propranolol, with escalation of dose from 40 mg/day to 80 mg/

day after 2 weeks, which was widely established as a standard care

for ET. Movement disorders specialists (Y.H.S. and P.H.L. who

involved in the current study) prescribed propranolol in the

outpatient clinic. The severity of tremor was assessed twice with

the Fahn–Tolosa–Marin TRS for all patients, i.e., at baseline on

the first visit and on the second visit after 8 weeks of medication.

The Fahn–Tolosa–Marin TRS consisted of three parts: Part A

(amplitude of tremor in different body parts); Part B (tremor in

writing, drawing, and pouring); and Part C (functional disabilities

in daily living). Each item was scored from 0 (none) to 4 (severe),

and the total possible score was 156. The improvement of total

TRS scores after 8 weeks (response rate) was calculated. The

patients were then divided into two groups according to the

response to propranolol: responders, over 25% improvement in

total TRS scores; non-responders, below 25% improvement in

total TRS scores [23].

Neuropsychological assessment
All subjects were administered the Seoul Neuropsychological

Screening Battery (SNSB) [24], which is a detailed Korean

language neuropsychological test battery consisting of five

cognitive domains: attention (forward/backward digit span and

letter cancellation); language and related functions (Korean

version of the Boston Naming Test [K-BNT], calculation, and

praxis); visuospatial function (Rey Complex Figure Test [RCFT]);

memory (three-word registration/recall and Seoul Verbal Learn-

ing Test [SVLT] for verbal memory; immediate recall/delayed

recall/recognition using RCFT for visual memory); and frontal/

executive function (contrasting program, go/no-go test, Controlled

Oral Word Association Test [COWAT], and Stroop test). The

scores for each cognitive domain were determined as abnormal

when they were below the 16th percentile of the age-, sex-, and

education-specific norms of 447 healthy control subjects.

MRI acquisition
All MRI scans of ET patients were acquired using a Philips 3.0

T scanner (Philips Intera; Philips Medical System, Best, The

Netherlands) with a SENSE head coil (SENSE factor = 2). The

high-resolution T1-weighted MRI data were obtained axially from

all subjects using a 3D T1-TFE sequence with the following

parameters: 2246224 axial acquisition matrix; 2566256 recon-

structed matrix with 170 slices; field of view, 220 mm; voxel size,

0.85960.85961 mm3; echo time, 4.6 ms; repetition time, 9.8 ms;

flip angle, 8u. The diffusion-weighted MRI data were obtained

from 30 subjects using a single-shot echo-planar acquisition with

the following parameters: 45 non-collinear, non-coplanar diffu-

sion-encoded gradient directions; 1286128 acquisition matrix

with 70 slices; field of view, 220 mm; voxel size,

1.7561.7562 mm3; echo time, 70 ms; repetition time, 7.663 s;

flip angle, 90u; b-factor, 600 s/mm2.

Analysis of cortical thickness
The following steps were applied to high-resolution T1-

weighted MRI data, which have been described in detail elsewhere

[25–29]. A fully 3D technique for inhomogeneity correction

removed a serious obstacle for automated segmentation of MRI,

which slowly varied the change in signal intensity over the image

caused by magnetic field inhomogeneity [26]. To account for

interindividual differences in absolute brain size, each brain was

separately transformed to a standardized stereotactic space and

resampled on a 1-mm3 voxel grid. This procedure was performed

with automatic registration software using a 3D cross-correlation

approach to match the single MRI volume, with the intensity

average of 305 MRI brain volumes previously aligned in a

standardized stereotactic space [25]. An artificial neural network

classifier was applied to identify gray matter (GM), WM, and

cerebrospinal fluid (CSF) [28]. The cortical surface was automat-

ically extracted from each MR volume using the Constrained

Laplacian-based Automated Segmentation with Proximities

(CLASP) algorithm. Cortical thickness was calculated as the

Euclidean distance between the corresponding vertices of the inner

and outer cortical surfaces [30].

We analyzed the global difference and corrected t-statistical

maps of cortical thickness between the groups, adjusting for age,

sex, years of education, disease duration, and intracranial volume

as covariates. Statistical analyses were performed using SurfStat

toolbox (http://www.math.mcgill.ca/keith/surfstat/), for Matlab

(R2008b; MathWorks, Natick, MA). The results for the between-

group differences in cortical thickness were considered significant

at random-field theory (RFT)-corrected P,0.05 [31].

DTI processing
DTI data were preprocessed using the Functional Magnetic

Resonance Imaging of the Brain (FMRIB) Software Library (FSL)

program (http://www.fmrib.ox.ac.uk/fsl/). Motion artifacts and

eddy current distortions were corrected by normalization of each

directional volume to the non-diffusion-weighted volume (b0)

using the FMRIB Linear Image Registration Tool (FLIRT) with 6

degrees of freedom. After correction of motion artifacts and eddy

current distortions, the diffusion tensor was calculated using a

simple least-squares fit of the tensor model. Then, the fractional

anisotropy (FA) and mean diffusivity (MD) were determined for

each voxel using standard methods of the DTIFIT program in

FSL.

Clinical Heterogeneity and Pathogenesis of ET
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Tract-based spatial statistics (TBSS) analysis
The FA and MD maps of DTI preprocessing results were used

in TBSS analysis. All FA images were aligned to the standard

FMRIB58 FA template provided by the FSL program using a

nonlinear registration algorithm implemented in the TBSS

package. The FA images were then averaged to create a

skeletonized mean FA image. Each subject’s aligned FA images

were projected onto this skeleton by filling the skeleton with the

highest FA values from the nearest relevant center of fiber tracts

[32]. A threshold FA value of 0.2 was chosen to exclude voxels of

adjacent GM or CSF. The MD images were also processed using

identical methods to the FA data by applying the nonlinear

registration algorithm and projecting them onto the skeleton.

To compare the values for the responder and non-responder

groups, voxel-wise statistical analysis of individual skeleton images

was performed using a nonparametric permutation test. Age, sex,

years of education, and disease duration were included as

covariates in the analysis of covariance (ANCOVA). The null

distribution was built up over 5000 permutations. For control over

the multiple comparison correction, we used the threshold-free

cluster enhancement (TFCE) approach with the 2D parameter

settings [33]. The results for FA and MD were considered

significant for familywise error (FWE)-corrected P,0.05. The FA

is an index of directional selectivity of water diffusion, and the MD

is the average diffusivity of three dimensions, where decreased FA

and increased MD are indicative of WM disintegration.

Correlation analysis
Multiple regression analysis was performed to determine the

correlations between cortical thickness and initial tremor severity

assessed by TRS or disease duration, adjusting for age, sex, years

of education, and intracranial volume as covariates. The result for

cortical thickness was considered significant at RFT-corrected

P,0.05. Analysis of correlations between FA values and total TRS

score or disease duration was also performed, adjusting for age,

sex, and years of education. The results for FA and MD were

considered significant at FWE-corrected P,0.05.

Statistical analysis
To compare the baseline demographic characteristics of the two

groups, the Mann–Whitney U-test and Fisher’s exact test were

used for continuous and categorical variables, respectively.

Multiple linear regression analysis was used to compare the

subscores of the detailed neuropsychological test, adjusting for age,

sex, and years of education. Statistical analyses were performed

using SPSS version 18.0 (SPSS, Inc., Chicago, IL, USA), and two-

tailed P,0.05 was considered significant.

Results

Demographic characteristics
Table 1 shows the baseline demographic characteristics of the

patients with ET (18 responders and 14 non-responders). There

Table 1. Baseline demographic characteristics.

Responder (n = 18) Nonresponder (n = 14) P

Age 62.4 (8.6) 63.2 (10.5) 0.821

Female, No. (%) 13 (72.2) 8 (57.1) 0.465

Education (years) 9.0 (0–18) 12.0 (3–18) 0.924

Age at onset 44.1 (16.5) 46.6 (16.1) 0.662

Duration (years) 15.0 (4–50) 11.5 (5–40) 0.985

K-MMSE 28.0 (17–30) 29.0 (19–30) 0.668

CDR 0.25 (0–1) 0.25 (0–1) NS

CDR (SOB) 0.25 (0–3) 0.25 (0–3) 0.790

CCSIT 10.0 (5–12) 9.0 (4–11) 0.255

Family history, No. (%) 16 (88.9) 9 (64.3) 0.195

Limb tremor, No. (%) 18 (100) 14 (100) NS

Head tremor, No. (%) 11 (61.1) 8 (57.1) 0.821

Before medication

TRS A 11.5 (6–23) 12.5 (5–42) 0.819

TRS B 14.0 (2–26) 12.0 (4–36) 0.924

TRS C 7.5 (2–19) 8.0 (2–31) 0.351

TRS total 31.5 (12–67) 36.5 (12–109) 0.582

After medication

TRS A 7.0 (3–17) 12.5 (5–42) 0.030

TRS B 8.0 (1–21) 12.5 (4–36) 0.031

TRS C 4.0 (0–14) 8.0 (2–31) 0.027

TRS total 21.0 (5–50) 36.5 (12–109) 0.013

Response rate

TRS total 33.85 (25.0–58.7) 0.00 (22.7–8.6) ,0.001

The values are expressed as median (minimum -maximum), mean (SD), or number (percentage). Abbreviations: K-MMSE, Korean version of Mini-Mental State
Examination; CDR, Clinical Dementia Rating; SOB, Sum of Boxes; CCSIT, Cross cultural smell identification test; TRS, tremor rating scale; NS, not significant.
doi:10.1371/journal.pone.0084054.t001
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were no significant differences in age, sex, years of education, or

general cognitive deficits as measured by the Korean version of the

Mini-Mental State Examination (K-MMSE) [34] or Clinical

Dementia Rating (CDR) [35] between the two groups. There

were also no significant differences in duration of tremor, olfactory

function measured by the CCSIT, or the presence of family history

of ET between the two groups. Additionally, the initial tremor

severity assessed by the Fahn–Tolosa–Marin TRS was not

significantly different between the groups. A detailed neuropsy-

chological test battery, the SNSB, also showed no significant

differences in each cognitive domain (Table S1). Subanalyses were

performed for 30 of 32 patients with ET (16 responders and 14

non-responders) for whom DTI data were available. There were

no significant differences in the baseline demographic character-

istics or neuropsychological test results between responders and

non-responders (data not shown).

Analysis of cortical thickness
The mean difference maps of cortical thickness between the two

groups (18 responders and 14 non-responders) are shown in

Figure 1A. The color scale bar at the bottom represents the

between-group differences in cortical thickness. In this color scale,

blue and red indicates less and greater cortical thickness,

respectively, in the non-responder group compared with the

responder group. The non-responder group tended to show less

cortical thickness in the left orbitofrontal cortex (OFC) and right

superolateral temporal lobe. Figure 1B shows the corrected t-

statistical maps of cortical thickness. Significant differences were

observed in the left orbital gyrus and right middle temporal gyrus,

where the non-responders exhibited less cortical thickness than did

the responders (RFT-corrected P,0.05). No areas were found in

which the non-responders had greater cortical thickness compared

with the responders.

TBSS analysis
The non-responders exhibited significantly higher FA values in

the bilateral frontal, corpus callosal (genu), and right parietotem-

poral WM than the responders did (FWE-corrected P,0.05;

Figure 2). The non-responder group did not have areas with

significantly reduced FA values (i.e., more severe structural WM

change) compared with the responder group. There were no

significant MD differences between the groups.

Figure 1. Analysis of cortical thickness in comparing responders versus non-responders. (A) Difference maps of cortical thickness
between two groups. The color scale bar shows the difference in mean cortical thickness between the two groups, with blue and red indicating less
and greater cortical thickness in non-responders, respectively. (B) Corrected t-statistical maps of cortical thickness. The non-responders had
significantly less cortical thickness in the left orbital gyrus and right middle temporal gyrus compared with the responders (RFT-corrected P,0.05).
doi:10.1371/journal.pone.0084054.g001

Figure 2. TBSS analysis of fractional anisotropy (FA) in
comparison of responder and non-responder groups. Higher
FA values of the non-responders compared with the responders were
found in the bilateral frontal, corpus callosal (genu), and right
parietotemporal WM (FWE-corrected P,0.05).
doi:10.1371/journal.pone.0084054.g002
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Correlation analysis
No significant clusters where the cortical thickness was

significantly correlated with initial tremor severity assessed by

TRS were observed. Additionally, the FA values were not

significantly correlated with the severity of tremor. Furthermore,

the disease duration was not significantly correlated with either

cortical thinning or FA value.

Discussion

The present study demonstrated that patients with ET who had

no response to propranolol exhibited reduced cortical thickness in

the left orbitofrontal and middle temporal areas compared with

those who responded to this agent. Our study also showed that the

responders had greater disintegration of WM in the regions

corresponding to the fibers of the cerebello–thalamo–cortical loop,

despite the absence of significant differences in age, sex, disease

duration, and cognitive level. These data suggest that patients with

ET have heterogeneous cortical thinning and WM alteration with

respect to responsiveness to propranolol.

Cortical thinning measurement and DTI tractography have

been frequently used to investigate the patterns of anatomical

connectivity in the human brain [36,37]. These approaches have

been widely applied in several neurological disorders to under-

stand the neural correlates of each disorder [38–40]. Thus,

heterogeneous cortical thinning and WM alteration of ET patients

may reflect the different anatomical connectivity and subsequently

lead to distinct clinical features.

The mechanism by which beta-blockers alleviate symptoms in

patients with ET is still unclear. Some studies have suggested that

beta-blockers may act on peripheral beta-adrenoreceptors in the

muscle fibers or spindles [41–43]. Other conflicting findings

supported a possible role of beta-blockers via a central action,

based on the different pharmacokinetics and effects on ET of

various beta-blockers [44,45]. However, the central neuroana-

tomical substrate that is responsible for the pharmacological

actions of beta-blockers in ET has not been established. Among

several possible structures, the LC has been suggested as a strong

candidate [46,47], as it is the primary source of noradrenergic

innervations and expresses beta-adrenoreceptors [48]. Recently,

Baker et al. reported anti-tremor effects of beta-blockers through a

central site of action [47]. Based on changes in corticomuscular

coherence patterns, they speculated that beta-blockers act

centrally through modulation of Renshaw cells, mediated

indirectly via inputs from neurons expressing beta-adrenorecep-

tors, such as those in the LC. Furthermore, several series have

reported a possible role of the LC in the pathogenesis of ET.

Animal studies using a harmaline-induced tremor model showed

that a lesion of the LC augmented the tremor [49,50]. Recent

neuropathological studies of patients with ET revealed that some

cases had abundant LB or neuronal loss in the LC [7,9]. The

Purkinje cells in the cerebellum are known to be innervated by

noradrenergic terminals arising from the LC with an inhibitory

influence [51,52], and this coerulo-cerebellar pathway extends

projections to the subcortical cerebellar nuclei, thalamus, and

cerebral cortex [53–55]. Therefore, any lesion in this pathway,

including the LC, may lead to alteration in the function of the

Purkinje cells and disintegration of the cerebello–thalamo–cortical

loop.

In addition to these possible roles of the LC in ET, the LC also

projects its noradrenergic innervations to all regions of the brain,

including the neocortex, hippocampus, thalamus, subthalamic

nucleus, and substantia nigra, and plays roles in several important

functions, such as arousal, adaptive gain, and optimal performance

[56]. To regulate these functions of the LC, major cortical

glutamatergic afferents to LC are known to arise from the

orbitofrontal and anterior cingulate cortices [57]. Accordingly, it is

possible that this connection between the OFC and LC could have

an indirect influence on the pathogenesis of tremor. In the present

study, the cortical thinning observed in the OFC of non-

responders may have affected the projections to the LC, leading

to subsequent alterations of LC functions, which may contribute to

the pathogenesis of ET in the non-responder group. More

importantly, this alteration in the OFC–LC pathway may lead

to changes in a central action of propranolol mediated by the LC,

which may explain OFC thinning in non-responders. Although

the clinical significance of LC in ET remains uncertain, a few

clinicopathological correlation studies indicated that ET patients

with LB in the LC tended to have older age of onset, less frequent

family history of ET, lower incidence of gait difficulty, and greater

likelihood of taking medications for ET than those without LB

[7,8]. Taken together, these results suggest that dysfunction in the

LC-related structures may contribute to heterogeneous clinical

phenotypes with respect to beta-blocker responsiveness (Figure 3A).

Interestingly, our results of TBSS analysis showed that the

responders exhibited more severe disintegration of WM, mainly in

the frontal lobe, with relatively preserved cortical thickness in the

OFC. This anatomical discrepancy between WM pathology and

GM atrophy suggests that the structural changes of WM in the

responders would not result from secondary degeneration adjacent

to GM abnormalities. Rather, this reflects primary damage in the

fibers corresponding with the cerebello–thalamo–cortical loop,

which is known to be an important pathway in the pathogenesis of

ET. Consistent with these observations, our previous neuroimag-

ing study in different ET patients indicated that patients with ET

exhibited reduced FA value of the WM in a similar area in this

study compared with healthy controls [14]. Therefore, the present

study suggested that responders may have a distinct WM

pathology, primarily involving the cerebello–thalamo–cortical

loop, with preserved structural integrity around the LC compared

with non-responders (Figure 3B).

Previous DTI studies in ET patients have reported inconsistent

results in regard to whether the clinical features correlate with

WM changes [15,16,18]. In our study, correlation analysis

indicated that the parameters of tremor severity and disease

duration were not significantly correlated with regional cortical

thinning or WM alterations. These observations further support

the role of propranolol responsiveness as an important factor for

ET heterogeneity. In addition, with regard to patterns of clinical

parameters in drug responsiveness, there were no significant

differences in demographic characteristics or cognitive perfor-

mance between the two groups in the present study. However, the

responder group exhibited more severe WM alterations in the

fronto-subcortical circuits that are responsible for cognitive

dysfunctions in ET [3,58]. Thus, a longitudinal study focusing

on changes in cognitive performance is needed to confirm this

hypothesis.

Some limitations in our study need to be addressed. First, we

could not draw a solid conclusion from these imaging data,

because this study is not based on pathological data. Second, the

relatively small sample size may have limited the detection of

group differences. Third, the dosage of 80 mg/day of propranolol

may be suboptimal in some cases to declare inefficacy in response.

However, previous studies reported that most Asian cases with

response showed the efficacy at this dose which may be

subtherapeutic in Westerns [59,60]. Fourth, the idea that the

connection between OFC and LC may be involved in the

Clinical Heterogeneity and Pathogenesis of ET
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pathogenesis of ET has not been well established yet. Further

investigations would be needed to support this hypothesis.

Taken together, the results of the present study suggest that the

presence of propranolol responsiveness may be a predictive factor

in determining ET subtypes in terms of neuroanatomical

heterogeneity. Further large studies with pathological data are

required to draw definite conclusions.

Supporting Information
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