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of blood amino acid and lipid metabolism
by insulin in humans

Suguru Fujita,1,2 Ken-ichi Hironaka,1 Yasuaki Karasawa,3 and Shinya Kuroda1,4,*

SUMMARY

Insulin plays a crucial role in regulating the metabolism of blood glucose, amino acids (aa), and lipids in hu-
mans. However, the mechanisms by which insulin selectively regulates these metabolites are not fully un-
derstood. To address this question, we used mathematical modeling to identify the selective regulatory
mechanisms of insulin on blood aa and lipids. Our study revealed that insulin negatively regulates the
influx and positively regulates the efflux of lipids, consistent with previous findings. By contrast, we did
not observe the previously reported insulin’s negative regulation of branched-chain aa (BCAA) influx;
instead, we found that insulin positively regulates BCAA efflux. We observed that the earlier peak time
of lipids compared to BCAA is dependent on insulin’s negative regulation of their influx. Overall, our find-
ings shed new light on how insulin selectively regulates the levels of differentmetabolites in human blood,
providing insights into the metabolic disorder pathogenesis and potential therapies.

INTRODUCTION

Insulin is a hormone that plays a key role in regulatingmetabolism.1,2 One of insulin’s primary functions is to regulate blood glucose levels, but

it also has a role in regulating other bloodmetabolites such as amino acids (aa) and lipids.3–6 Previous studies have shown that the regulation

of thesemetabolites by insulin is selective and can vary over time after oral glucose ingestion.7While there has been extensive research on the

mathematicalmodeling of insulin’s regulation of bloodglucose,8–13 there have been limited studies on its selective regulation of blood aa and

lipids.14–17 To address this gap, we utilized mathematical model selection to explore insulin’s selective regulatory mechanisms on blood aa

and lipids, considering their temporal patterns after oral glucose ingestion.

Numerous studies have investigated how insulin regulates aa and lipids in the bloodstream.4,18,19 Insulin reduces blood aa concentrations

by limiting the release of aa into the bloodstream from skeletal muscle18,20 and promoting protein synthesis in the liver and other tissues.3

Specifically, insulin inhibits the release of leucine, isoleucine, methionine, tyrosine, phenylalanine, and threonine18,20 from skeletal muscle,

while promoting protein synthesis from aa in the liver and other tissues.3,4,7,18 In addition, insulin’s inhibitory effects on glycogenesis and

urea synthesis have been shown to reduce the concentrations of arginine, citrulline, and ornithine in the blood.4,21 These findings have

been demonstrated through the use of various methods, including oral glucose ingestion studies.3,4,7,18,19,21 In the same metabolic group,

leucine and isoleucine showed similar temporal patterns, while ornithine and citrulline showed different temporal patterns from leucine

and isoleucine after glucose ingestion.7 These differences in the metabolic regulatory mechanisms of aa are reflected in their temporal pat-

terns after glucose ingestion.7

Blood lipids consist of free fatty acids (FFAs) and ketone bodies, such as 3-hydroxybutyrate. Insulin plays a crucial role in regulating blood

lipid metabolism. Insulin reduces the concentration of FFAs in the blood by inhibiting their efflux from adipose tissue into the blood and pro-

moting their accumulation as triglycerides (TAGs) in adipose tissue.5,6 During feeding, insulin inhibits the activity of hormone-sensitive lipases

that regulate lipolysis in adipose tissue and also inhibits the synthesis and release of FFAs into the blood by degrading TAG.22 In addition,

insulin indirectly regulates FFA synthesis from TAG by regulating blood glucose levels.5 For ketone bodies, insulin decreases their concen-

tration in the blood by inhibiting ketogenesis in the liver.23–25 Insulin also promotes the utilization of ketones, increasing their removal rate

from the blood.26 Taken together, aa and lipids such as FFA and ketone bodies have different temporal patterns, while lipids show similar

temporal patterns to each other after glucose ingestion.7 These differences in metabolic regulatory mechanisms of lipids and AAs are re-

flected in their temporal patterns after glucose ingestion.7

Mathematical models can help identify the regulatory mechanisms of blood metabolites by insulin. By analyzing the temporal patterns of

blood metabolites, mathematical models can estimate the model structure and parameters, allowing researchers to infer the selective
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regulatory mechanisms of insulin. While there have been studies using mathematical models for the metabolic regulation of insulin and

glucose,8–13 there has been less research on the regulation of blood aa14 and lipids15–17 by insulin. Several mathematical models have

been developed for the kinetics of blood aa and lipids, but none have explained the differences in temporal patterns of these metabolites

after oral glucose ingestion. One study estimated a phenomenological regulatory structure for blood aa without considering metabolic map

information,27 but comprehensive analyses of the selective regulation of AAs and lipids by insulin using mathematical model selection and

detailed blood metabolite data have not been performed.

In this study, we used the time course data of blood metabolites and hormones from three healthy human subjects who ingested three

doses of glucose with rapid or slow ingestion to identify the regulatory mechanisms of bloodmetabolites by insulin.28,29 We usedmathemat-

ical model selection to compare different regulatory models based on themetabolic map and statistically selected the best model.We found

that branched-chain aa (BCAA) are positively regulated in terms of efflux, whereas lipids are positively regulated in terms of efflux but nega-

tively regulated in terms of influx. This regulation pattern for BCAA is consistent with previous studies,3 whereas the negative regulation of

insulin reported in a previous study4 was not necessary to explain the influx of aa in this study’s dataset. This suggests that insulin effectively

stimulates the efflux of BCAA rather than inhibiting their influx. The regulation of lipid, citrulline, andmethionine in the selectedmodel is also

consistent with a previous study.3 By using mathematical model selection and glucose dose-dependent time course data of blood metab-

olites, we were able to infer the effective mechanisms of selective metabolic regulation.

RESULTS

Blood metabolites data

To perform model selection, we used a dataset from our previous study, which included the time course data of blood hormones and me-

tabolites in three healthy human subjects.7,28,29 The dataset included 14 aa such as leucine and valine, and 4 lipids including FFA and ketone

bodies, which have distinct temporal patterns based on previous studies (Figures 1A and S2).7,29 Lipids were found to peak earlier and return

to fasting values faster than aa (Figure 1A, see Figure 1 legend). These temporal differences suggest that there are selective regulatory mech-

anisms for aa and lipids. Using this dataset, we performed model selection to explain the regulatory mechanisms by analyzing the time

series data.

Mathematical model structure for model selection

In this study, we developed a mathematical model using ordinary differential equations (Figures 1B and S3, see STAR methods) represented

by the S-system, which is a type of power-law formalism.30,31 As there could be multiple mechanisms of insulin action on blood aa and lipids,

we developed several alternativemodels (Figure S3), each includingblood insulin (X), effective insulin (Y), andbloodmetabolite (A) (Figure S3).

These models differed in whether effective insulin regulated the influx or efflux of the blood metabolite (Figure S3, see STAR methods). We

used time series data of blood insulin as input (Figures 1 and S3, see STAR methods) and constructed a regulatory model for each blood

metabolite that best fit the population-averaged temporal pattern of each metabolite across three healthy human subjects. We estimated

the parameters of each model separately to fit the time course data of each metabolite (Figures 1 and S4). The best model was selected

by minimizing the Akaike information criterion (AIC), which takes into account the complexity of the model and its fit to the time course of

each metabolite (see STARmethods). Note that since our previous study, using the same dataset, found that similar features among subjects

and experimental conditions are dominant and distinguish metabolites (Equation 1 in Figure S1B),29 the purpose of this study is to estimate

parameters and select models that are common among experimental conditions for the population-averaged time series among subjects.

Selected model of each blood metabolite

The best models for the blood metabolites were divided into five groups based on their regulation by insulin (Figure 2; Table S1). In the

models of ornithine and tyrosine (model #1), both the influx and efflux were positively regulated by effective insulin (Y) (Figures 2 and S5).

In the lipid model (model #3), the influx was negatively regulated and the efflux was positively regulated by effective insulin (Figures 2 and

S5), whereas the models for arginine and proline (model #4) showed that both the influx and efflux were negatively regulated by effective

insulin (Figures 2 and S5). The models for BCAAs (model #5) showed that the influx was not regulated by effective insulin, but the efflux

was positively regulated (Figures 2 and S5). In the models of aa such as serine and threonine (model #8), the influx was negatively regulated

while the efflux was not regulated by effective insulin. Taken together, insulin positively regulates BCAA efflux, positively regulates lipid efflux,

and negatively regulates influx. We compared our selected model structures with previous knowledge (Figure S5). For lipids, negative regu-

lation of the influx and positive regulation of the efflux have been reported,5,22–26 consistent with the results of our selectedmodel. For citrul-

line and methionine, negative regulation of the influx has been reported,4 consistent with our results (Figure S5). For BCAA, positive regula-

tion of the efflux has been reported,3 consistent with our results. However, the negative regulation of influx by insulin has been reported,4

whereas it was dispensable in our model (Figure S5). Our results suggest that insulin may only effectively stimulate the efflux of BCAA, rather

than inhibit the influx.

Model parameters reflecting the features of temporal pattern

We analyzed the relationship between the estimated model parameters and experimental features extracted from our previous study using

tensor decomposition (Figures 3 and S1B).29 The features, called ‘‘Feature 1’’ and ‘‘Feature 2,’’ correspond to yl4m; l4 = 1; 2, respectively
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(Equation 1 in Figure S1B).29 Since Feature 1 represents the most dominant feature of the dataset, we focused on Feature 1 in this study.

Feature 1 reflects the peak time of temporal patterns of bloodmetabolites, with higher Feature 1 values indicating later peaks of similar tem-

poral patterns among individuals and experimental conditions (Figure S1B). One of themodel parameters, k3, was found to be strongly corre-

lated with Feature 1, which are experimental features reflecting the peak time of temporal patterns of bloodmetabolites (Figure 3, correlation

coefficient r = 0.53 for Feature 1; p < 0.05). Specifically, a greater negative strength of regulation on the influx of effective insulin (represented

by a larger k3 value) was associatedwith earlier peaks in both similar temporal patterns among experimental conditions. This is because insulin

transiently increased after glucose ingestion (Figure 1), and the greater the strength of regulation of effective insulin on the influx, the more

Figure 1. Blood metabolites data and mathematical model structure for model selection

(A) Time course data on the mean values of blood insulin and blood metabolites by glucose ingestion.29 The doses and ingestion patterns are indicated at the

top. Green, red, and blue indicate three different doses: 25, 50, and 75 g, respectively. See text for arrowheads. For instance, in the case of a 75 g bolus, aa peaked

later than 120 min and did not return to fasting values within 240 min, whereas lipids peaked earlier than 120 min and returned to fasting values within 240 min

(Figure 1A, arrowhead).

(B) Model structure for model selection (see STAR methods).
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transient (i.e., earlier peak) the temporal patterns of the downstreammetabolites (Figures 1, S1B, and S6). Lipids with a negative k3 parameter,

indicating a large strength of regulation of effective insulin on the influx, showed earlier peaks than BCAA with a k3 parameter of 0, indicating

no strength of regulation of effective insulin on the influx. These results suggest that the regulation of effective insulin on the influx contributes

to earlier peaks in lipid temporal patterns compared to BCAA temporal patterns (Figures S1B and S6).

Regulation of the amplitude of AA and lipids by the amplitude of insulin

Wepreviously found that the time course of different groups of bloodmetabolites in our study was characterized by ‘‘amplitude’’ and ‘‘rate’’.7

Therefore, we examinedwhich regulation by insulin in themodel was responsible for the amplitude and rate of eachmetabolite (Figures 4 and

5). We used a mathematical model (Figure 4) to investigate how insulin regulates different temporal patterns of metabolites. We first deter-

mined how the amplitude of insulin affects the amplitude of metabolites. The amplitude of metabolites was quantified for various amplitudes

of insulin (Figures 4B and 4C).32 The dose-response curves for all metabolites showed a monotonic increase as the amplitude of insulin

increased (Figures 4D and S7B).We calculated the EC50, which represents the half-maximal concentration of insulin required for halfmaximum

amplitude of the metabolites (Figures 4E and S7C, see STAR methods). It should be noted that we normalized the amplitude of the metab-

olites corresponding to the maximum amplitude of insulin to 1.

According to the results of our investigation using themathematical model (Figure 4), we found that the EC50 values for aa and lipids were

13.0 and 9.12 mU/mL, respectively (Figure 4E). Aa had larger EC50 values compared to lipids, which means that they can respond to a wider

range of insulin amplitudes than lipids (Figure 4E). Here, we calculated average values for each metabolic group. Conversely, lipids had

smaller EC50 values, indicating that they are more sensitive to the lower amplitude of insulin (Figure 4E). Taken together, our findings suggest

that insulin can selectively regulate aa and lipids based on the amplitude of insulin, and citrulline shows intermediate characteristics between

aa and lipids (Figures 4D and 4E).

Regulation of the rates of AAs and lipids by the increasing rate of insulin

Next, we examined how the increasing rate of insulin is linked to the rate of metabolites (Figures 5A and 5B). To quantify the rate of metab-

olites, we introduced an index called ‘‘the rate index (RI),’’ which represents the time duration required for a metabolite to transition from 25%

to 75% of its maximum response (Figure 5C).32 We investigated how the rate of metabolites is affected by the increasing rate of insulin. The

duration time of insulin was used as a measure of its increasing rate, with shorter durations indicating faster increasing rates (Figures 5A and

5C). The results showed that as the duration time of insulin increased (i.e., the increasing rate of insulin decreased), the RIs of metabolites also

Figure 2. The model structures of the selected model

The model structure with each number models are shown in Figure S4.

ll
OPEN ACCESS

4 iScience 27, 109833, June 21, 2024

iScience
Article



decreased, indicating that the rate of metabolites is influenced by the increasing rate of insulin (Figures 5D and S7D). The dynamic range of RI

was calculated as a measure of howmuch information regarding the rate of increase of insulin is transferred to metabolites (Figure 5E). Lipids

had a larger RI and a larger dynamic range than aa, suggesting that insulin can more finely control the rate of aa than lipids by changing the

increasing rate of insulin (Figures 5D and 5E).

Model validation

We examined the validity of the selectedmodel for eachmetabolite by applying it to different datasets (Figure 6) from five healthy individuals

who either ingested 75 g glucose rapidly or over 2 h, which are new datasets(Figure S8, see STAR methods). The selected model successfully

reproduced the peaks at about 60 min for lipids such as FFA and ketones, and at 150 min for aa such as leucine and isoleucine for the bolus

condition (Figure 6). For the 2 h continuous condition, the model reproduced the peak at about 120 min for lipids and at about 180 min for

AAs, further confirming the validity of themodel (Figure 6).We compared the experimental and simulated values using the selectedmodel for

each metabolite and found a high correlation (r > 0.9) for all metabolites (Figures S9 and S10), providing further evidence for the accuracy of

the selected model.

DISCUSSION

In this study, we developed a mathematical model to analyze changes in blood metabolites over time using data from three healthy human

individuals who consumed three different doses of glucose at varying rates (Figures 1 and S4). The selectedmodel structures varied between

groups of blood metabolites, indicating that insulin selectively regulates different groups of metabolites (Figure 2). Interestingly, the same

model structure was chosen for aa such as BCAA, as well as for lipids such as FFA and ketone bodies, suggesting that while the regulation

of insulin is different between metabolic groups such as aa and lipids, it is similar within each metabolic group (Figure 2).

In this study, we analyzed the correlation between estimatedmodel parameters and features extractedby tensor decomposition (Figures 3

and S1).29 We found that the model parameter, k3, was highly correlated with Feature 1; k3 represents the strength of the negative regulation

of effective insulin on the influx of metabolites. This indicates that the differences in the temporal patterns of aa and lipids (Figures 2 and S1B)

can be explained by variations in the strength of the regulation of effective insulin on the influx. These findings demonstrate how data-driven

features obtained by tensor decomposition can be used to drive hypotheses and uncover underlying physiological mechanisms.

Figure 3. Relationship between model parameters and physiological features

(A) Heatmap of correlation coefficients between model parameters and features.

(B) Scatterplot of k3 with Feature 1 of the indicated metabolites. r and p indicate the correlation coefficient and p value, respectively. Abbreviations for the

representative molecules as follows: Asp, aspartic acid; Cit, citrulline; FFA, free fatty acid; 3-OH, 3-hydroxybutyric acid; Ketone, Total ketone body; Glu,

glutamic acid; His, histidine; Ile, isoleucine; Ins, insulin; Leu, leucine; Tyr, tyrosine; Val, valine. The dot colors correspond to the metabolic group (blue: AAs,

green: lipids).

(C) Model diagram with model parameters.
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Our study focused on examining the role of insulin in regulating the influx and efflux of blood metabolites in a mathematical model. Pre-

vious research has shown that insulin inhibits proteolysis in skeletal muscle, which leads to a decrease in the release of aa into the blood.4 In

the liver, insulin activates S6 kinase through the AKT pathway, which promotes protein synthesis and causes an increase in aa usage for protein

synthesis.33 These findings suggest that insulin negatively regulates the influx of aa into the blood while positively regulating the efflux (Fig-

ure S5). However, the selected model structures indicated that insulin only positively regulates the efflux of aa from the blood and does not

regulate the influx (Figures 2 and S5). This suggests that while insulin regulation of the efflux is physiologically effective, it is not essential for

Figure 4. Regulation of the amplitude of the metabolites by the amplitude of insulin

(A) Temporal pattern of insulin with different amplitudes as input. The colors of the lines indicate different peaks.

(B) Definition of amplitudes in time series for insulin and metabolites.

(C) Temporal pattern of metabolites as outputs. The colors of the lines correspond to the colors of the inputs (A).

(D) The amplitudes of the indicated metabolite against the amplitudes of insulin in the simulation.

(E) EC50s of metabolites against the amplitude of insulin. The color of the bar indicates the metabolic group (blue: AAs, green: lipids).
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the influx of aa to reflect the dataset of this study. Further research is needed to better understand the contribution of insulin regulation to the

influx of aa in the regulation of blood aa.

We found that insulin regulates the blood concentration of lipids such as FFA and ketone bodies through the positive regulation of their

influx and the negative regulation of their efflux (Figure 2). This is consistent with previous studies showing that insulin inhibits fatty acid influx

from adipose tissue into the blood,5,6 leading to decreased blood FFA concentrations and increased triacylglycerol accumulation in adipose

Figure 5. Regulation of the rates of AAs and lipids by the increasing rate of insulin

(A) Temporal patterns of insulin with different increasing rates as input. The colors of the lines indicate different rates.

(B) The definition of RI in the time series for insulin and metabolites.

(C) Temporal pattern of metabolites as outputs. The colors of lines correspond to the colors of the inputs (B).

(D) The RI of the indicated metabolite against the rate of insulin in the simulation. The x axis of shows the duration of insulin, which is inversely proportional to the

rate of insulin increase.

(E) Dynamic range of RI of metabolites. The color of the bar indicates the metabolic group (blue: AAs, green: lipids).
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tissue (Figure S5).6 Additionally, insulin has been shown to inhibit ketone bodies synthesis25,34 and increase their removal rate in the blood.26

Our mathematical model selected the same structures (Figures 3 and S5), indicating that these regulations of insulin on blood lipids are

consistent across multiple studies.5,22–26

In this study, we investigated how insulin’s amplitude and rate regulate two components of metabolites (Figure 4). Differences in the tem-

poral patterns of blood metabolites suggest different regulatory mechanisms by insulin.7 With respect to the amplitude component, we

defined EC50 as a measure of sensitivity to insulin and compared it among downstreammetabolites (Figures 4 and S7). Lipids showed higher

sensitivity to insulin than AAs against the amplitude of insulin, and citrulline showed intermediate sensitivity between lipids and AAs such as

Figure 6. Model validation

Time course data on the mean values of blood insulin and blood metabolites in five individuals by glucose ingestion for validation. The doses and ingestion

patterns are indicated at the top. The blue lines indicate the temporal patterns of simulations, and the red circles indicate the time course data of

experiments. Before and after glucose ingestion, the concentration of blood insulin and 14 amino acids, including leucine and valine, and 4 lipids, including

FFA and ketone bodies were measured at 14 time points from 10 min before fasting to 240 min after glucose ingestion (�10, 0, 10, 20, 30, 45, 60, 75, 90, 120,

150, 180, 210, 240 min).
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BCAA (Figure 4). We used experimental data to demonstrate a similar trend in sensitivity to insulin; that is, the EC50 of aa is higher than that of

lipids (Figure S7D). As a point of reference, in a previous study in which plasma aa concentrations were measured during normoglycemic in-

sulin infusion in healthy young adult males at four different insulin infusion rates (6, 10, 30, and 400 mU/m2$min), the half-maximal response (a

value with the samemeaning as the EC50 in this study) for aa was averaged about 30.9 mU/mL.18 The estimates from themodel analysis of this

study (13.0 mU/mL) did not deviate significantly. We also performed parameter sensitivity analysis of EC50 in simulations for each model

parameter (Table S2, see STAR methods). As the parameter sensitivity index, we compared the median value of each parameter for each

of the 18 metabolites (Table S2). k3 had the highest median value, indicating that the strength of the negative regulation of effective insulin

on the influx of metabolites is the most important parameter controlling insulin sensitivity.

A previous study showed that insulin’s inhibition of lipolysis and ketogenesis is more sensitive than the inhibition of protein catabolism.25

We also demonstrated that the sensitivity of citrulline to insulin was intermediate between that of aa and lipids.7 The mathematical model

analysis in this study consistently explained the selective regulatory mechanisms for different sensitivities of the metabolites. For the rate

component, we defined RI as a measure of the rate component and compared it among downstream metabolites (Figures 5 and S7). Lipids

with a larger RI showed a larger dynamic range of increasing rate of insulin than aa with a smaller RI. Taken together, our results demonstrate

that insulin canmore tightly control aa than lipids by changing the amplitude of insulin, whereas insulin can more tightly control lipids than aa

by changing the increasing rate of insulin.

In this study, we performed comprehensive analyses of the selective regulation of aa and lipids by insulin using a simple mathematical

model selection and detailed blood metabolite data. Therefore, the strength of this study is that the analysis using a simple

mathematical model reveals metabolite-specific differences in the response to glucose ingestion. Previous studies on individual metabolites

proposed model structures that differ from this study.35,36 We did not test a detailed model for each metabolite in this study because it is

practically difficult and different from the aim of this study.

In our previous study, we investigated the different temporal patterns of how blood metabolites respond to glucose ingestion using a

combination of hypothesis-driven7 and data-driven analyses.29 We discovered that aa and lipids selectively decode the amplitude and

increasing rate of insulin, respectively. However, we did not fully understand the mechanisms behind this selective decoding. In this study,

we used mathematical modeling and time course data of blood metabolites after oral glucose ingestion to provide one explanation for the

mechanism of selective regulation of the metabolites by insulin. Accordingly, we developed a mathematical model based on data from a

single dose of glucose (75 g bolus), which is commonly used in clinical settings to assess glucose tolerance. Then we compared this model

with a model based on multiple doses and durations of glucose (six experiments) data (Figure S11). The model using multiple doses and

durations had a better fit (lower RSS value) for several molecules, including methionine, compared to the model using a single dose of

glucose. This highlights the importance of using multiple datasets to validate mathematical models. The findings indicate that relying solely

on data from a single dose of glucose (75 g bolus) is not enough to accurately capture the dynamics of blood metabolite changes. Instead,

data frommultiple doses and durations of glucose ingestion are required to better understand the temporal patterns of blood metabolites.

Limitations of the study

One limitation of this study was the small number of individuals and model structures used. The data were collected from only three individ-

uals due to the time-consuming nature of the experiments, and population-averaged data were used to estimate themodel structure without

analyzing individual differences. In our previous study,7 we analyzed individual differences using blood data from 20 individuals. A larger num-

ber of individuals would allow for a more comprehensive analysis of individual differences using mathematical models.

For our additional analysis, we performed simulations not only for the population-averaged, but also for the time series per subject (Fig-

ure S12). Themodel selected for each subject’s varied, but for lipids, model #3 was selected, as was themodel for the population-averaged. In

contrast, aa such as BCAA were selected as models 5 and 8. This indicates that at least lipids, unlike aa, require two types of regulation: efflux

inhibition and efflux promotion. In this study, the model analysis focused on the common features among subjects and experimental condi-

tions because these features were domestic of the dataset.29 In the future, studies that can discuss individual differences are expected. Addi-

tionally, the study assumed only eight simple candidate model structures and did not consider the interaction of insulin with glucose-medi-

ated FFA37–39 and mammalian target of rapamycin-mediated leucine.40 While the model successfully reproduced blood aa and lipid

concentrations, it is possible that the amplitude or rate of insulin altered insulin secretion, clearance, or feedback from FFA or leucine.

We investigated the identifiability of theparameters in themodel structures selected for eachmetabolite (FigureS13).41,42 For the lipidmodel,

parameters k3 and k5 were shown to be identifiable, but k1 and k4 were found to be indistinguishable. For the aamodel, including BCAA, param-

eters k1andk5wereshowntobe identifiable,but k4was indistinguishable forboth leucineand isoleucine. Takentogether, theparametersk3andk5
representing insulin regulation showed that there are unique solutions in the range tested.WequantifiedEC50 todetermine the sensitivity ofme-

tabolites to insulin. Due to linear fitting, lipids showed smaller EC50s than those of the amplitude of insulin, which was given as a simulation input

(Figure4). In this study,wedidnot argue strongly for theabsolutevaluesofEC50s ofmetabolites, but at least for the fact that lipids have the smaller

EC50s thanaa. (Figures4andS7). Further studies areneeded toestimate thedetailed regulatory structures for individualmetabolites. Tocheck the

accuracyofourparameters,we transformedtheJacobian to the variance-covariancematrixof themodel solutions in theestimatedparameters for

each metabolite and all models, and determined the standard deviation (Table S5). We confirmed that the parameters of the model selected in

this study have low variability for all metabolites (Table S5, yellow). A priori identifiability is important in model analysis. For example, we found

highly correlated pairs among the parameters of the selected model for lipids (Figure S14). This means that there is a possibility of redundancy

among parameters in the model of this study. However, although we found correlations among the parameters, the small RSS pairs are locally
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distributed, indicating that the parameters selected in this studywere appropriate as parameters reflecting the experimental data (Figure S15). In

the future, study to develop mathematical model considering a priori identifiability will be conducted.
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Burattini, L., Karusheva, Y., Roden, M., Pacini,
G., and Tura, A. (2022). Mathematical model
of insulin kinetics accounting for the amino
acids effect during a mixed meal tolerance
test. Front. Endocrinol. 13, 1–14. https://doi.
org/10.3389/fendo.2022.966305.

15. Pratt, A.C., Wattis, J.A.D., and Salter, A.M.
(2015). Mathematical modelling of hepatic
lipid metabolism. Math. Biosci. 262, 167–181.
https://doi.org/10.1016/j.mbs.2014.12.012.

16. Jelic, K., Hallgreen, C.E., and Colding-
Jørgensen, M. (2009). A Model of NEFA
Dynamics with Focus on the Postprandial
State. Ann. Biomed. Eng. 37, 1897–1909.
https://doi.org/10.1007/s10439-009-9738-6.

17. O’Donovan, S.D., Lenz, M., Vink, R.G.,
Roumans, N.J.T., De Kok, T.M.C.M.,
Mariman, E.C.M., Peeters, R.L.M., van Riel,
N.A.W., van Baak, M.A., and Arts, I.C.W.
(2019). A computational model of
postprandial adipose tissue lipid metabolism
derived using human arteriovenous stable
isotope tracer data. PLoS Comput. Biol. 15,
e1007400–e1007423. https://doi.org/10.
1371/journal.pcbi.1007400.

18. Fukagawa, N.K., Minaker, K.L., Rowe, J.W.,
Goodman, M.N., Matthews, D.E., Bier, D.M.,
and Young, V.R. (1985). Insulin-mediated
reduction of whole body protein breakdown.
Dose-response effects on leucine metabolism
inpostabsorptivemen. J.Clin. Invest.76, 2306–
2311. https://doi.org/10.1172/JCI112240.

19. Boffetta, P., McLerran, D., Chen, Y., Inoue, M.,
Sinha, R., He, J., Gupta, P.C., Tsugane, S., Irie,
F., Tamakoshi, A., et al. (2011). Body mass
index and diabetes in Asia: A cross-sectional
pooled analysis of 900,000 individuals in the
Asia cohort consortium. PLoS One 6, e19930.
https://doi.org/10.1371/journal.pone.
0019930.

20. Pozefsky, T., Felig, P., Tobin, J.D., Soeldner,
J.S., and Cahill, G.F. (1969). Amino acid
balance across tissues of the forearm in
postabsorptive man. Effects of insulin at two
dose levels. J. Clin. Invest. 48, 2273–2282.
https://doi.org/10.1172/JCI106193.

21. Shaham, O., Wei, R., Wang, T.J., Ricciardi, C.,
Lewis, G.D., Vasan, R.S., Carr, S.A., Thadhani,

R., Gerszten, R.E., and Mootha, V.K. (2008).
Metabolic profiling of the human response to
a glucose challenge reveals distinct axes of
insulin sensitivity. Mol. Syst. Biol. 4, 214.
https://doi.org/10.1038/msb.2008.50.

22. Sadur, C.N., and Eckel, R.H. (1982). Insulin
stimulation of adipose tissue lipoprotein
lipase. Use of the euglycemic clamp
technique. J. Clin. Invest. 69, 1119–1125.
https://doi.org/10.1172/JCI110547.

23. Balasse, E.O., and Féry, F. (1989). Ketone
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Shinya Kuroda

(skuroda@bs.s.u-tokyo.ac.jp).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All data generated or analyzed during this study and the code files are included in this article and the article29 and their supplementary

materials files. The code files used in the simulation are freely available at https://github.com/sfujita0601/ModelSelection_

HumanOGTTDose.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Subjects

The study involved three subjects for the ‘‘dataset formodel construction’’ and five healthy subjects for the ‘‘dataset formodel validation.’’ The

profiles of the subjects are provided in Table S3. The ‘‘dataset for model validation’’ is provided in Table S4. Subjects have not been diag-

nosed with metabolic disorders, including diabetes, did not have chronic conditions affecting major organs such as the liver, kidney, heart,

lungs, or digestive system, and did not regularly take medications known to influence metabolism.

Blood sampling

We used human blood samples obtained in our previous studied.7,29 Briefly, after 10 h overnight fast, subjects underwent oral glucose toler-

ance test (OGTT) in the morning. An intravenous catheter was inserted into vein of the forearm and fasting samples were drawn twice. For

‘dataset for model construction’, three healthy subjects orally ingested a glucose solution containing 25, 50, or 75 g glucose (TRELAN-

G75 (AJINOMOTO)). The ingestionmethodwas rapid within aminute (bolus ingestion), and continuous over the course of 2 h (2-h-continuous

ingestion). For continuous ingestion, we connected the tube to noncontactmicrodis-penser robot (Mr.MJ;MECTCorporation)43 and glucose

solution wasingested from tube.28 Blood samples were obtained every 10 min until 240 min after glucose ingestion.28 Subjects remained at

rest throughout the test. Blood samples were rapidly centrifuged. For ‘dataset for model validation’, five healthy subjects orally ingested a

glucose solution containing 75 g glucose within a few minute, and continuous over the course of 2 h. Blood samples were obtained at 10,

20, 30, 45, 60, 75, 90, 120, 150, 180, 210, 240 min after ingestion as described previously.7 Blood hormones and some metabolites were

measured according to methods developed by LSI Medience Co., Ltd. The methods used to measure each of these molecules are described

in our previous study.7 We considered themean value of the time point prior to glucose ingestion and 0 min as the fasting value. Here, we set

an interval of 1–2months for each experiment, because these types of studies take a long period of time and require several hours and fasting

by the subjects for each experimental condition.

Ethics committee certification

We followed Japan’s Ethical Guidelines for Epidemiological Research, and the study was approved by the Institutional Review Board and the

Ethics Committee of Tokyo University Hospital (Approval No. 10264-(4)). Subjects were recruited through snowball sampling.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Metabolome data This paper Table S4

Software and algorithms

Source code This paper https://github.com/sfujita0601/ModelSelection_HumanOGTTDose

Python version 3.9 Python Software Foundation https://www.python.org

MATLAB R2022a MathWorks https://jp.mathworks.com/products/matlab.html
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METHOD DETAILS

Model structure and parameter structure

We developedmathematical models to describe the temporal changes in bloodmetabolite concentrations (Figure 1). We developed a total

of eight different models, assuming three types of regulation for each bloodmetabolite’s influx into and efflux from the blood: positive regu-

lation, negative regulation, or no regulation (Figure S3). We excluded the case where there was no regulation for both influx and efflux. We

estimated the model parameters for each model. The specific molecules targeted in our analysis are listed in Figure 2.

Each regulation type is based on the S-system model,30,31 and the change in the concentration of a blood metabolite (A) is described by

the following differential equation:

dY

dt
= X � k1Y (Equation 1)

dA

dt
= fluxAin � fluxAout (Equation 2)

fluxAin = k2Y
k3

8<
:

k3 >0
�
if the positive regulation

�
k3 <0 ðif the negative regulationÞ
k3 = 0 ðif no regulationÞ

(Equation 3)

fluxAout = k4Y
k5A

8<
:

k5 > 0
�
if the positive regulation

�
k5 < 0 ðif the negative regulationÞ
k5 = 0 ðif no regulationÞ

(Equation 4)

where X is blood insulin concentration, Y is effective insulin that effectively regulates bloodmetabolite concentration, and A is bloodmetab-

olite concentration. Tomake the variable Y dimensionless, we applied a constant with a value of 1, (mU=ðmL$tÞ)), to the variable X (Equation 1).

The term fluxAinðk2Yk3 Þ represents the influx of metabolite A into the blood and is determined by the positive regulation (k3 > 0), negative

regulation (k3 < 0), or the reaction rate constant k2, depending on the effective insulin Y . Similarly, the term fluxAout ðk4Yk5AÞ represents

the efflux of metabolite A from the blood and is determined by the positive regulation (k5 > 0), negative regulation (k5 < 0), or the reaction

rate constant k4, depending on the effective insulin Y and blood metabolite concentration A.

Using the variables X, Y , and A, and assuming that X, Y , and A are at steady state before glucose ingestion, we determined the initial

conditions and parameters based on the estimated parameters and initial values:

Xð0Þ = Xb;Y ð0Þ = Yb;Að0Þ = Ab; (Equation 5)

dY

dt
ð0Þ = 00Yb =

Xb

k1
; (Equation 6)

dA

dt
ð0Þ = 00k2 = k4Y

ð k5 � k3Þ
b Ab; (Equation 7)

where Xb, Yb, and Ab indicate the initial values of X ;Y ; and A; respectively. Therefore, there are four parameters to be estimated: k1, k3; k4,

and k5.

The unit of these parameters are follows: k1ð1 =tÞ; k2ðð1 =tÞ$ðthe unit of each metaboliteÞÞ; k3ðdimensionlessÞ;k4ð1 =tÞ; k5ðdimensionlessÞ.
Themeasured blood insulin concentration was treated as continuous by linear interpolation between themeasurement time points, as X is

used as a continuous value during the simulation, although the actual measured values were used.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model selection

We used the residual sum of squares (RSS) as the objective function to minimize the differences between the experimental and simulated

values, given by:

RSSk =
X

i˛Experiment

X
t

 
Aexp

ikt � Asim
ikt

S:D:
�
Aexp

ik

�
!2

(Equation 8)

In this equation,Aexp
ikt andAsim

ikt represent themeasured and simulated values, respectively, at time t andmetabolite k in experiment i, which

can take the values 25B, 25C, 50B, 50C, 75B, or 75C. Each experiment is identified by the dose of glucose ingestion and the initial letters of the

duration of ingestion (e.g., 25 g bolus ingestion is denoted as 25B, and 75-g-2-h-continuous is denoted as 75C).

To account for differences in the absolute values of themetabolites across experiments, we calculated the RSSwith the same normalization

used in our previous study,29 where S.D.($) is the function to calculate the standard deviation.
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To find the global optimal solution, we performedparameter estimation using the Evolutionary Programmingmethod.44We conducted 20

trials with a parent number of 20 and a generation number of 400. After obtaining the global optimal solution,45 we further refined it using the

simplex searchmethod (MATLAB fminsearch) to find a local optimal solution. For each bloodmetabolite k, we performedparameter fitting for

all eight models developed in Section model selection using the RSS calculated according to Equation 8. To statistically select the regulatory

structure of each blood metabolite, we calculated the AIC based on the RSS of each model.

The AIC was computed using the following formula, taking into account that the models being compared have the same total number of

data points N for the experimentally measured variables:

AICk = N lnðRSSkÞ+ 2K (Equation 9)

where K is the number of parameters in themodel that need to be estimated. The AIC provides ameasure of the trade-off between the good-

ness of fit (represented by the RSS) and the complexity of themodel (represented by the number of parameters). By considering both the fit to

the data and the model complexity, the AIC allows us to compare and select the most appropriate model for each blood metabolite.

Parametaer identifiability

The parameter sets that produced the selected models were evaluated for identifiability. We iteratively changed the value of one parameter

from its optimal value and re-estimated the remaining parameters.41 An increase in the cost function (RSS) of the model fit indicates that reli-

able parameter estimates are obtained and that the parameters are identifiable from the model structure and data.

Parameter accuracy

We computed the Jacobian of the model solution for each metabolite for all estimated parameters of the model, transformed it into a vari-

ance-covariance matrix by reference to nlparci function in MATLAB, and calculated the standard deviation for each parameter.

Parameter sensitivity analysis

We defined the individual model parameter sensitivity for each subject as follows:

Mðf ðxÞ; xÞ =
vlogf ðxÞ
vlogx

=
x

f ðxÞ$
vf ðxÞ
vx

; (Equation 10)

vf ðxÞ
vx

z
f ðx+DxÞ � f ðx � DxÞ

2Dx
; (Equation 11)

f ðxÞ = EC50; (Equation 12)

where x is the parameter value and f(x) is EC50. The differentiation is numerically approximated by central difference (Equation 8, and x + Dx

and x � Dx were set so as to be increased [x (1.1x)] or decreased [x (0.9x)] by 10%, respectively. Finally, we defined the parameter sensitivity by

the median of the individual parameter sensitivity for all metabolites. We examined the parameter sensitivity for four parameters. The higher

the absolute value of parameter sensitivity, the larger the effect of the parameter on EC50.

The temporal pattern similarity among molecules

In our previous study, we introduced the temporal pattern similarity among molecules (TPSM) as a measure of the similarity between their

temporal patterns.7 The TPSM is defined as follows (Figure S7A):

A0
k =

h
A0

25B;k;� 10;/;A0
25B;k;240;A

0
50B;k;� 10;/;A0

i;k;t;/;A0
75C;k;240

i
; (Equation 13)

TPSMkl = r
�
A0

k ;A
0
l

�
: (Equation 14)

where A0
ikt represents the interindividual mean values of the difference from fasting at time t for metabolite k in experiment i. The vector A0

k

represents the time-series connecting these values (Equation 10). The Pearson correlation coefficient, denoted as rðA0
k ;A

0
lÞ, is used tomeasure

the similarity between A0
k and A0

l . The TPSMkl (Equation 14) represents the temporal pattern similarity between molecule k and l, indicating

how similar their temporal patterns are. Importantly, there were no molecular sets that exhibited a negative correlation.

Calculation of EC50

To obtain the EC50 of all metabolites relative to insulin we performed linear fitting (Figure S7B). Half of the relative metabolite amplitude at

insulin’s peak value of 15.432 was calculated as the EC50. It should be noted that although the time series for insulin andmetabolites at a peak

value of 0 is not depicted in Figure 4, we extrapolated the metabolite peak value to 0 for insulin in order to perform the calculation.
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