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Abstract
Introduction: Major depressive disorder (MDD) is a mental disorder caused by the 
combination	of	genetic,	environmental,	and	psychological	factors.	Over	the	years,	a	
number	of	genes	potentially	associated	with	MDD	have	been	identified.	However,	in	
many	cases,	the	role	of	these	genes	and	their	relationship	in	the	etiology	and	devel-
opment	of	MDD	remains	unclear.	Under	such	situation,	a	systems	biology	approach	
focusing on the function correlation and interaction of the candidate genes in the 
context	of	MDD	will	provide	useful	information	on	exploring	the	molecular	mecha-
nisms underlying the disease.
Methods: We collected genes potentially related to MDD by screening the human genetic 
studies deposited in PubMed (https ://www.ncbi.nlm.nih.gov/pubmed). The main biologi-
cal	themes	within	the	genes	were	explored	by	function	and	pathway	enrichment	analysis.	
Then,	the	interaction	of	genes	was	analyzed	in	the	context	of	protein–protein	interaction	
network and a MDD-specific network was built by Steiner minimal tree algorithm.
Results: We collected 255 candidate genes reported to be associated with MDD 
from available publications. Functional analysis revealed that biological processes 
and	biochemical	pathways	related	to	neuronal	development,	endocrine,	cell	growth	
and/or	survivals,	and	immunology	were	enriched	in	these	genes.	The	pathways	could	
be largely grouped into three modules involved in biological procedures related to 
nervous	system,	the	immune	system,	and	the	endocrine	system,	respectively.	From	
the	MDD-specific	network,	35	novel	genes	potentially	associated	with	the	disease	
were identified.
Conclusion: By	means	of	network-	 and	pathway-based	methods,	we	explored	 the	
molecular mechanism underlying the pathogenesis of MDD at a systems biology 
level. Results from our work could provide valuable clues for understanding the mo-
lecular features of MDD.
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1  | INTRODUC TION

Major depressive disorder (MDD) is a common psychiatric disor-
der	that	affects	about	6%	population	worldwide	(Kessler	&	Bromet,	
2013;	Malhi	&	Mann,	2018).	 It	 is	estimated	 that	 the	 lifetime	 inci-
dence	of	depression	is	16.6%	(Dunn	et	al.,	2015),	and	the	rate	for	
females	is	twice	that	of	males	(Muglia	et	al.,	2010).	Major	depres-
sive	disorder	can	negatively	affect	almost	all	aspects	of	a	person,	
including	 personal	 life,	 work–life,	 education,	 and	 general	 health.	
At	 the	 same	 time,	 depression	 is	 a	 leading	 cause	 for	 suicide,	 it	 is	
estimated	 that	 2%–8%	 of	 people	 diagnosed	 with	 depression	 die	
by	 suicide,	 and	about	50%	of	people	who	die	by	 suicide	had	de-
pression	 or	 other	mood	 disorders	 (Bachmann,	 2018;	 Bostwick	&	
Pankratz,	2000).	The	disease	does	not	only	severely	limit	the	psy-
chosocial	 functioning	 and	deteriorate	 life	 quality	 of	 the	patients,	
but also brings heavy spiritual and economic burden to their fami-
lies	and	the	society	(Wakefield,	Schmitz,	Schmitz,	First,	&	Horwitz,	
2007).	Actually,	depression	is	among	the	most	burdensome	disease	
worldwide due to its considerable adverse effects on activities of 
daily	 living	(Bruffaerts	et	al.,	2012;	Ustun,	Ayuso-Mateos,	Ayuso-
Mateos,	Chatterji,	Mathers,	&	Murray,	2004).	In	the	United	States	
alone,	depression	causes	about	400	million	disability	days	per	year	
and results in an annual economic burden as high as $210 billion 
(Greenberg,	 Fournier,	 Fournier,	 Sisitsky,	 Pike,	 &	 Kessler,	 2015).	
Although	 in	developing	countries	 like	China,	 the	 lifetime	 rates	of	
depression	are	lower	than	that	in	developed	world,	the	prevalence	
and	 costs	 related	 to	 the	 disease	 increase	 rapidly	 (Hsieh	 &	 Qin,	
2018;	Hu,	He,	He,	Zhang,	&	Chen,	2007;	Kessler	&	Bromet,	2013;	
Phillips	et	al.,	2009;	Yang	et	al.,	2013).

Till	now,	the	cause	of	MDD	is	still	poorly	understood	although	
much	effort	has	been	dedicated	to	explore	the	pathogenesis	and	
molecular mechanisms of the disease via various approaches 
(CONVERGE	 consortium,	 2015;	 Flint	 &	 Kendler,	 2014;	 Kang	 et	
al.,	2012;	Mehta,	Menke,	Menke,	&	Binder,	2010).	Physiologically,	
MDD is featured with symptom heterogeneity and changes in 
multiple	 biological	 systems	 are	 involved	 (Belmaker	 &	 Agam,	
2008;	Guo	et	 al.,	 2012).	Generally,	MDD	develops	 as	 a	 result	 of	
the	combination	of	multiple	factors,	including	the	genetic	factors,	
environmental,	 and	 psychological	 factors	 (Han,	 2012).	 Actually,	
a large fraction of the risk of MDD can be attributed to genet-
ics	 (American	Psychiatric	Association,	2013;	Kendler	et	al.,	2019;	
Ripke	 et	 al.,	 2013).	 For	 example,	 it	 is	 estimated	 that	 heritability	
for	MDD	is	about	40%	and	the	risk	of	developing	depression	for	
members	 from	 a	 family	 with	 depression	 history	 is	 1.5–3	 times	
higher	 than	the	normal	population	 (Kendler,	Gatz,	Gatz,	Gardner,	
&	 Pedersen,	 2006;	 Pincus	 et	 al.,	 1999).	 As	 a	 polygenic	 disorder	
with	divergent	genetic	architecture,	many	genetic	factors,	as	well	
as	gene–environment	 interactions,	are	believed	 to	be	among	 the	
risk	 factors	of	MDD	(CONVERGE	consortium,	2015;	Ripke	et	al.,	
2013).	A	number	of	genes	have	been	suggested	to	be	associated	
with	MDD,	 for	 example,	 the	 sodium-dependent	 serotonin	 trans-
porter	and	solute	carrier	family	6	member	4	(SLC6A4),	5-hydroxy-
tryptamine	 receptor	 2A	 (5HT2A),	 apolipoprotein	 E	 (APOE),	 and	

brain-derived	neurotrophic	factor	(BDNF;	Bosker	et	al.,	2011;	Flint	
&	Kendler,	2014;	Lopez-Leon	et	al.,	2008).	Among	them,	SLC6A4	is	
one	of	the	most	extensively	studied	genes,	which	is	responsible	for	
transporting serotonin from the synaptic spaces into the presyn-
aptic neurons and recycling it in a sodium-dependent manner. The 
5-HTTLPR	 polymorphism	 of	 this	 gene	 is	 found	 to	 be	 associated	
with	 both	 depression	 and	 other	 mental	 disorders	 (Clarke,	 Flint,	
Flint,	Attwood,	&	Munafò,	2010).	As	the	main	excitatory	receptor	
of	 serotonin,	 the	 genetic	 variants	of	5HT2A	have	been	 found	 to	
be	 related	 to	 several	 psychiatric	 disorders,	 including	 depression	
(Choi	et	al.,	2004).	The	epsilon-4	type	allele	of	APOE	is	found	to	
be	associated	with	depression	in	patients	with	Alzheimer's	disease	
(Delano-Wood	et	 al.,	 2008).	BDNF	 is	 involved	 in	 activity-depen-
dent	neuronal	plasticity,	and	evidence	from	clinical	studies	shows	
that	 decreased	 activity	 of	 BDNF	 occurs	 in	 the	 brain	 of	 patients	
with	major	depression	(Lee	&	Kim,	2010).	Similar	to	other	complex	
mental	 disorders,	 genetic	 studies	 have	 suggested	 that	 for	MDD,	
the individual differences may be caused by multiple genes and 
their	 variants.	Genes	with	 different	 functions	may	work	 cooper-
atively	to	 increase	the	risk	of	MDD,	with	a	relatively	small	effect	
exerted	by	each	gene.	In	line	with	this	view,	more	and	more	genes	
have been found to be potentially associated with MDD (Wray 
et	al.,	2018).	For	these	genes,	although	a	few	plausible	candidate	
genes	have	been	partially	replicated,	some	of	them	are	considered	
to	 be	 problematic	 (Flint	&	Kendler,	 2014).	 This	 is	 especially	 true	
as high-throughput methods like genome-wide association study 
(GWAS)	are	increasingly	applied	to	genetic	studies	of	the	disease.	
Under	 such	 circumstances,	 a	 comprehensive	 analysis	 of	 the	 po-
tential causal genes of MDD within a pathway and/or a network 
framework may not only provide us important insights beyond the 
conventional	single-gene	analyses,	but	also	offer	consolidated	val-
idation for the individual candidate genes.

In	the	current	study,	we	first	collected	the	MDD-related	genes	
from	genetic	association	studies.	Then,	we	conducted	biological	en-
richment analyses to detect the significant biological themes within 
these genetic factors and investigated the interactions among the 
enriched	biochemical	pathways.	In	addition,	a	MDD-related	subnet-
work	based	on	protein–protein	interaction	network	was	constructed	
and	 its	 topological	characteristics	were	analyzed.	This	study	could	
offer valuable hints for understanding the molecular mechanisms of 
MDD from a perspective of systems biology.

2  | MATERIAL S AND METHODS

2.1 | Susceptibility gene set of MDD

As	 a	 polygenic	 disease,	 a	 number	 of	 genes	 potentially	 associated	
with	 the	 pathogenesis	 of	 MDD	 have	 been	 reported	 (Gatt,	 Burton,	
Burton,	Williams,	&	Schofield,	2015;	Manoharan,	Shewade,	Shewade,	
Rajkumar,	&	Adithan,	2016;	Yin	et	al.,	2016).	In	this	study,	the	candidate	
genes for MDD were collected by searching the human genetic asso-
ciation studies deposited in PubMed (https ://www.ncbi.nlm.nih.gov/

https://www.ncbi.nlm.nih.gov/pubmed/
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pubme	d/).	Briefly,	 similar	 to	previous	studies	 (Wang	&	Li,	2010),	we	
searched PubMed with the term “(Major Depressive Disorder [MeSH]) 
AND	 (Polymorphism	 [MeSH]	 OR	 Genotype	 [MeSH]	 OR	 Alleles	
[MeSH])	NOT	(Neoplasms	[MeSH]).”	As	of	August	2017,	we	obtained	
a	total	of	1,514	publications	related	to	MDD.	Next,	we	reviewed	the	
abstracts of these articles and kept only the association studies related 
to	MDD	with	human	subjects.	From	the	selected	publications,	we	nar-
rowed our selection by focusing on those reporting a significant asso-
ciation of one or more genes with the disease. To reduce the number 
of	potential	 false-positive	findings,	 the	studies	reporting	negative	or	
insignificant associations were not included although some genes ana-
lyzed	in	these	studies	might	be	real	pathogenic	genes	of	MDD.	Then,	
the	full	reports	of	the	selected	publications	were	examined	to	ensure	
the consistency of the conclusions and the contents. In the collected 
publications,	several	genome-wide	association	(GWA)	studies	on	MDD	
were	included,	and	genes	reported	to	be	significantly	associated	with	
MDD	were	selected.	Via	such	a	procedure,	a	list	of	261	studies	report-
ing the association of one or more candidate genes with MDD were 
obtained	(Figure	1).	From	these	studies,	genes	reported	to	be	associ-
ated with MDD were compiled for further analysis.

2.2 | Functional enrichment analysis

To	reveal	the	major	biological	themes	within	the	MDD-related	genes,	
the	 function	 characteristics	of	 these	 genes	were	explored.	Briefly,	
gene	ontology	(GO;	Fu	et	al.,	2015)	and	pathway	enrichment	analysis	
were	conducted	on	the	MDD-related	genes.	Since	in	this	study,	we	
focused	on	the	biological	 features	underlying	the	candidate	genes,	
only	the	GO	category	of	biological	process	was	analyzed.	Biological	
pathways enriched in the MDD-related genes may be those with 
disturbed	function	in	the	pathogenesis	of	MDD.	Both	GO	and	path-
way enrichment analysis were finished by the ToppFun module 
of	 ToppGene	 (http://toppg	ene.cchmc.org;	 Chen,	 Bardes,	 Bardes,	
Aronow,	&	Jegga,	2009).	For	GO	biological	process	analysis,	 items	
with 5 or more MDD-related genes and a false discovery rate (FDR) 
less	 than	0.05	were	 kept	 as	 significantly	 enriched	ones.	 Then,	 the	
enriched	items	were	subjected	to	REVIGO	(Supek,	Bosnjak,	Bosnjak,	
Škunca,	&	 Šmuc,	 2011;	 http://revigo.irb.hr/)	 to	 remove	 the	 redun-
dant	GO	 terms	and	obtained	a	 list	of	nonredundant	GO	biological	
process	terms	enriched	in	the	candidate	genes.	For	pathway	analysis,	
the	Kyoto	Gene	and	Genome	Encyclopedia	(Du	et	al.,	2016;	KEGG)	

F I G U R E  1  PRISMA	flow	diagram	illustrating	search	strategy	and	studies	included	in	the	analysis.	PRISMA	is	Preferred	Reporting	Items	
for	Systematic	Reviews	and	Meta-Analyses	(http://www.prisma-state	ment.org/)

https://www.ncbi.nlm.nih.gov/pubmed/
http://toppgene.cchmc.org
http://revigo.irb.hr/
http://www.prisma-statement.org/
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PATHWAY	was	adopted	as	the	pathway	database,	and	a	FDR	thresh-
old of 0.05 was used to define a significant pathway. False discov-
ery rate was calculated via the method of Benjamini and Hochberg 
(Benjamini	&	Hochberg,	1995).

2.3 | Pathway cross talk analyses

The	etiology	and	development	of	a	complex	disease	are	usually	the	
result of simultaneous disturbance of multiple biological processes 
or	pathways.	Therefore,	the	relationship	between	the	pathogenically	
abnormal pathways can provide useful clues to understand the mo-
lecular	mechanisms	of	the	disease.	Through	analyzing	the	network	
formed	by	correlated	pathways,	we	are	able	to	explore	the	biologi-
cal	pathways	summarized	from	many	different	studies	via	a	system-
atic	 approach,	which	may	 help	 us	 to	 understand	 the	 etiology	 and	
progression	of	a	disease	from	a	macro	perspective.	Here,	we	used	
the pathways enriched in the MDD-related genes to construct the 
pathway	cross	 talk	network,	 in	which	 two	pathways	were	defined	
as connected if they shared three or more overlapping MDD-related 
genes. The purpose of such definition was to reduce the false posi-
tives and ensure that the correlation between a pathway pair was 
biologically meaningful. To describe the overlap between a given 
pair	of	pathways,	we	adopted	two	measurements	(Jia,	Kao,	Kao,	Kuo,	
&	Zhao,	2011;	Liu,	Fan,	Fan,	Liu,	Cheng,	&	Wang,	2015),	that	is,	the	
Jaccard Coefficient = |

|
|
A∩B

A∪B

|
|
|
 and the Overlap Coefficient= |A∩B|

min(|A|,|B|)
,	

with A and B being the lists of MDD-related genes included in the 
two	 tested	 pathways,	 and	 |A| and |B| representing the number of 
MDD-related	genes	contained	in	the	two	pathways.	In	addition,	we	
used the arithmetic mean of these two coefficients to measure the 
significance of pathway correlation and arranged all pairs of pathway 
in	descending	order	of	the	significance.	Then,	Cytoscape	(Shannon.	
et	al.,	2003)	was	used	to	output	a	diagraphic	representation	of	the	
cross talk relationship between the pathways.

2.4 | The construction of MDD subnetwork

Biomolecular	 network,	 especially	 the	 protein–protein	 interaction	
network,	 has	 become	 an	 effective	 tool	 to	 analyze	 the	 molecular	
relationship	in	complicated	biomolecular	systems	(Li,	Wang,	Wang,	
Zhao,	Wu,	&	Pan,	2016;	Przulj,	Wigle,	Wigle,	&	 Jurisica,	 2004).	 In	
this	study,	we	treated	the	genes/proteins	and	their	 interactions	as	
nodes	and	edges,	 respectively;	 then,	 these	nodes	and	edges	were	
connected	 to	 form	 a	 molecular	 network.	 The	 protein–protein	 in-
teraction network data used in this study were derived from direct 
physical	interactions	from	six	major	common	protein–protein	inter-
action	databases,	that	is,	BioGM,	Integrity,	DIP,	Peppermint,	MIPS/
Mpact,	 and	 HPRD,	 with	 the	 self-interaction	 and	 redundant	 pairs	
excluded.	 Finally,	 a	 relatively	 complete	 human	 physical	 interac-
tion	group	was	obtained,	which	included	16,022	genes/protein	and	
228,122	interactions.

3  | RESULTS

3.1 | MDD candidate gene sets

Based	on	 the	 human	 genetic	 association	 studies,	we	 compiled	 a	
list of 255 candidate genes reported to be associated with MDD 
(Table	 S1;	 referred	 to	 as	MDDgene,	 hereafter).	 Among	 the	 can-
didate	genes	 collected,	 there	were	 some	overlapping	genes	 that	
were	not	only	associated	with	MDD,	but	also	involved	in	the	oc-
currence	and	development	of	other	neurological	diseases.	For	ex-
ample,	some	genes	related	to	immune	regulation	and	inflammation	
may	 be	 associated	 with	 Alzheimer's	 disease	 or	 depression	 (e.g.,	
IL10	 and	 IL1B),	 genes	 of	 the	 dopamine	 neurotransmitter	 system	
(e.g.,	DRD1 and DRD4),	and	members	from	the	immunophilin	pro-
tein	 family	 (e.g.,	FKBP4 and FKBP5) that may be associated with 
Alzheimer's	 disease	 or	 depressive	 disorders.	 In	 addition,	 there	
were also genes related to the serotonin neurotransmitter system 
and	 cell	 transport	 system,	 such	 as	HTR2A,	HTR6,	TPH1,	SLC1A2,	
SLC6A3,	 and	 SLC6A4.	 At	 the	 same	 time,	 the	 gene	 set	 included	
some	specific	genes	related	to	MDD,	such	as	ADCY9,	ITPR1,	and	
PCLO,	which	were	involved	in	calcium	signaling,	binding,	and	sali-
vary	 secretion	 biological	 pathways.	 Genes	 related	 to	 embryonic	
development	(e.g.,	CHST11	and	PTPRR),	cellular	stress	response,	
and	blood	clotting	(e.g.,	DNAJB2,	EHD3)	were	also	included.	The	
diversity of MDDgene was consistent with the fact that MDD was 
a	multigene	 and	 complex	 disease	 involving	 various	 physiological	
procedures.

3.2 | Functional enrichment analysis of MDDgene

Functional enrichment analysis revealed a more detailed biologi-
cal function spectrum of these MDD-related genes (Table S2). 
Among	the	GO	terms	overrepresented	in	MDDgene,	those	related	
to	 cell	 signaling,	 synaptic	 transmission,	 cell	 transport,	 endocrine	
system,	or	response	to	stimuli	were	included.	GO	terms	associated	
with	 response	 to	 stimuli	 (e.g.,	 multicellular	 organismal	 response	
to	 stress,	 response	 to	wounding,	 response	 to	 light	 stimulus,	 and	
response to pain) were overrepresented. Such results were in line 
with	 previous	 findings	 that	 complicated	 correlations	 existed	 be-
tween the pathophysiological state of MDD and stress. Biological 
process	terms	related	to	synaptic	transmission	(e.g.,	trans-synaptic	
signaling;	 synaptic	 signaling;	 neuron–neuron	 synaptic	 transmis-
sion; positive regulation of synaptic transmission; synaptic trans-
mission,	 glutamatergic;	 and	 synaptic	 transmission,	 GABAergic),	
dopamine	 signaling	 (dopamine	 transport,	 dopamine	 metabolic	
process,	dopamine	uptake	 involved	 in	synaptic	transmission,	and	
dopamine	uptake),	and	other	neural	 functions	 (e.g.,	 regulation	of	
synaptic	plasticity,	long-term	synaptic	potentiation,	neuron	apop-
totic	 process,	 and	memory)	were	 also	 enriched.	Meanwhile,	 GO	
terms	related	to	endocrine	system	(e.g.,	hormone	secretion,	insu-
lin	secretion,	response	to	insulin,	and	response	to	hormone)	were	
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overrepresented. These results demonstrated that the members 
of MDDgene were diverse in molecular functions.

3.3 | Pathways enriched in MDD candidate genes

Pathway	analysis	 identified	73	pathways	with	 significant	enrich-
ment in MDDgene (Table 1). Several pathways related to neuro-
transmission	 or	 neural	 function	 modulation	 were	 identified,	 for	
example,	 neuroactive	 ligand–receptor	 interaction,	 glutamatergic	
synapse,	serotonergic	synapse,	dopaminergic	synapse,	GABAergic	
synapse,	 cholinergic	 synapse,	 and	 retrograde	 endocannabinoid	
signaling.	 A	 number	 of	 pathways	 involved	 in	 cellular	 signaling	
cascade	 were	 enriched,	 for	 example,	 cAMP	 signaling	 pathway,	
MAPK	signaling	pathway,	and	calcium	signaling	pathway.	In	addi-
tion,	pathways	related	to	neurological	disorders,	such	as	morphine	
addiction,	amphetamine	addiction,	Alzheimer's	disease,	and	alco-
holism,	were	significantly	enriched.	Moreover,	immune	response-
associated biological processes consisting of inflammatory bowel 
disease,	inflammatory	mediator	regulation	of	TRP	channels,	inter-
leukin-17	 (IL-17)	 signaling	 pathway,	 and	 T-cell	 receptor	 signaling	
pathway	were	also	significantly	enriched,	suggesting	the	immuno-
logical system was involved in the etiology and pathological pro-
cess of MDD.

We	further	analyzed	the	cross	talk	between	the	enriched	path-
ways that were significantly associated with MDD. Most of these 
pathways	interacted	with	one	or	more	other	pathways,	which	re-
sulted	 in	a	cross	talk	network	with	68	nodes	 (i.e.,	pathways)	and	
325	 edges	 (i.e.,	 connection	 between	 two	neighboring	 pathways;	
Figure 2). Based on the biological function and the relevance of 
these	pathways,	we	could	roughly	divide	the	pathways	into	three	
modules. Pathways in the first module were mainly related to cel-
lular	signaling	transduction	(e.g.,	cAMP	signaling	pathway,	calcium	
signaling	 pathway,	 cGMP-PKG	 signaling	 pathway,	 and	 phospho-
lipase	D	 signaling	 pathway)	 or	 the	 endocrine	 control	 (e.g.,	 renin	
secretion,	 aldosterone	 synthesis	 and	 secretion,	 oxytocin	 signal-
ing	 pathway,	 thyroid	 hormone	 synthesis,	 and	 estrogen	 signaling	
pathway).	 In	the	second	module,	many	pathways	were	related	to	
neuronal	 function	 like	 neurotransmission	 (e.g.,	 cholinergic	 syn-
apse,	 dopaminergic	 synapse,	 GABAergic	 synapse,	 glutamatergic	
synapse,	 and	 long-term	 depression),	 neurological	 disorders	 (e.g.,	
amphetamine	 addiction,	 cocaine	 addiction,	 morphine	 addiction,	
nicotine	 addiction,	 alcoholism,	 amyotrophic	 lateral	 sclerosis,	 and	
Alzheimer's	disease),	endocrine,	and	metabolic	diseases	(e.g.,	type	
II diabetes mellitus and insulin resistance). The last module was 
largely	concentrated	 in	pathways	 related	 to	 the	 immune	system,	
such	as	cytosolic	DNA-sensing	pathway,	 IL-17	signaling	pathway,	
NOD-like	 receptor	 signaling	 pathway,	 T-cell	 receptor	 signaling	
pathway	and	Th17	cell	differentiation,	and	Toll-like	 receptor	sig-
naling pathway. These three modules were not independent of 
each	 other;	 instead,	 they	 were	 interconnected	 by	 one	 or	 more	
pathways.	 In	 this	 cross	 talk	network,	 a	 few	other	 types	of	path-
ways	related	to	biological	processes	such	as	aging,	apoptosis,	and	

environmental	adaptation	were	also	 included.	Thus,	 the	etiology	
and development of MDD could be the consequence of the abnor-
mality in multiple systems.

3.4 | MDD-specific network

To	further	explore	the	feature	of	genes	associated	with	MDD,	we	
constructed a subnetwork for the disease from the human pro-
tein–protein	interaction	network	via	the	Steiner	minimal	tree	algo-
rithm	(Li,	Mao,	Mao,	&	Wei,	2008;	Sadeghi	&	Fröhlich,	2013),	which	
tried to connect the largest number of input nodes (genes included 
in MDDgene in our case) via the least number of interlinking nodes 
(Figure	3).	The	 subnetwork	contained	203	nodes	and	415	edges	
(interactions	between	genes).	Of	the	genes	in	MDDgene,	168	out	
of	 255	 were	 included	 in	 the	 MDD-specific	 network,	 which	 ac-
counted	 for	 65.9%	 of	MDDgene	 and	 82.8%	 of	 the	 genes	 in	 the	
network,	 demonstrating	 a	 relatively	 high	 coverage	 of	MDDgene	
in the subnetwork.

At	 the	 same	 time,	 35	 genes	 outside	 of	MDDgene	were	 intro-
duced	 into	 the	MDD-specific	 molecular	 network	 (Table	 2).	 Given	
these genes interacted closely with those known to be related to 
MDD,	they	might	also	be	involved	in	the	pathogenesis	of	the	disease	
phenotype. Further functional enrichment analysis indicated that 
these	genes	were	mainly	involved	in	neuronal	development,	behav-
ior,	learning	and	memory,	and	glutamate	receptor	signaling.

4  | DISCUSSION

Recent	 years,	 our	 understanding	on	 the	molecular	mechanisms	of	
MDD has been greatly improved. With the advancement and matu-
rity	of	high-throughput	technology,	we	are	able	to	identify	the	ele-
ments	related	to	this	disease	on	much	larger	scales.	Although	more	
and more genes/proteins potentially involved in the disease have 
been	reported,	a	thorough	analysis	of	the	biochemical	processes	as-
sociated with the pathogenesis of MDD from the molecular aspect 
is	 still	missing.	 In	such	case,	a	systematic	analysis	of	MDD-related	
genes via a pathway- and network-based analytical framework will 
provide us insight on the disease beyond the single candidate gene-
based	analyses.	In	this	study,	we	tried	to	pool	and	curate	the	genes	
related	to	MDD	from	human	genetic	studies,	and	systematically	de-
lineated the interconnection of these genes based on pathway and 
network analysis.

Compared	with	candidate	gene(s)-based	approach,	a	comprehen-
sive analysis on MDD-related genes conducted in this study has its 
own	advantages.	By	 implementing	an	extensive	screening	and	com-
pilation	 of	 human	 genes	 from	 genetic	 association	 studies	 on	MDD,	
we	obtained	valuable	gene	source	data	for	further	analysis.	Especially,	
since the genetic susceptibility of MDD is related to multiple genes 
functioning	cooperatively	(Williams-Skipp	et	al.,	2009),	 it	 is	essential	
to	 explore	 the	 biological	 features	 of	 genes	 related	 to	MDD	 from	 a	
perspective	of	molecular	network	level.	At	the	same	time,	by	focusing	
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TA B L E  1   Pathways enriched in MDDgenea

Pathways p valueb FDRc Genes included in the pathwayd

Neuroactive	ligand–receptor	
interaction

4.76	×	10−18 3.93	×	10−15 GABRB3,	GABRD,	GABRG2,	AVPR1B,	GHRHR,	CNR1,	VIPR2,	DRD1,	
HTR1A,	DRD4,	HTR1B,	HTR2A,	HTR2C,	HTR4,	HTR6,	GRIA1,	GRIA2,	
GRIA4,	GRIK1,	GRIK4,	GRIN2A,	GRIN2B,	NR3C1,	GABBR2,	GRM7,	
GRM8,	CRHR1,	CRHR2,	OPRM1,	P2RX7,	HCRTR1,	GABRA4

Glutamatergic	synapse 1.53	×	10−17 8.43	×	10−15 ADCY3,	ADCY6,	ADCY9,	ITPR1,	PLD1,	GNB1,	GNB3,	HOMER1,	
CACNA1A,	CACNA1C,	CACNA1D,	GRIA1,	GRIA2,	GRIA4,	GRIK1,	
GRIK4,	GRIN2A,	GRIN2B,	GRM7,	GRM8,	SLC1A2,	PRKCG

Serotonergic synapse 1.93	×	10−16 7.99	×	10−14 GABRB3,	CYP2C19,	CYP2D6,	MAOA,	ITPR1,	GNB1,	GNB3,	CACNA1A,	
CACNA1C,	CACNA1D,	CACNA1S,	HTR1A,	HTR1B,	HTR2A,	HTR2C,	
HTR4,	HTR6,	SLC6A4,	TPH2,	PRKCG,	TPH1

Morphine addiction 5.67	×	10−16 1.72	×	10−13 GABRB3,	GABRD,	GABRG2,	PDE1C,	PDE2A,	PDE4B,	ADCY3,	ADCY6,	
ADCY9,	GNB1,	GNB3,	PDE11A,	CACNA1A,	DRD1,	GABBR2,	OPRM1,	
ARRB1,	PRKCG,	GABRA4

cAMP	signaling	pathway 3.10	×	10−15 7.32	×	10−13 PDE4B,	ADCY3,	ADCY6,	ADCY9,	BDNF,	NFKB1,	AKT1,	PLD1,	NPY,	
CACNA1C,	CACNA1D,	VIPR2,	CACNA1S,	DRD1,	HTR1A,	HTR1B,	
HTR4,	HTR6,	GRIA1,	GRIA2,	GRIA4,	GRIN2A,	GRIN2B,	GABBR2,	
CREB1

Dopaminergic synapse 3.76	×	10−15 7.77	×	10−13 MAOA,	ITPR1,	AKT1,	GNB1,	GNB3,	CACNA1A,	CACNA1C,	CACNA1D,	
DRD1,	DRD4,	COMT,	GRIA1,	GRIA2,	GRIA4,	GRIN2A,	GRIN2B,	CREB1,	
GSK3B,	SLC6A3,	ARNTL,	PRKCG

Retrograde endocannabinoid 
signaling

4.40	×	10−15 8.08	×	10−13 GABRB3,	GABRD,	GABRG2,	ADCY3,	ADCY6,	ADCY9,	ITPR1,	GNB1,	
GNB3,	CNR1,	CACNA1A,	CACNA1C,	CACNA1D,	CACNA1S,	GRIA1,	
GRIA2,	GRIA4,	PRKCG,	GABRA4

GABAergic	synapse 1.20	×	10−12 1.81	×	10−10 GABRB3,	GABRD,	GABRG2,	ADCY3,	ADCY6,	ADCY9,	GNB1,	GNB3,	
CACNA1A,	CACNA1C,	CACNA1D,	CACNA1S,	GABBR2,	SLC6A1,	
PRKCG,	GABRA4

Circadian entrainment 6.06	×	10−11 7.71	×	10−9 ADCY3,	ADCY6,	ADCY9,	ITPR1,	GNB1,	GNB3,	CACNA1C,	CACNA1D,	
GRIA1,	GRIA2,	GRIA4,	GRIN2A,	GRIN2B,	CREB1,	PRKCG

Amphetamine	addiction 8.56	×	10−11 1.01	×	10−8 MAOA,	CACNA1C,	CACNA1D,	DRD1,	GRIA1,	GRIA2,	GRIA4,	GRIN2A,	
GRIN2B,	CREB1,	SIRT1,	SLC6A3,	PRKCG

MAPK	signaling	pathway 3.26	×	10−10 3.37	×	10−8 CACNA2D2,	BDNF,	PTPRR,	NFKB1,	NGF,	AKT1,	CACNA1A,	CACNA1C,	
CACNA1D,	CACNA1E,	CACNA1S,	CACNB2,	NTRK2,	TGFB1,	
CACNA2D4,	ARRB1,	EGF,	PRKCG,	tumor	necrosis	factor	(TNF),	
MAP3K13,	IL1B,	TP53

Nicotine	addiction 8.21	×	10−10 7.14	×	10−8 GABRB3,	GABRD,	GABRG2,	CACNA1A,	GRIA1,	GRIA2,	GRIA4,	
GRIN2A,	GRIN2B,	GABRA4

Calcium signaling pathway 1.63	×	10−9 1.28	×	10−7 PDE1C,	AVPR1B,	ADCY3,	ADCY9,	ITPR1,	CACNA1A,	CACNA1C,	
CACNA1D,	CACNA1E,	CACNA1S,	DRD1,	HTR2A,	HTR2C,	HTR4,	
HTR6,	GRIN2A,	P2RX7,	PRKCG

Dilated cardiomyopathy 3.35	×	10−8 2.05	×	10−6 CACNA2D2,	ADCY3,	ADCY6,	ADCY9,	CACNA1C,	CACNA1D,	
CACNA1S,	CACNB2,	TGFB1,	CACNA2D4,	TNF,	MYBPC3

Cholinergic synapse 4.83	×	10−8 2.85	×	10−6 ADCY3,	ADCY6,	ADCY9,	ITPR1,	AKT1,	GNB1,	GNB3,	CACNA1A,	
CACNA1C,	CACNA1D,	CACNA1S,	CREB1,	PRKCG

Estrogen signaling pathway 8.81	×	10−8 4.87	×	10−6 ESR1,	ADCY3,	SHC3,	ADCY6,	ADCY9,	ITPR1,	AKT1,	FKBP4,	FKBP5,	
GABBR2,	CREB1,	OPRM1

Cocaine addiction 1.07	×	10−7 5.51	×	10−6 MAOA,	BDNF,	NFKB1,	DRD1,	GRIA2,	GRIN2A,	GRIN2B,	CREB1,	
SLC6A3

Aldosterone	synthesis	and	secretion 1.19	×	10−7 5.61	×	10−6 PDE2A,	ADCY3,	ADCY6,	ADCY9,	ITPR1,	HSD3B1,	CACNA1C,	
CACNA1D,	CACNA1S,	CREB1,	PRKCG

Insulin secretion 1.57	×	10−6 5.69	×	10−5 ADCY3,	ADCY6,	ADCY9,	CACNA1C,	CACNA1D,	CACNA1S,	PCLO,	
CREB1,	PRKCG,	SNAP25

Amyotrophic	lateral	sclerosis	(ALS) 1.96	×	10−6 6.75	×	10−5 APAF1,	GRIA1,	GRIA2,	GRIN2A,	GRIN2B,	SLC1A2,	TNF,	TP53

(Continues)
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Pathways p valueb FDRc Genes included in the pathwayd

Longevity	regulating	pathway 2.40	×	10−6 7.93	×	10−5 RPS6KB1,	ADCY3,	ADCY6,	ADCY9,	NFKB1,	AKT1,	PRKAG2,	CREB1,	
SIRT1,	TP53

Taste transduction 1.04	×	10−5 2.39	×	10−4 PDE1C,	ADCY6,	GNB3,	CACNA1A,	CACNA1C,	HTR1A,	HTR1B,	
GABBR2,	GABRA4

Oxytocin	signaling	pathway 1.06	×	10−5 2.41	×	10−4 CACNA2D2,	ADCY3,	ADCY6,	ADCY9,	ITPR1,	PRKAG2,	CACNA1C,	
CACNA1D,	CACNA1S,	CACNB2,	CACNA2D4,	PRKCG

Circadian rhythm 1.11	×	10−5 2.48	×	10−4 PRKAG2,	NPAS2,	NR1D1,	CREB1,	CRY1,	ARNTL

Inflammatory bowel disease (IBD) 1.27	×	10−5 2.65	×	10−4 IL10,	STAT1,	NFKB1,	TBX21,	TGFB1,	TNF,	IL1B,	IL6

Renin secretion 1.27	×	10−5 2.65	×	10−4 PDE1C,	ACE,	ADCY6,	ITPR1,	CACNA1C,	CACNA1D,	CACNA1S,	CREB1

Gap	junction 1.68	×	10−5 3.32	×	10−4 ADCY3,	ADCY6,	ADCY9,	ITPR1,	DRD1,	HTR2A,	HTR2C,	EGF,	PRKCG

Adrenergic	signaling	in	
cardiomyocytes

3.19	×	10−5 5.73	×	10−4 CACNA2D2,	ADCY3,	ADCY6,	ADCY9,	AKT1,	CACNA1C,	CACNA1D,	
CACNA1S,	CACNB2,	CREB1,	CACNA2D4

Alzheimer's	disease 3.25	×	10−5 5.78	×	10−4 NDUFV2,	ITPR1,	CACNA1C,	CACNA1D,	CACNA1S,	APAF1,	GRIN2A,	
GRIN2B,	APOE,	GSK3B,	TNF,	IL1B

Inflammatory mediator regulation of 
TRP channels

3.69	×	10−5 6.35	×	10−4 ADCY3,	ADCY6,	ADCY9,	ITPR1,	NGF,	HTR2A,	HTR2C,	PRKCG,	IL1B

Purine metabolism 4.08	×	10−5 6.95	×	10−4 PDE1C,	PDE2A,	PDE4B,	PDE6C,	ADCY3,	ADCY6,	ADCY9,	ADK,	
PDE11A,	XDH,	NT5C2,	PDE5A

Tryptophan metabolism 5.10	×	10−5 8.18	×	10−4 MAOA,	IDO1,	IDO2,	EHHADH,	TPH2,	TPH1

Alcoholism 5.37	×	10−5 8.46	×	10−4 MAOA,	SHC3,	BDNF,	GNB1,	GNB3,	NPY,	DRD1,	NTRK2,	GRIN2A,	
GRIN2B,	CREB1,	SLC6A3

Longevity	regulating	pathway—mul-
tiple species

7.87	×	10−5 1.22	×	10−3 RPS6KB1,	ADCY3,	ADCY6,	ADCY9,	AKT1,	PRKAG2,	SIRT1

cGMP-PKG	signaling	pathway 9.88	×	10−5 1.41	×	10−3 PDE2A,	ADCY3,	ADCY6,	ADCY9,	ITPR1,	AKT1,	CACNA1C,	CACNA1D,	
CACNA1S,	CREB1,	PDE5A

Long-term	potentiation 1.30	×	10−4 1.77	×	10−3 ITPR1,	CACNA1C,	GRIA1,	GRIA2,	GRIN2A,	GRIN2B,	PRKCG

GnRH	signaling	pathway 1.59	×	10−4 2.05	×	10−3 ADCY3,	ADCY6,	ADCY9,	ITPR1,	PLD1,	CACNA1C,	CACNA1D,	
CACNA1S

Drug	metabolism—cytochrome	
P450

1.71	×	10−4 2.18	×	10−3 CYP2B6,	CYP2C19,	CYP2D6,	MAOA,	UGT2A2,	UGT2A1,	UGT2B4

Neurotrophin	signaling	pathway 1.81	×	10−4 2.27	×	10−3 SHC3,	BDNF,	NFKB1,	NGF,	AKT1,	NTRK2,	NTRK3,	GSK3B,	TP53

Phospholipase D signaling pathway 1.81	×	10−4 2.27	×	10−3 AVPR1B,	ADCY3,	SHC3,	ADCY6,	ADCY9,	AKT1,	PLD1,	GRM7,	GRM8,	
EGF

Vascular	smooth	muscle	contraction 2.06	×	10−4 2.47	×	10−3 AVPR1B,	ADCY3,	ADCY6,	ADCY9,	ITPR1,	CACNA1C,	CACNA1D,	
CACNA1S,	PRKCG

Thyroid hormone synthesis 2.43	×	10−4 2.81	×	10−3 ADCY3,	ADCY6,	ADCY9,	ITPR1,	GPX5,	CREB1,	PRKCG

Chemokine signaling pathway 2.61	×	10−4 2.98	×	10−3 ADCY3,	SHC3,	ADCY6,	ADCY9,	STAT1,	NFKB1,	AKT1,	GNB1,	GNB3,	
GSK3B,	ARRB1

Insulin resistance 4.48	×	10−4 4.80	×	10−3 RPS6KB1,	NFKB1,	AKT1,	PRKAG2,	CREB1,	GSK3B,	TNF,	IL6

Long-term	depression 5.03	×	10−4 5.33	×	10−3 ITPR1,	CACNA1A,	GRIA1,	GRIA2,	CRHR1,	PRKCG

Apelin	signaling	pathway 5.46	×	10−4 5.57	×	10−3 RPS6KB1,	ADCY3,	ADCY6,	ADCY9,	ITPR1,	AKT1,	GNB1,	PRKAG2,	
GNB3

ErbB signaling pathway 6.12	×	10−4 6.17	×	10−3 NRG1,	RPS6KB1,	SHC3,	AKT1,	GSK3B,	EGF,	PRKCG

Rap1 signaling pathway 8.72	×	10−4 7.75	×	10−3 MAGI1,	ADCY3,	ADCY6,	ADCY9,	NGF,	AKT1,	CNR1,	GRIN2A,	GRIN2B,	
EGF,	PRKCG

Type II diabetes mellitus 1.02	×	10−3 8.77	×	10−3 CACNA1A,	CACNA1C,	CACNA1D,	CACNA1E,	TNF

Adipocytokine	signaling	pathway 1.06	×	10−3 9.09	×	10−3 NFKB1,	AKT1,	PRKAG2,	NPY,	POMC,	TNF

Prolactin signaling pathway 1.15	×	10−3 9.71	×	10−3 ESR1,	SHC3,	STAT1,	NFKB1,	AKT1,	GSK3B

AGE-RAGE	signaling	pathway	in	
diabetic complications

1.41	×	10−3 1.12	×	10−2 STAT1,	NFKB1,	AKT1,	TGFB1,	TNF,	IL1B,	IL6

TA B L E  1   (Continued)

(Continues)
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on	the	biological	correlation	of	genes,	pathway	and	network	analysis	
can not only give us a more comprehensive view for the pathological 
mechanisms	of	MDD,	but	they	also	are	more	robust	to	the	influence	
of false-positive genes.

As	 revealed	 by	 function	 enrichment	 analysis,	 genes	 related	 to	
MDD	 were	 diverse	 in	 function,	 mainly	 involved	 in	 cell	 signaling,	
immune	 system,	metabolic	 process,	 drug	 response	 processes,	 and	
neurodevelopment.	Gene	ontology	biological	process	terms	such	as	
reverse	cholesterol	transport,	positive	regulation	of	IL-6	production,	
response	 to	ethanol,	 lipoprotein	metabolic	process,	diol	metabolic	
process,	 xenobiotic	metabolic	 process,	 and	 regulation	 of	 neuronal	
synaptic	plasticity	were	overrepresented	among	MDDgene,	 imply-
ing the important roles of these processes in the pathological pro-
cesses	of	MDD.	 In	 addition,	we	noticed	 terms	 related	 to	memory,	
visual	 learning,	social	behavior,	sleep,	axon	regeneration,	and	axon	
guidance	were	also	enriched	 in	MDDgene,	consistent	with	a	priori	
biological findings on MDD.

Biological pathways enriched in MDDgene were involved in 
multiple	biological	systems,	including	the	nervous	system,	immune	
system,	 endocrine	 systems,	 and	 signal	 transduction	 systems,	 or	
related to disorders like drug addiction and immune metabolism 
diseases.	Actually,	abnormality	or	dysregulation	of	many	of	these	
pathways has been known to be related to neurological diseases. 
For	example,	calcium	signaling	pathway	has	been	reported	to	be	
involved	in	diseases	such	as	nicotine	addiction	(Wang	&	Li,	2010),	
Alzheimer's	disease	(Karttunen	et	al.,	2011),	bipolar	disorder	and	
schizophrenia	(Berridge,	2014),	and	depression	(Donev	&	Alawam,	
2015;	Duman	&	Voleti,	2012).	Another	example	is	the	pathway	of	
GABAergic	synapse.	As	the	most	abundant	inhibitory	neurotrans-
mitter	in	the	mammalian	central	nervous	system	(Lloyd,	Perrault,	
&	 Zivkovic,	 2017;	 Zhang	 et	 al.,	 2018),	 the	 defect	 of	 GABAergic	
neurons	 in	 the	 frontal	 cortex	may	be	 responsible	 for	 the	patho-
genesis	 and	development	of	MDD	 (Czéh	et	 al.,	 2018).	 The	 iden-
tification	 of	GABAergic	 synapse	 pathway	 in	MDDgene	 provides	

Pathways p valueb FDRc Genes included in the pathwayd

Melanogenesis 1.58	×	10−3 1.23	×	10−2 ADCY3,	ADCY6,	ADCY9,	POMC,	CREB1,	GSK3B,	PRKCG

Osteoclast differentiation 1.61	×	10−3 1.24	×	10−2 SPI1,	STAT1,	NFKB1,	AKT1,	CREB1,	TGFB1,	TNF,	IL1B

Gastric	acid	secretion 1.64	×	10−3 1.25	×	10−2 ADCY3,	ADCY6,	ADCY9,	ITPR1,	KCNK2,	PRKCG

Ras signaling pathway 1.64	×	10−3 1.25	×	10−2 SHC3,	NFKB1,	NGF,	AKT1,	PLD1,	GNB1,	GNB3,	GRIN2A,	GRIN2B,	EGF,	
PRKCG

FoxO	signaling	pathway 1.77	×	10−3 1.31	×	10−2 IL10,	AKT1,	PRKAG2,	HOMER1,	SIRT1,	TGFB1,	EGF,	IL6

Toll-like receptor signaling pathway 1.88	×	10−3 1.35	×	10−2 STAT1,	NFKB1,	AKT1,	IKBKE,	TNF,	IL1B,	IL6

Cardiac muscle contraction 2.01	×	10−3 1.39	×	10−2 CACNA2D2,	CACNA1C,	CACNA1D,	CACNA1S,	CACNB2,	CACNA2D4

Regulation of lipolysis in adipocytes 2.10	×	10−3 1.45	×	10−2 ADCY3,	ADCY6,	ADCY9,	AKT1,	NPY

NOD-like	receptor	signaling	
pathway

2.37	×	10−3 1.59	×	10−2 STAT1,	ITPR1,	NFKB1,	NAMPT,	P2RX7,	IKBKE,	TNF,	IL1B,	IL6

Steroid hormone biosynthesis 2.89	×	10−3 1.81	×	10−2 UGT2A2,	UGT2A1,	UGT2B4,	HSD3B1,	COMT

Thyroid hormone signaling pathway 3.48	×	10−3 2.10	×	10−2 ESR1,	STAT1,	DIO1,	AKT1,	GSK3B,	PRKCG,	TP53

Rheumatoid arthritis 4.12	×	10−3 2.34	×	10−2 ATP6V1B2,	TGFB1,	TNF,	CTLA4,	IL1B,	IL6

Cytosolic	DNA-sensing	pathway 4.43	×	10−3 2.47	×	10−2 NFKB1,	IL33,	IKBKE,	IL1B,	IL6

IL-17	signaling	pathway 4.84	×	10−3 2.67	×	10−2 NFKB1,	GSK3B,	IKBKE,	TNF,	IL1B,	IL6

Bile secretion 6.88	×	10−3 3.45	×	10−2 ADCY3,	ADCY6,	ADCY9,	ABCB1,	UGT2B4

Hypoxia-Inducible	Factor	(HIF-1)	
signaling pathway

7.21	×	10−3 3.60	×	10−2 RPS6KB1,	NFKB1,	AKT1,	EGF,	PRKCG,	IL6

T-cell receptor signaling pathway 7.91	×	10−3 3.80	×	10−2 IL10,	NFKB1,	AKT1,	GSK3B,	TNF,	CTLA4

Metabolism	of	xenobiotics	by	
cytochrome	P450

8.18	×	10−3 3.90	×	10−2 CYP2B6,	CYP2D6,	UGT2A2,	UGT2A1,	UGT2B4

Apoptosis 8.87	×	10−3 4.13	×	10−2 ITPR1,	NFKB1,	NGF,	AKT1,	APAF1,	TNF,	TP53

Th17	cell	differentiation 9.46	×	10−3 4.22	×	10−2 STAT1,	NFKB1,	TBX21,	TGFB1,	IL1B,	IL6

TNF	signaling	pathway 9.88	×	10−3 4.37	×	10−2 NFKB1,	AKT1,	CREB1,	TNF,	IL1B,	IL6

Abbreviations:	FDR,	false	discovery	rate;	IL-17,	interleukin-17;	MDD,	major	depressive	disorder.
aMDDgene:	Genes	related	to	major	depressive	disorder.	
bp	value	was	calculated	by	Fisher's	exact	test.	
cFDR	was	calculated	by	Benjamini	&	Hochberg	(BH)	method.	
dGenes	in	MDDgene	that	were	included	in	the	specific	pathway.	

TA B L E  1   (Continued)
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additional	 evidence	 that	 GABAergic	 dysfunction	 may	 lead	 to	
mood	 and	 cognitive	 symptoms	 of	 MDD.	 Interleukin-17	 in	 the	
IL-17	 signaling	 pathway	 plays	 a	 crucial	 role	 in	 acute	 and	 chronic	
inflammatory	 responses	 (Zhao,	 Li,	 Li,	Wang,	Manthari,	 &	Wang,	
2018).	Neuroendocrine	 and	 immune	 system	 interactions	play	 an	
important	role	in	stress	response	(Ashley	&	Demas,	2017;	Dantzer,	
2018).	 Such	 results	 suggest	 that	 the	 immune	 system	 plays	 im-
portant roles in the onset of MDD. Both stress and inflammatory 
cytokine activation have been reported to have adverse effect 
on	 the	neurogenesis	 and	neural	 plasticity	 (Syed	et	 al.,	 2018).	By	
comparing our results with that of a meta-analysis on genes im-
plicated	 in	MDD	 (Gatt	 et	 al.,	 2015;	Manoharan	 et	 al.,	 2016;	 Yin	
et	 al.,	 2016),	we	 found	 that	most	of	 the	pathways	 reported	ear-
lier	were	also	identified	in	the	current	study.	Further,	as	indicated	
by	 the	 pathway	 cross	 talk	 analysis,	 multiple	 physiological	 path-
ways and their interaction may be critical in the pathogenesis of 
MDD.	 Then,	 by	 integrating	 the	 result	 from	 this	 study	 and	 prior	
biological	knowledge	on	 the	molecular	mechanisms	of	MDD,	we	
summarized	 a	molecular	 network	 of	 the	major	 pathway	 interac-
tion	 (Figure	 4).	 In	 this	 molecular	 network,	 some	 key	 genes	 and	
pathways	work	 together,	 such	 as	 glutamate	 synapses,	 dopamine	
synapses,	 serotonin	 synapses,	 gamma-aminobutyric	 acid	 (GABA)	
synapses,	 cAMP-mediated	 signal	 transduction	 cascades	 and	 cir-
cadian	rhythm,	and	other	signaling	pathways.	Among	them,	CaM	

and	CaMKII	play	an	important	role	in	long-term	potentiation	and	
long-term	depression,	and	they	connect	multiple	pathway	genes,	
suggesting	that	CaM	and	CaMKII	may	play	an	important	role	in	the	
development of synaptic plasticity. Perhaps it is the key factor that 
affects	 the	development	of	MDD.	 In	addition,	 the	genes	CLOCK	
and	BMALL	are	essential	in	several	pathways	related	to	MDD	(e.g.,	
prolactin	signaling	and	circadian	rhythm),	suggesting	they	may	be	
involved in the development of MDD. Since these pathways are in-
terconnected	and	they	function	cooperatively,	dysfunction	in	one	
pathway may cause abnormality or dysregulation in others and 
eventually lead to the onset and development of MDD.

In	the	pathway	cross	talk	network,	there	were	several	pathways	
related	to	other	diseases,	such	as	pathway	of	Alzheimer's	disease,	
AGE-RAGE	 signaling	 pathway	 in	 diabetic	 complication,	 pathway	
of	 alcoholism,	 and	pathway	of	dilated	cardiomyopathy.	Available	
evidence shows that each of these diseases has close correlation 
MDD.	For	example,	it	has	been	found	that	depression	is	associated	
with	an	increased	risk	of	Alzheimer's	disease,	with	MDD	patients	
being	1.5	times	more	likely	to	develop	Alzheimer's	disease	and	20%	
to	50%	patients	with	Alzheimer's	disease	having	depressive	symp-
toms	(Gibson	et	al.,	2017;	Saczynski.	et	al.,	2010).	Comparison	of	
the molecules involved in the two diseases shows that they share a 
number	of	genes,	regulatory	elements	like	miRNAs,	and	quite	sev-
eral	biological	processes	and	pathways	 (Hu,	Xin,	Xin,	Hu,	Zhang,	

F I G U R E  2   Cross talk between pathways related to major depressive disorder (MDD). The circular nodes represent pathways significantly 
enriched	in	the	genes	in	associated	with	MDD,	and	each	edge	represents	the	cross	talk	between	the	two	connected	pathways,	with	the	
width	corresponding	to	strength	of	the	cross	talk	(i.e.,	the	average	of	the	Jaccard	Coefficient	and	the	Overlap	Coefficient).	The	nodes	labeled	
with	numbers	represent	the	following	pathways:	1,	“vascular	smooth	muscle	contraction”;	2,	“dilated	cardiomyopathy”;	3,	“estrogen	signaling	
pathway”;	4,	“gap	junction”;	5,	“inflammatory	mediator	regulation	of	TRP	channels”;	6,	“long-term	potentiation”;	7,	“longevity	regulated	
pathway-multiple	species”;	8,	“Rap1	signaling	pathway”;	9,	“neuroactive	ligand–receptor	interaction”;	10,	“amyotrophic	lateral	sclerosis”;	11,	
“taste	transduction”;	12,	“insulin	resistance”;	13,	“apoptosis”;	14,	“AGE-RAGE	signaling	pathway	in	diabetic	complications”;	and	15,	“prolactin	
signaling	pathway”
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&	 Wang,	 2017;	 Mendes-Silva	 et	 al.,	 2016),	 which	 is	 consistent	
with the prior knowledge that depression may be a risk factor for 
Alzheimer's	disease	or	part	of	the	symptoms	of	dementia.	We	also	
detected	pathways	related	to	diabetes	(i.e.,	insulin	secretion,	insu-
lin	resistance,	and	type	II	diabetes	mellitus).	Connection	between	
diabetes	and	depression	has	been	studied	extensively,	and	there	
is	 clear	 symbiotic	 relationship	 between	 the	 two	 diseases	 (Han,	
2012;	Lloyd,	Pambianco,	Pambianco,	&	Orchard,	2010;	Patterson,	
Khazall,	Khazall,	MacKay,	Anisman,	&	Abizaid,	2013;	Roy	&	Lloyd,	
2012;	Semenkovich,	Brown,	Brown,	Svrakic,	&	Lustman,	2015).	A	
possible	 explanation	 is	 that	 diabetes	may	 affect	 the	 function	 of	
brain	 regions	 like	 hippocampus	 (Semenkovich	 et	 al.,	 2015),	 the	

abnormality in which may be involved in the pathogenesis of MDD 
(Colla	et	al.,	2007;	Ho,	Sommers,	Sommers,	&	Lucki,	2013).

In	 the	 subnetwork	 constructed	 by	 genes	 related	 to	MDD,	 six	
genes	outside	of	the	MDDgene,	that	 is,	APP	(amyloid	beta	precur-
sor	protein),	HSP90AB1	(heat-shock	protein	HSP	90-beta),	PRKACA	
(catalytic subunit α	 of	 protein	 kinase	A),	GRB2	 (growth	 factor	 re-
ceptor-bound	protein	2),	PRKCA	 (protein	kinase	C	alpha),	 and	SP1	
(transcription	factor	Sp1),	were	localized	at	the	key	positions	in	the	
subnetwork.	Compared	with	other	genes,	they	interacted	with	more	
genes	 in	 the	network.	We	 further	extracted	 the	genes	 interacting	
with	these	six	genes	to	examine	their	connection	with	other	genes	
(Figure 5). In the genetic interaction network centered on these 

F I G U R E  3   Major depressive disorder specific network. The major depressive disorder (MDD)-specific subnetwork was constructed via 
the	Steiner	minimum	algorithm,	including	203	nodes	and	415	edges.	The	circular	nodes	represent	the	known	genes	related	to	MDD,	while	
the	red	triangular	nodes	represent	the	genes	newly	introduced	to	the	subnetwork,	which	may	be	genes	potentially	related	to	MDD.	The	
edge represents the interaction between genes
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genes,	 approximately	 78%	 (54/69)	 of	 the	 genes	were	members	 of	
MDDgene.	Functionally,	pathways	related	to	the	immune	system	or	
the	nervous	system	were	enriched	in	these	genes,	implicating	these	
genes may be involved in MDD through their connection with path-
ways related to the immune system or the nervous system.

Among	 these	 genes,	 APP	 encodes	 the	 precursor	 molecule	 of	
beta	 amyloid,	 the	primary	 component	of	 amyloid	plaques	 found	 in	
the	brains	of	patients	with	Alzheimer's	disease.	 In	our	pathway	en-
richment	 analysis,	 pathway	 related	 to	Alzheimer's	disease	was	also	
enriched	in	MDDgene.	Thus,	even	though	the	evidence	on	the	role	
of	APP	in	the	pathogenesis	of	MDD	is	still	limited,	it	may	be	closely	
related to MDD. Catalytic subunit α	of	protein	kinase	A	and	GRB2	
have been reported to be related to MDD. Previous studies using 
human peripheral and postmortem brain tissue samples have shown 
that	 some	 depressed	 patient's	 exhibit	 reduced	 PRKACA	 activity	
(Kastenhuber.	 et	 al.,	 2017;	 Pandey	 et	 al.,	 2007).	Growth	 factor	 re-
ceptor-binding	protein	2	(Melmed,	Polonsky,	Larsen,	&	Kronenberg,	
2016)	is	a	217	amino	acid	protein	containing	an	SH2	domain	and	a	pair	
of SH3 domains that are constitutions associated with a polyphonic 
sequence	in	the	SOS	protein.	Glombik	et	al.	(2017)	examined	the	ef-
fects	of	the	antidepressant	imipramine,	fluoxetine,	and	tianeptine	on	
the insulin signaling pathway in the brain of adult antenatal stressed 
rats and found that the behavioral effectiveness of antidepressant 
therapy may be related to the beneficial effects of antidepressants 
on the insulin receptor phosphorylation pathway. This result was ob-
tained	by	measuring	mRNA	and	protein	expression	of	insulin,	insulin	
receptor,	insulin	receptor	substrate	(IRS-1,	IRS-2),	and	adaptor	protein	
(SHC1,	GRB2)	before	and	after	administration	 in	 the	 frontal	cortex	
and	hippocampus.	In	the	hippocampus,	it	was	found	to	have	a	certain	
relationship	with	the	adaptor	protein	SHC1/GRB2.	 In	addition,	Sun	
et	al.	 (2011)	 found	that	six	of	 the	seven	SNPs	 in	the	GRB2	gene	 in	
the	Irish	population	showed	significant	association	with	schizophre-
nia,	and	two	of	them	(rs7207618	and	rs9912608)	remained	significant	
after	permutation	test	or	Bonferroni	correction	test,	indicating	that	
GRB2	may	be	a	risk	gene	for	Schizophrenia	in	the	Irish	population.

Although	 our	 analyses	 suggest	 that	 these	 newly	 introduced	
genes	may	be	involved	in	the	pathogenesis	or	development	of	MDD,	
further	investigation	based	on	experiments	is	essential	to	decipher	
their connection with this disease.

Recently	years,	several	models	on	the	mechanisms	of	MDD	have	
been	developed.	For	example,	based	on	the	known	regulatory	net-
work	of	MDD	physiological	pathways,	Stapelberg	et	al.	 (2018)	and	
Stapelberg,	Neumann,	Neumann,	 Shum,	 and	Headrick	 (2019)	 pro-
posed the psycho-immune-neuroendocrine network for MDD. The 
model	mainly	 emphasizes	 the	 key	 transition	 forms	 from	 health	 to	
disease (MDD) state and can diagnose and predict the incidence of 
disease.	Unlike	their	disease	process	model,	our	study	constructed	
a	framework	for	the	analysis	of	complex	disease	susceptible	genes	
based on the approach of biological pathways and protein interaction 
networks; more attention has been paid to the role of disease sus-
ceptible genes and their interactions in the pathogenesis of disease.

There are also some databases related to the genetic informa-
tion	of	MDD,	but	no	dataset	specific	for	MDD.	As	MDD	is	a	complex	

TA B L E  2  Genes	included	in	MDD	subnetwork	but	not	in	MDD	
gene seta

Gene 
ID

Gene 
symbol Gene name

8811 GALR2 Galanin	receptor	2

10653 SPINT2 Serine	peptidase	inhibitor,	Kunitz	type	2

29097 CNIH4 Cornichon	family	AMPA	receptor	auxiliary	
protein	4

8332 HIST1H2AL Histone	cluster	1	H2A	family	member	l

3131 HLF HLF,	PAR	bZIP	transcription	factor

2898 GRIK2 Glutamate	ionotropic	receptor	kainate	type	
subunit 2

79586 CHPF Chondroitin	polymerizing	factor

51738 GHRL Ghrelin	and	obestatin	prepropeptide

6857 SYT1 Synaptotagmin 1

2776 GNAQ G	protein	subunit	alpha	q

6804 STX1A Syntaxin	1A

84988 PPP1R16A Protein phosphatase 1 regulatory subunit 
16A

8115 TCL1A T-cell leukemia

79849 PDZD3 PDZ	domain	containing	3

57698 SHTN1 Shootin 1

1742 DLG4 Disks	large	MAGUK	scaffold	protein	4

5520 PPP2R2A Protein phosphatase 2 regulatory subunit 
Balpha

4208 MEF2C Myocyte enhancer factor 2C

5578 PRKCA Protein kinase C alpha

8764 TNFRSF14 TNF	receptor	superfamily	member	14

9737 GPRASP1 G	protein-coupled	receptor-associated	sort-
ing protein 1

5781 PTPN11 Protein	tyrosine	phosphatase,	nonreceptor	
type 11

5566 PRKACA Protein	kinase	cAMP-activated	catalytic	
subunit alpha

5621 PRNP Prion protein

213 ALB Albumin

6667 SP1 Sp1 transcription factor

5499 PPP1CA Protein phosphatase 1 catalytic subunit 
alpha

4093 SMAD9 SMAD	family	member	9

3326 HSP90AB1 Heat-shock protein 90 alpha family class B 
member 1

6925 TCF4 Transcription	factor	4

4149 MAX MYC-associated	factor	X

7046 TGFBR1 Transforming growth factor beta receptor 1

2885 GRB2 Growth	factor	receptor-bound	protein	2

6696 SPP1 Secreted phosphoprotein 1

351 APP Amyloid	beta	precursor	protein

Abbreviations:	MDD,	major	depressive	disorder;	IL-17,	interleukin-17.
aThe collected MDD candidate genes were used as seed nodes to 
construct	and	extract	potential	specific	disease	subnetworks	by	
introducing a minimum number of genes according to the Steiner 
minimum	tree	algorithm.	Among	them,	35	genes	are	newly	introduced	
non-MDD genes. 
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disease	with	high	heterogeneity,	its	occurrence	and	development	are	
inseparable from the interaction of components at different levels 
of	each	system.	MK4MDD	(Guo	et	al.,	2012)	is	a	database	for	MDD	
that contains data from seven different levels of research published in 
MDD	experiments,	as	well	as	some	MDD-related	genes	and	pathways	
collected	through	the	 literature.	As	with	the	genes	 in	the	database,	
we started by studying the literature and employed genes that have 
sufficient evidence to show that they are indeed related to MDD. By 
examining	 the	 various	 information	 in	 the	 database,	 we	 found	 that	
many	 items	of	 the	GO	biological	process	and	pathways	enriched	 in	
the MDDgene detected in this study were also included in the data-
base,	such	as	behavior,	learning	or	memory,	neuron	development	and	
long-term	depression,	vascular	smooth	muscle	contraction,	and	type	
II	diabetes	mellitus.	Thus,	the	gene	set	MDDgene	built	in	this	study	is	
relatively	reliable,	which	could	be	a	useful	resource	for	MDD	study.

There	are	some	limitations	in	the	current	study.	First,	there	are	some	
subjective factors in the procedure of MDD candidate gene collection. 
For	example,	the	collection	of	studies	on	MDD	may	be	not	comprehen-
sive enough because of the specific screening conditions we used; in 
many	candidate	gene	studies,	the	selection	of	genes	could	be	biased	
as they are often chosen based on prior knowledge of the disease it-
self	or	 related	diseases.	For	 such	 reason,	 the	 collected	MDD-related	

genes may include a high fraction of genes also associated with other 
mental	 disorder,	 but	we	 believe	 that	with	 further	 improvement,	 the	
pathogenic genes for MDD will be supplemented and the dataset will 
become	more	 and	more	 reliable.	 Second,	 although	multiple	 pathway	
databases	are	available,	we	only	utilized	the	KEGG	pathway	database	in	
pathway	enrichment	analysis,	which	might	lead	to	bias	in	the	result.	But	
on	the	other	hand,	the	definition	of	pathway	may	be	different	in	various	
pathway	databases,	which	means	pathways	with	same	or	similar	names	
may be not consistent in different databases. To avoid the potential 
confusion	caused	by	merging	multiple	databases,	we	relied	on	KEGG	
pathway	database	for	our	analysis.	Third,	the	current	available	human	
PPIN	is	still	incomplete	and	may	include	false-positive	data,	which	may	
have	 impact	 on	 our	 results.	 Although	 there	 are	 some	 shortcomings	
in	the	current	study,	we	believe	the	results	obtained	by	us	should	be	
reliable.	Finally,	several	studies	on	MDD	via	GWA	meta-analysis	have	
been	published	recently	(Howard	et	al.,	2018,	2019;	Wray	et	al.,	2018).	
Based	on	large	sample	sizes,	a	number	of	novel	variants	potentially	as-
sociated with MDD have been identified in each study. These studies 
clearly	demonstrated	the	power	of	GWA	meta-analysis	in	detecting	the	
genetic	factors	underlying	complex	disorders	like	MDD.	However,	due	
to	the	difficulties	in	data	integration,	we	did	not	include	the	genes	re-
ported in these studies in our analysis.

F I G U R E  4  Diagram	of	the	major	pathways	and	genes	related	to	major	depressive	disorder	(MDD).	MDD	is	a	complex	disease	with	a	
number of genes and pathways coordinated and interrelated by multiple systems. The nodes in the rectangle represent the genes involved 
in	each	pathway.	Small	elliptical	nodes	represent	neurotransmitters	such	as	GABA,	serotonin,	dopamine,	and	glutamate.	The	large	ellipse	
represents the main pathway involved in MDD. The dashed line and the solid line represent the indirect and direct relationship between the 
parts;	the	line	of	the	arrow	or	breakpoint	indicates	the	activation	and	inhibition	of	the	action,	respectively
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5  | CONCLUSION

In	this	study,	we	conducted	a	systematic	analysis	on	genes	genetically	
associated with MDD. Based on the 255 disease-related genes col-
lected,	73	significantly	enriched	pathways	were	identified.	Pathway	
cross talk analysis indicated that three major modules were formed 
by	these	biological	pathways,	with	each	module	including	pathways	
related	 to	 cellular	 signaling	 transduction	or	 the	endocrine	 control,	
neuronal	 function	 or	 neurological	 disorders,	 and	 the	 immune	 sys-
tem,	respectively.	Then,	 the	disease-specific	subnetwork	was	con-
structed and a number of novel genes potentially involved in MDD 
were identified. When more candidate genes associated with MDD 
are	 identified,	 the	procedure	outlined	 in	 this	study	should	provide	
more detailed gene interaction and pathological molecular network 
on	MDD.	In	addition,	information	on	MDD	from	other	sources	can	
also	be	integrated	into	the	framework	used	in	this	study;	then,	we	
will be able to obtain a more comprehensive and meaningful under-
standing on the molecular mechanisms on the pathogenesis of MDD.
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