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Personalized predictions of patient outcomes during and after
hospitalization using artificial intelligence
C. Beau Hilton 1,2,3, Alex Milinovich4, Christina Felix5, Nirav Vakharia6, Timothy Crone7, Chris Donovan7, Andrew Proctor7 and
Aziz Nazha1,2,3✉

Hospital systems, payers, and regulators have focused on reducing length of stay (LOS) and early readmission, with uncertain
benefit. Interpretable machine learning (ML) may assist in transparently identifying the risk of important outcomes. We conducted a
retrospective cohort study of hospitalizations at a tertiary academic medical center and its branches from January 2011 to May
2018. A consecutive sample of all hospitalizations in the study period were included. Algorithms were trained on medical,
sociodemographic, and institutional variables to predict readmission, length of stay (LOS), and death within 48–72 h. Prediction
performance was measured by area under the receiver operator characteristic curve (AUC), Brier score loss (BSL), which measures
how well predicted probability matches observed probability, and other metrics. Interpretations were generated using multiple
feature extraction algorithms. The study cohort included 1,485,880 hospitalizations for 708,089 unique patients (median age of 59
years, first and third quartiles (QI) [39, 73]; 55.6% female; 71% white). There were 211,022 30-day readmissions for an overall
readmission rate of 14% (for patients ≥65 years: 16%). Median LOS, including observation and labor and delivery patients, was
2.94 days (QI [1.67, 5.34]), or, if these patients are excluded, 3.71 days (QI [2.15, 6.51]). Predictive performance was as follows: 30-day
readmission (AUC 0.76/BSL 0.11); LOS > 5 days (AUC 0.84/BSL 0.15); death within 48–72 h (AUC 0.91/BSL 0.001). Explanatory
diagrams showed factors that impacted each prediction.
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INTRODUCTION
Patients and providers face a great amount of uncertainty before,
during, and after hospital encounters. Predictive modeling holds
promise for identifying patients at the highest risk for adverse
events, such as extended length of stay (LOS), 30-day readmission,
and death within the hospital encounter. Despite the success of
predictive models in achieving discriminatory power in these and
other areas, simplistic models cannot account for complicated
intersections of medical, institutional, and demographic factors.
Conversely, complex models that account for these interactions
are difficult or impossible to interpret or audit, and therefore may
be inactionable or harmful if put into use, and can also be difficult
for healthcare providers to understand or accept1–3. Recent
studies suggest that a focus on metrics such as 30-day read-
mission without addressing underlying causes may lead to
increased patient mortality and increased cost without improving
patient outcomes4.
Significant recent advances in artificial intelligence (AI), machine

learning (ML), and deep learning (DL) have yielded compelling
innovations including self-driving cars5, product recommenda-
tions6, and superhuman performance in complex games, such as
chess and Go7. These advances have also started to impact
healthcare, particularly in visual tasks: detecting diabetic retino-
pathy in ophthalmology images8, cancers in biopsy slides9, and
malignant versus benign skin lesions, often with accuracy
comparable to or exceeding trained physicians10. As electronic
healthcare record (EHR) data increase in size and complexity, AI
and ML may provide predictive modeling tools that can improve
patient safety and outcomes while decreasing cost. A major hurdle

for ML in healthcare is the “black box phenomenon,” or lack of
explainability, to patients and healthcare providers. However,
recent advances have provided algorithms that reliably extract
important variables and explain model decisions, allowing for
auditing and exploration. Such approaches can ensure that
variables included in the final model are clinically relevant and
can be recognized and understood and may lead to new insights
and hypotheses. Most importantly, explainable ML supports
clinician and patient decision-making, rather than supplants it,
by making explicit the natures and characters of the variables the
algorithm considered most important when making its
predictions.
In this study, we hypothesized that interpretable predictive

models would achieve comparable or superior performance to
existing models and enable an understanding of factors
associated with adverse outcomes. Here we report ML models
with high predictive power for readmission and extended LOS,
along with patient-level and cohort-level interpretations, and
discuss the use of ML as a tool to aid understanding.

RESULTS
Study cohort
In the study period, there were 1,485,880 hospitalizations for
708,089 unique patients, 439,696 (62%) of whom had only 1
hospitalization recorded. The median number of hospitalizations
per patient was 1 (first and third quartile (QI) [1.0, 2.0]). There were
211,022 30-day readmissions for an overall readmission rate of
14%. Among patients aged ≥65 years, the 30-day readmission rate
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was 16%. The median LOS, including patients in observation
status and labor and delivery patients, was 2.94 days (QI [1.67,
5.34]), or if these patients are excluded, 3.71 days (QI [2.15, 6.51]).
The demographic and clinical characteristics of the patient cohort
are summarized in Table 1. Higher rates of 30-day readmissions
were observed in patients who were older (median age 62 vs. 59
years), African American (rate of 17% vs. 13% in whites), divorced/
separated or widowed (17% vs. 13% in married/partnered or
single patients), on Medicare insurance (rate of 17% vs. 10% for
private insurance), and had one or multiple chronic conditions
such as cancer, renal disease, congestive heart failure, chronic
obstructive pulmonary disease, etc. (Table 1).

Prediction of inpatient outcomes
Thirty-day readmissions were predicted with an area under the
receiver operator characteristic curve (ROC AUC, here abbreviated
as simply “AUC”) of 0.76 (Supplementary Fig. 1a). The Brier score
loss (BSL) was 0.11, calibration curve shown in Supplementary Fig.
1b. Average precision was 0.38 (see Supplementary Fig. 2c). Other
off-the-shelf ML models, including a deep neural network, were
trained on the same task, with performance generally inferior to
the Gradient Boosting Machine (GBM), or in the case of the deep
neural network, similar (see Supplementary Fig. 2 and Supple-
mentary Table 1). When trained and evaluated on a smaller cohort
of 300,000 hospitalizations, performance metrics were similar: AUC
0.75, BSL 0.11. The most impactful features included (ranked from
the most to the least important): primary diagnosis, days between
the current admission and the previous discharge, number of past
admissions, LOS, total emergency department visits in the past
6 months, number of reported comorbidities, admission source,
discharge disposition, and Body Mass Index (BMI) on admission
and discharge, as well as others (Fig. 1a, b, see also Supplementary
Fig. 3). Including more than the top ten variables in the model did
not improve predictive power for the cohort overall but does
allow for more specific rationale for prediction for certain patients,
as well as examination of feature interactions for further
exploration. Sample individualized predictions with their explana-
tions are shown in Fig. 1c, d, and further examples are shown in
Supplementary Fig. 4. The examples in Supplementary Fig. 4 show
patients with comparable predicted probabilities but different
compositions of features leading to these predictions.
In order to examine possible changes in causes of readmission

risk as a function of time from discharge, we predicted read-
mission risk for several readmission thresholds and calculated
SHAP (SHapley Additive exPlanation) for each. SHAP values for 3-
and 7-day readmission are shown in Supplementary Fig. 5a, b,
respectively. For example, 7-day readmission risk prediction
achieved AUC of 0.70 with a BSL of 0.05 (Table 2). The most
impactful feature remained primary diagnosis, but other features
played more important roles—e.g., BlockGroup rose to second
most important variable (from ninth), number of emergency
department visits in the past 6 months rose to third importance
from fourth, admission blood counts increased in importance, and
insurance provider rose to eighth from twelfth. BMI on admission
fell several places, and BMI on discharge no longer features in the
top variables. The BMI variables are unique in that missing values
tend to be important, in addition to extreme values, perhaps
correlating with disease burden and/or hospital practices that
could be further investigated.
LOS was predicted in terms of the number of days and was

binarized at various thresholds. LOS in days was predicted poorly,
within 3.97 days measured by root mean square error (RMSE;
average LOS 2.94–3.71 days). LOS over 5 days was predicted with
an AUC of 0.84 (Fig. 2a) and a BSL of 0.15 (calibration curve shown
in Supplementary Fig. 1d). Average precision was 0.70 (see
Supplementary Fig. 2d). When trained and evaluated on a cohort
of 300,000 patients, performance was similar: AUC 0.81 and BSL

0.17. Other ML models, including a deep neural network, were
trained on the same task, with performance generally inferior to
the GBM (see Supplementary Fig. 2 and Supplementary Table 1).
The most impactful features included the type of admission,
primary diagnosis code, patient age, admission source, LOS of the
most recent prior admission, medications administered in the
hospital in the first 24 h, insurance, and early admission to the
intensive care unit, among others shown in Fig. 2c, d. Impactful
features for LOS at thresholds of 3 and 7 days are shown in
Supplementary Fig. 5c, d, respectively. The AUC did not differ in
these time points compared to 5 days (Table 2). Given that
primary diagnosis is often assigned late in the hospital encounter
or even after discharge, we trained the LOS models with and
without this feature for comparison. Results are shown in
Supplementary Table 1d. Overall, predictive performance was
decreased, as expected. AUC for LOS > 5 days was 0.781, BSL was
0.173, and average precision was 0.640.
Prediction of death within 48–72 h of admission was predicted

with an AUC of 0.91 and BSL of 0.001 (Table 2). However, owing to
extreme class imbalance (e.g., in the testing set there were 260,518
non-deaths and 390 deaths), this was achieved by predicting non-
death in every case. Strategies to produce a reliable model by
addressing class imbalance, such as data oversampling, were
unsuccessful. AUC and BSL do not reliably indicate model
performance and applicability in this clinical setting.

Variable interactions
SHAP analysis also allows examination of interactions between
variables. Key variable interactions are shown in Supplementary
Figs 6 and 7. For example, high and low values of heart rate were
shown to affect probability of readmission differently for patients
at different ages. With older patients, there is a clearer trend
toward lower heart rates on discharge contributing to lower
readmission risk and higher heart rates contributing to higher
readmission risk, though modestly (SHAP values from −0.1 to
+0.1–0.2). With younger patients, higher discharge heart rates
overall are observed, and the positive trend is more modest. This
may highlight the importance of considering a variable such as
heart rate in a more complete clinical setting, such as one that
includes patient age and clinical reasoning (e.g., an adult is unlikely
to be discharged with marked tachycardia) (Supplementary Fig.
6c). A similar finding is observed in Supplementary Fig. 7c for LOS
prediction, though clinical reasoning is less likely to play a role
compared with more purely physiologic phenomena: higher heart
rates overall are observed for pediatric patients, and the relation-
ship between heart rate and LOS is not observed to be as linear for
pediatric patients (high and low SHAP values are observed more
uniformly for given levels of tachycardia in pediatric patients).

DISCUSSION
Our investigation of ML methods for predicting and explaining
inpatient outcomes was initiated as a result of increased focus on
the costs and risks of inpatient stays in the United States and other
countries, availability of complex data in the EHR, and the
development of explainable predictive models. In addition, recent
concerns over the impact of metrics such as readmission rates4 yield
an opportunity to develop models that may be used to not only
predict but also understand the components of risk and their
interactions. We therefore sought to predict and understand current
and future readmissions and the LOS during hospitalization.
Our models achieved comparable performance to the existing

state of the art in the prediction of readmission and LOS but with
more explainable models11,12. By using a model that accounts for
non-linear interactions, we can flexibly predict outcomes across a
large number of patients with many diagnoses and comorbidities.
In addition to reporting AUC, which assesses performance across
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Table 1. Characteristics of hospital encounters in the study sample, overall and according to readmission and extended length of stay.

Characteristic Overall Not readmitted within
30 days

Readmitted within
30 days

Hospital stay less
than 5 days

Hospital stay
over 5 days

Number of hospitalizations 1,485,880 1,274,858 211,022 1,234,148 251,732

Age, median [Q1, Q3] 59.0 [39.0, 73.0] 59.0 [38.0, 73.0] 62.0 [48.0, 76.0] 58.0 [36.0, 72.0] 66.0 [54.0, 78.0]

Female, n (%) 826,025 (55.6) 713,391 (56.0) 112,634 (53.4) 698,382 (56.6) 127,643 (50.7)

Race/ethnicity, n (%)

African American 333,212 (22.4) 276,208 (21.7) 57,004 (27.0) 276,476 (22.4) 56,736 (22.5)

White 1,055,180 (71.1) 913,085 (71.7) 142,095 (67.4) 873,453 (70.8) 181,727 (72.2)

Other 96,592 (6.5) 84,755 (6.7) 11,837 (5.6) 83,453 (6.8) 13,139 (5.2)

Marital status, n (%)

Divorced or separated 134,841 (9.1) 111,680 (8.8) 23,161 (11.0) 108,779 (8.8) 26,062 (10.4)

Married or partnered 594,375 (40.0) 515,620 (40.5) 78,755 (37.3) 494,338 (40.1) 100,037 (39.7)

Single 554,116 (37.3) 477,592 (37.5) 76,524 (36.3) 472,301 (38.3) 81,815 (32.5)

Widowed 175,822 (11.8) 146,611 (11.5) 29,211 (13.8) 136,888 (11.1) 38,934 (15.5)

Other 26,200 (1.8) 22,847 (1.8) 3353 (1.6) 21,347 (1.7) 4853 (1.9)

Payer class, n (%)

Medicaid 221,969 (16.4) 188,630 (16.3) 33,339 (17.0) 193,978 (17.2) 27,991 (12.1)

Medicare 725,125 (53.5) 601,752 (51.9) 123,373 (63.0) 567,435 (50.5) 157,690 (68.4)

Private health insurance 329,842 (24.3) 298,444 (25.7) 31,398 (16.0) 293,292 (26.1) 36,550 (15.9)

Other 78,269 (5.8) 70,553 (6.1) 7716 (3.9) 69,940 (6.2) 8329 (3.6)

Comorbidities, n (%)

Cancer 183,367 (12.3), 142,205 (11.2) 41,162 (19.5) 140,188 (11.4) 43,179 (17.2)

Metastatic solid tumor 55,906 (3.8) 41,867 (3.3) 14,039 (6.7) 42,339 (3.4) 13,567 (5.4)

Solid organ transplant 33,780 (2.3) 24,928 (2.0) 8852 (4.2) 22,837 (1.9) 10,943 (4.3)

AIDS/HIV 4552 (0.3) 3310 (0.3) 1242 (0.6) 3703 (0.3) 849 (0.3)

Renal disease 177,544 (11.9) 133,099 (10.4) 44,445 (21.1) 129,114 (10.5) 48,430 (19.2)

Mild liver disease 93,947 (6.3) 71,396 (5.6) 22,551 (10.7) 73,362 (5.9) 20,585 (8.2)

Moderate or severe liver
disease

22,816 (1.5) 15,542 (1.2) 7274 (3.4) 15,971 (1.3) 6845 (2.7)

Diabetes with chronic
complication

125,118 (8.4) 95,619 (7.5) 29,499 (14.0) 95,561 (7.7) 29,557 (11.7)

Diabetes without chronic
complication

293,379 (19.7) 232,187 (18.2) 61,192 (29.0) 226,901 (18.4) 66,478 (26.4)

Hypertension 939,048 (63.2) 779,460 (61.1) 159,588 (75.6) 744,603 (60.3) 194,445 (77.2)

Myocardial infarction 69,914 (4.7) 53,267 (4.2) 16,647 (7.9) 52,835 (4.3) 17,079 (6.8)

Congestive heart failure 215,510 (14.5) 164,879 (12.9) 50,631 (24.0) 155,898 (12.6) 59,612 (23.7)

Cerebrovascular disease 193,243 (13.0) 154,368 (12.1) 38,875 (18.4) 148,158 (12.0) 45,085 (17.9)

Chronic obstructive
pulmonary disease

302,548 (20.4) 240,195 (18.8) 62,353 (29.5) 238,907 (19.4) 63,641 (25.3)

Pneumonia 188,684 (12.7) 142,066 (11.1) 46,618 (22.1) 142,437 (11.5) 46,247 (18.4)

Dementia 56,876 (3.8) 45,461 (3.6) 11,415 (5.4) 41,554 (3.4) 15,322 (6.1)

Anxiety 181,440 (12.2) 146,263 (11.5) 35,177 (16.7) 150,668 (12.2) 30,772 (12.2)

Depression 259,323 (17.5) 207,914 (16.3) 51,409 (24.4) 212,806 (17.2) 46,517 (18.5)

Psychosis 52,085 (3.5) 39,086 (3.1) 12,999 (6.2) 38,544 (3.1) 13,541 (5.4)

Receiving dialysis 17,791 (1.2) 12,604 (1.0) 5187 (2.5) 10,658 (0.9) 7133 (2.8)

Selected discharge laboratory results, n (%)

Low hemoglobin level
(<12 g/dL)

248,387 (16.7) 204,139 (16.0) 44,248 (21.0) 200,374 (16.2) 48,013 (19.1)

Low sodium level
(<135 mEq/L)

38,847 (2.6) 31,439 (2.5) 7408 (3.5) 29,467 (2.4) 9380 (3.7)

Hospital encounter information, median [Q1, Q3] or n (%)

Previous hospitalizations 1.0 [0.0, 2.0] 0.0 [0.0, 2.0] 2.0 [0.0, 6.0] 1.0 [0.0, 2.0] 1.0 [0.0, 3.0]

Emergency department (ED)
admission

725,843 (48.8) 603,317 (47.3) 122,526 (58.1) 618,055 (50.1) 107,788 (42.8)

Any ED visits in the past
6 months

644,102 (43.3) 511,323 (40.1) 132,779 (62.9) 521,248 (42.2) 122,854 (48.8)
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classification cutoffs, we show that our models are well calibrated
when using raw probabilities, which may be more useful than
binary classifications in many settings13. The most important
components of the probability prediction for each patient can be
examined, which would ideally lead to items that can be further
studied, perhaps leading to quality improvement efforts (e.g.,
patients with a high number of emergency department visits
contributing significantly to their risk of readmission may be
targeted for hotspotting efforts rather than the usual scheduled
in-office follow-up)14–17 or at least to a deeper understanding of
the current situation (e.g., a given diagnosis or necessary
therapeutic agent may be associated with a higher risk of
readmission or another adverse outcome, but these features are
not likely modifiable)18. We also generate cohort-level diagrams
that explain the contributions of each variable to the model
output as well as key variable interactions.
Because of the focus on interpretability, the study was designed

to cast a broad net with regards to inclusion criteria. Rather than
including only CMS (Centers for Medicare and Medicaid Services)-
defined readmissions, we chose to include all patients who
survived the index hospitalization, including those in observation
status. We also included all available diagnoses and ranges of
demographic categories, including age. This allowed us to
examine the impacts of these variables, as well as develop a
broadly applicable model for the institution as a whole, which
included many specialties, hospitals, and a range of socio-
economic environs. Using diverse data also allowed us to find

interactions, such as the varying impacts of heart rate and number
of administered medications on readmission risk across the range
of ages. We also found, as have others19, that presence or
missingness of data within the EHR can be informative on its own,
as in the case of BMI measurement in Fig. 2c, d.
Our study is additionally unique for balancing a relatively simple

model architecture and hand-selected variables with a robust and
generalizable explanatory method. Rajkomar et al. achieved
comparable results using a DL model trained on nearly 47 billion
data points spread over ~215,000 patients, acquired with an
automated data collection method11. Their explanatory method
highlighted areas of the medical record that were most important
for prediction but used restricted and less performant versions of
their models, retrained on a single data type (text, laboratory
results, etc.). Our approach is a direct interpretation of the full
predictive algorithm and also explains the impact of variables
across the range of possible values, rather than simply high-
lighting which variables were important. It may be the case that
more highly tuned DL or other, less complex approaches would
achieve similar or superior predictive power, but likely at the
expense of either interpretability or richness20–22. It is also
important to note that our approach and Rajkomar’s are not
directly comparable, given the heavily specialized algorithms and
explanatory methods used in their approach, with a different
cohort, different data format, and breadth of variables considered.
We used off-the-shelf algorithms that are free and open source, do
not require advanced computational power, and may therefore be

Table 1 continued

Characteristic Overall Not readmitted within
30 days

Readmitted within
30 days

Hospital stay less
than 5 days

Hospital stay
over 5 days

Total ED visits in the past
6 months

0.0 [0.0, 1.0] 0.0 [0.0, 1.0] 1.0 [0.0, 3.0] 0.0 [0.0, 1.0] 0.0 [0.0, 2.0]

Admission class, n (%)

Ambulatory surgical
procedures

8081 (0.5) 7464 (0.6) 617 (0.3) 8060 (0.7) 21 (0.0)

Emergency 7058 (0.5) 6417 (0.5) 641 (0.3) 7055 (0.6) 3 (0.0)

Hospice 1486 (0.1) 1463 (0.1) 23 (0.0) 1357 (0.1) 129 (0.1)

Inpatient 1,185,985 (80.0) 1,011,772 (79.6) 174,213 (82.7) 937,614 (76.2) 248,371 (98.7)

Observation 261,942 (17.7) 228,559 (18.0) 33,383 (15.8) 260,955 (21.2) 987 (0.4)

Outpatient 10,559 (0.7) 9415 (0.7) 1144 (0.5) 10,513 (0.9) 46 (0.0)

Psychiatric inpatient 3381 (0.2) 2936 (0.2) 445 (0.2) 2198 (0.2) 1183 (0.5)

Other 4074 (0.3) 3799 (0.3) 275 (0.1) 3082 (0.3) 992 (0.4)

Discharge location, n (%)

Expired 18,615 (1.4) 18,615 (1.6) 0 (0.0) 10,907 (1.0) 7708 (3.3)

General acute care hospital 19,855 (1.5) 17,490 (1.5) 2365 (1.2) 16,105 (1.4) 3750 (1.6)

Home 959,559 (71.1) 833,797 (72.2) 125,762 (64.8) 862,810 (77.1) 96,749 (42.0)

Home care services 134,970 (10.0) 109,327 (9.5) 25,643 (13.2) 93,833 (8.4) 41,137 (17.9)

Hospice 14,318 (1.1) 13,765 (1.2) 553 (0.3) 8879 (0.8) 5439 (2.4)

Intermediate care facility 9046 (0.7) 7451 (0.6) 1595 (0.8) 5215 (0.5) 3831 (1.7)

Left against medical advice 13,864 (1.0) 10,599 (0.9) 3265 (1.7) 13,374 (1.2) 490 (0.2)

Long-term care facility 14,592 (1.1) 12,210 (1.1) 2382 (1.2) 5403 (0.5) 9189 (4.0)

Skilled nursing facility 145,882 (10.8) 115,106 (10.0) 30,776 (15.8) 87,530 (7.8) 58,352 (25.3)

Transfer to a psychiatric
hospital

6828 (0.5) 6276 (0.5) 552 (0.3) 6197 (0.6) 631 (0.3)

Transfer to another hospital 4482 (0.3) 4032 (0.3) 450 (0.2) 3797 (0.3) 685 (0.3)

Other 7109 (0.5) 6240 (0.5) 869 (0.4) 4740 (0.4) 2369 (1.0)

Outcomes of interest

30-day readmissions, n (%) 211,022 (14.2) 0 (0.0) 211,022 (100.0) 158,577 (12.8) 52,445 (20.8)

Length of stay in days,
median [Q1, Q3]

2.9 [1.7, 5.3] 2.8 [1.6, 5.1] 3.9 [2.0, 7.0] 2.4 [1.4, 3.9] 10.6 [8.3, 15.0]
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more accessible in less resource-rich settings. One of Rajkomar’s key
contributions was the use of an interoperable, rich, dynamic data
format, and hence their approach has an increased focus on the
data pipeline proper, whereas ours is a more simple database query
with a modest amount of feature engineering. However, we share
the goal of predicting adverse outcomes with a high degree of
explainability that targets decision support and hypothesis genera-
tion, rather than automated decision-making. Further, given the
comparable performance metrics achieved by our approach and
others in similar cohorts, it may be that the inherent complexity of
readmissions and long LOS confer a natural upper limit on
predictive power, encouraging a further focus on interpretability.

The study has several limitations. First, we selected only variables
available at the beginning and end of the hospitalization. Second,
because we only used data available in our EHR, we could only
assess for readmissions with reference to our hospital system. We
therefore did not capture the total readmission rate, nor could we
account for admissions to our system that were readmissions from
another system. Third, this was a retrospective study based on data
from a single health system. It therefore requires external validation,
though the most important variables that impacted each outcome
were also described as important prognostic factors in prior reports,
which suggests that our model could be applicable in other systems.
Fourth, primary diagnosis code was used as a predictor. This is

Fig. 1 30-Day readmission. a Shows the most impactful features on prediction (ranked from most to least important). b Shows the
distribution of the impacts of each feature on the model output. The colors represent the feature values for numeric features: red for larger
values and blue for smaller. The line is made of individual dots representing each admission, and the thickness of the line is determined by the
number of examples at a given value (for example, most patients have a low number of past admissions). A negative SHAP value (extending to
the left) indicates a reduced probability, while a positive one (extending to the right) indicates an increased probability. For non-numeric
features, such as primary diagnosis, the gray points represent specific possible values, with certain diagnoses greatly increasing or reducing
the model’s output, while the majority of diagnoses have relatively mild impact on prediction. c, d Show the composition of individualized
predictions for two patients. The patient in c was admitted from the emergency outpatient unit with a headache and stayed for >7 days. In
addition, this patient had been hospitalized 3 times prior to this admission and had been discharged from the last admission only 8 days prior.
The predicted probability of 30-day readmission (~0.30) was three times the baseline value predicted by the model (~0.1). All of the listed
features increased the model’s prediction of risk by the relative amounts shown by the size of the red bars. Conversely, the patient in d was
admitted for a complete uterovaginal prolapse, stayed less than a full day, and had no reported comorbidities, such as hypertension,
depression, or a history of cancer. The model predicted their probability of 30-day readmission at 0.03 or roughly one-third of the baseline
prediction. The top variables that contribute and will fit on the chart are shown, but the others can be queried in the live system. The model
considers all variables, and SHAP reports on all variables internally, but the images are understandably truncated for visibility.
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typically not available until some time after the encounter has
completed and financial teams have processed the hospitalization
and so would not be available for either LOS or readmission
predictions in a live system. We are exploring ways to dynamically
assign primary diagnosis within an encounter for our in-house
implementations of the model, such as ranking the electronic
medical record problem list according to surrogate markers of
severity. Finally, and in summary, as with all ML seeking to explore
causal relationships, this is a hypothesis-generating work, in need of
rigorous validation, independent studies on promising components,
and, ultimately, patient and clinician judgment as regards applica-
tion. We hope that an emphasis on intelligence augmentation,
decision support, and explainability will lead to a more nuanced and
skilled adoption of ML as yet another tool in a holistic approach to
patient care and research.
In conclusion, we generated prediction models that reliably

predict the probability of readmission and LOS, which are
explainable on the patient level and cohort level. We propose
the use of this approach as an auditable decision aid that also
contributes to hypothesis generation.

METHODS
Data collection
Hospitalizations with a discharge date from January 2011 to May 2018
were extracted from the Cleveland Clinic (CC) EHR. Clinical, demographic,
and institutional features were extracted using natural language proces-
sing and parsing of structured data available within the EHR (see
Supplementary Table 2). Data available at the time of hospitalization (i.e.,
within roughly 24 h of encounter creation) and discharge were marked as
such and used as appropriate to the predictive task. Publicly available
American Community Survey census information was retrieved for each
patient’s census block group (BlockGroup), which is based on home
address and reports aggregate sociodemographic data for a small
geographic region23. This study was approved by the CC Institutional
Review Board with a waiver of individual informed consent due to the
retrospective nature of the study and conducted in accordance with the
Declaration of Helsinki.
The cohort of hospitalized patients was split into three groups for

analysis: 80% for model development, 10% for testing, and 10% for
validation. Selection of hospitalizations for inclusion in each group was
random with the exception of ensuring that the rate of the positive class
(30-day readmission, LOS over 5 days, etc.) was consistent between sets.

Predictive modeling
GBM algorithms were used to produce predictive models. GBMs are
nonparametric methods that train many decision trees in succession, using
information from each set to optimize the performance of the next iteration24.
GBMs achieve state-of-the-art performance in relation to other ML methods,
especially in structured data25. They also allow for inclusion of many types of
variables, and can explicitly account for missing data, and thus do not require
imputation of missing values. More information regarding the GBM algorithm
is available in Supplementary Materials. To reduce model overfitting, we
employed a standard train/test/validation split and early stopping at 200
iterations26,27. For comparison, we also trained a deep neural network, logistic
regression, and several other ML algorithms on the same data, applying
standard imputation and scaling techniques. We performed ten-fold ten-
repeat cross-validation to generate confidence intervals. Given that primary
diagnosis is often not assigned until after the hospital encounter, we trained
the LOS models with and without this feature for comparison. Finally, we
trained our final model on a smaller subset of 300,000 hospitalizations to
examine the effect of training data size on model performance.

Model interpretation
To extract important variables that impacted the algorithm and ensure the
appropriateness of the final models, cohort and personalized model
predictions were interpreted using SHAP values28. SHAP values, based on
the Shapley value from coalitional game theory, are consistent and
accurate calculations of the contributions of each feature to any ML
model’s prediction. They are additionally able to account for feature
interactions, including situations where a given value may either increaseTa
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or decrease risk (for example, a child with a heart rate of 130 vs. a geriatric
patient with the same heart rate). SHAP values also overcome limitations
inherent to standard variable importance information available in tree-
based models, which yields an ordering of all variables used in the model
by how much each impacts the predictions overall, by showing the impact
of variables across the range of their values, the interactions of variables
with each other, and allowing for case-specific (here, patient-specific)
explanations as well as cohort-level exploration. More details regarding the
SHAP package are summarized in Supplementary Materials.

Statistical analysis
Descriptive statistics were used to summarize the patient cohort in general
and in each subgroup. Model performance was assessed with metrics
appropriate to the prediction endpoint. For binary outcomes, the BSL, AUC,
and area under the precision-recall curve (average precision) were
calculated. We also produced appropriate figures for these metrics,
including calibration curves, which show the quality of a model’s proposed
probability by comparing it with the percentage of patients at that
probability with the outcome of interest (i.e., proposed probability vs.

Fig. 2 Length of stay >5 days. a shows the most impactful features on prediction (ranked from most to least important). b shows the
distribution of the impacts of each feature on the model output. The colors represent the feature values for numeric features: red for larger
values and blue for smaller. The line is made of individual dots representing each admission, and the thickness of the line is determined by the
number of examples at a given value (for example, many of our patients are elderly). A negative SHAP value (extending to the left) indicates a
reduced probability, while a positive one (extending to the right) indicates an increased probability. For example, advanced age increases the
probability of extended length of stay (SHAP value between zero and one), while young age tends toward a SHAP value between roughly −1
and zero, corresponding to reduced probability. For non-numeric features, such as primary diagnosis, the gray points represent specific
possible values, with certain diagnoses greatly increasing or reducing the model’s output, while the majority of diagnoses have relatively mild
impact on prediction. c, d show the composition of individualized predictions for two patients. The 75-year-old patient in c was admitted to
the inpatient service directly from a physician’s office with leakage of a heart valve graft. The patient received 32 medications in the first 24 h
and has Medicare Part A insurance coverage. The model predicted that the patient’s probability of staying >5 days was 0.80, nearly four times
the baseline prediction of ~0.2. The majority of the model’s prediction was based on the diagnosis, followed by the number of initial
medications, and then the other variables as shown. The patient in d, on the other hand, had a predicted probability of length of stay of 0.06
or roughly one-fourth of the baseline, despite being admitted to the ICU within 24 h of admission. The major contributor to this low
probability was the diagnosis of antidepressant poisoning, followed by a private insurance provider, and finally by a lack of BMI recorded in
the chart for this encounter. The reasoning behind the importance of a missing value for BMI is unclear but is repeatedly apparent in several
analyses and may have to do with systematic recording practices within the hospital system (see Agniel et al.19 for an exploration of this
phenomenon).
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actual probability). Numeric outcomes including LOS in days and days until
readmission were evaluated with RMSE. All analyses were performed with
ScikitLearn v0.20.3129 and Python v3.6.6. More details regarding the
statistical methods are summarized in Supplementary Materials.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data that support the findings of this study are available in a deidentified form
from Cleveland Clinic, but restrictions apply to the availability of these data, which
were used under Cleveland Clinic data policies for the current study, and so are not
publicly available.

CODE AVAILABILITY
We used only free and open-source software. The software packages used are
described in the “Methods” section.

Received: 23 September 2019; Accepted: 28 February 2020;

REFERENCES
1. Auerbach, A. D., Neinstein, A. & Khanna, R. Balancing innovation and safety when

integrating digital tools into health care. Ann. Intern. Med. 168, 733–734 (2018).
2. Cabitza, F., Rasoini, R. & Gensini, G. F. Unintended consequences of machine

learning in medicine. JAMA 318, 517 (2017).
3. Sniderman, A. D., D’Agostino, R. B. Sr & Pencina, M. J. The role of physicians in the

era of predictive analytics. JAMA 314, 25–26 (2015).
4. Wadhera, R. K. et al. Association of the Hospital Readmissions Reduction Program

with mortality among Medicare beneficiaries hospitalized for heart failure, acute
myocardial infarction, and pneumonia. JAMA 320, 2542–2552 (2018).

5. Bojarski, M. et al. End to end learning for self-driving cars. Preprint at https://arxiv.
org/abs/1604.07316 (2016).

6. Bobadilla, J., Ortega, F., Hernando, A. & Gutiérrez, A. Recommender systems
survey. Knowledge-Based Syst. 46, 109–132 (2013).

7. Silver, D. et al. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science 362, 1140–1144 (2018).

8. Gulshan, V. et al. Development and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402
(2016).

9. Coudray, N. et al. Classification and mutation prediction from non–small cell lung
cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567
(2018).

10. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542, 115–118 (2017).

11. Rajkomar, A. et al. Scalable and accurate deep learning with electronic health
records. NPJ Digital Med. 1, 18 (2018).

12. Artetxe, A., Beristain, A. & Grana, M. Predictive models for hospital readmission
risk: a systematic review of methods. Comput. Methods Prog. Biomed. 164, 49–64
(2018).

13. Steyerberg, E. W. et al. Assessing the performance of prediction models: a fra-
mework for some traditional and novel measures. Epidemiology 21, 128 (2010).

14. Donzé, J., Aujesky, D., Williams, D. & Schnipper, J. L. Potentially avoidable 30-day
hospital readmissions in medical patients: derivation and validation of a pre-
diction model. JAMA Intern. Med. 173, 632–638 (2013).

15. Leppin, A. L. et al. Preventing 30-day hospital readmissions: a systematic review
and meta-analysis of randomized trials. JAMA Intern. Med. 174, 1095–1107 (2014).

16. Burke, R. E. et al. The HOSPITAL score predicts potentially preventable 30-day
readmissions in conditions targeted by the hospital readmissions reduction
program. Med. Care 55, 285 (2017).

17. Auerbach, A. D. et al. Preventability and causes of readmissions in a national
cohort of general medicine patients. JAMA Intern. Med. 176, 484–493 (2016).

18. Saunders, N. D. et al. Examination of unplanned 30-day readmissions to a com-
prehensive cancer hospital. J. Oncol. Pract. 11, e177–e181 (2015).

19. Agniel, D., Kohane, I. S. & Weber, G. M. Biases in electronic health record data due
to processes within the healthcare system: retrospective observational study. BMJ
361, k1479 (2018).

20. Aubert, C. E. et al. Simplification of the HOSPITAL score for predicting 30-day
readmissions. BMJ Qual. Saf. 26, 799–805 (2017).

21. Garrison, G. M., Robelia, P. M., Pecina, J. L. & Dawson, N. L. Comparing perfor-
mance of 30-day readmission risk classifiers among hospitalized primary care
patients. J. Eval. Clin. Pract. 23, 524–529 (2017).

22. Sun, C., Shrivastava, A., Singh, S. & Gupta, A. Revisiting unreasonable effectiveness
of data in deep learning era. In Proceedings of the IEEE International Conference on
Computer Vision 843–852 (IEEE, 2017).

23. US Census Bureau. American community survey 5-year estimates, https://data.
census.gov/cedsci/table?q=United%20States&tid=ACSDP5Y2015.DP05 (2015).

24. Natekin, A. & Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobotics
7, 21 (2013).

25. Ke, G. et al. Lightgbm: a highly efficient gradient boosting decision tree. in
Advances in Neural Information Processing Systems 3146–3154 (Neural Information
Processing Systems Foundation, Inc., 2017).

26. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (Springer Science & Business Media, 2009).

27. Zhang, T. & Yu, B., others. Boosting with early stopping: convergence and con-
sistency. Ann. Stat. 33, 1538–1579 (2005).

28. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions.
in Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.)
4765–4774 (Curran Associates, Inc., 2017).

29. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res.
12, 2825–2830 (2011).

ACKNOWLEDGEMENTS
The authors wish to acknowledge the Cleveland Clinic for providing support and
funding for this project.

AUTHOR CONTRIBUTIONS
C.B.H. performed data cleaning, model building, validation, and visualizations and
wrote the manuscript. A.M. developed the natural language processing tools and
performed the data extraction to form the dataset. C.F. assisted with model
development and validation. N.V., T.C., C.D., and A.P. were instrumental in developing
the database, obtaining approvals, and supervising data usage. A.N. supervised the
project and coordinated all of its members, and all authors have read, edited as
necessary, and approved the final content of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41746-020-0249-z.

Correspondence and requests for materials should be addressed to A.N.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

C.B. Hilton et al.

8

npj Digital Medicine (2020)    51 Scripps Research Translational Institute

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
https://data.census.gov/cedsci/table?q=United%20States&tid=ACSDP5Y2015.DP05
https://data.census.gov/cedsci/table?q=United%20States&tid=ACSDP5Y2015.DP05
https://doi.org/10.1038/s41746-020-0249-z
https://doi.org/10.1038/s41746-020-0249-z
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Personalized predictions of patient outcomes during and after hospitalization using artificial intelligence
	Introduction
	Results
	Study cohort
	Prediction of inpatient outcomes
	Variable interactions

	Discussion
	Methods
	Data collection
	Predictive modeling
	Model interpretation
	Statistical analysis
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




