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Abstract
Model parameterization and validation of earth–atmosphere interactions are generally 
performed using a single timescale (e.g., nearly instantaneous, daily, and annual), al-
though both delayed responses and hysteretic effects have been widely recognized. 
The lack of consideration of these effects hampers our capability to represent them in 
empirical- or process-based models. Here we explore, using an apple orchard ecosys-
tem in the North of Italy as a simplified case study, how the considered timescale im-
pacts the relative importance of the single environmental variables in explaining 
observed net ecosystem exchange (NEE) and evapotranspiration (ET). Using 6 years of 
eddy covariance and meteorological information as input data, we found a decay of 
the relative importance of the modeling capability of photosynthetically active radia-
tion in explaining both NEE and ET moving from half-hourly to seasonal timescale and 
an increase in the relative importance of air temperature (T) and VPD. Satellite NDVI, 
used as proxy of leaf development, added little improvement to overall modeling ca-
pability. Increasing the timescale, the number of variables needed for parameterization 
decreased (from 5 to 1), while the proportion of variance explained by the model in-
creased (r2 from 0.56–0.78 to 0.85–0.90 for NEE and ET respectively). The wavelet 
coherence and the phase analyses showed that the two variables that increased their 
relative importance when the scale increased (T, VPD) were not in phase at the cor-
relation peak of both ET and NEE. This phase shift in the time domain corresponds to 
a hysteretic response in the meteorological variables domain. This work confirms that 
the model parameterization should be performed using parameters calculated at the 
appropriate scale. It suggests that in managed ecosystems, where the interannual vari-
ability is minimized by the agronomic practices, the use of timescales large enough to 
include hysteretic and delayed responses reduces the number of required input vari-
ables and improves their explanatory capacity.
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1  | INTRODUCTION

Tree crops represent a significant component of the global carbon 
cycle. They cover more than 10 million hectares in Europe (FAOSTAT, 
2010) and are the most relevant crop class in southern Europe after 
the cereals. Their role in the carbon balance is questioned: They are 
a strong sink during the vegetation season, but much of the organic 
material which they assimilate is shortly released (Nemeth, Lambrinos, 
& Strik, 2017; Zanotelli, Montagnani, Manca, Scandellari, & Tagliavini, 
2015).

Their interaction with the atmosphere takes place at multiple 
timescales: trees sequester carbon through photosynthesis and re-
lease it through different pathways: (1) autotrophic and (2) hetero-
trophic respiration, (3) export from the field and storage in different 
forms and places (as oil, vine, fruit and fruit juices, and timber in some 
cases), with different patterns and places of release. In addition, they 
sequester carbon in perennial vegetative organs, with a turnover time 
of decades, or even centuries as in the case of olive trees. All these 
processes do not occur at the same rate across the year (Zanotelli, 
Montagnani, Manca, & Tagliavini, 2013).

The environmental control on assimilation is expected to take place 
at different timescales: Solar radiation, air temperature, and soil water 
content (SWC) can influence plant physiology almost instantaneously, 
but they can influence plant behavior also through slower processes, 
such as stomatal opening, chlorophyll formation and depletion, and 
leaf and fruit development, which operate at temporal scales ranging 
from few minutes to a whole season.

In addition, a number of possibly overlapping effects take place at 
different timescales: Namely, the stomatal response to soil drought 
can be combined with the water pressure deficit for determining tran-
spiration (Barlett, Klein, Jansen, Choat, & Sack, 2016; Novick et al., 
2016; Tuzet, Perrier, & Leuning, 2003) the variation in leaf area can 
be combined with that of chlorophyll content and the amount of fruits 
for the definition of the maximal photosynthetic capacity (Giuliani, 
Nerozzi, Magnanini, & Corelli, 1997; Navarro et al., 2008; Tartachnyk 
& Blanke, 2004; Zanotelli, Scandellari, Bastos de Melo, & Tagliavini, 
2016). All these potentially overlapping processes differentially influ-
ence the biological fluxes. As a general consequence, the presence 
of almost immediate and delayed responses, and of overlapping phe-
nomena, gives rise to a number of entangled and hysteretic responses 
(Niu et al., 2011; Wohlfahrt & Galvagno, 2017; Zhang, Manzoni, Katul, 
Porporato, & Yang, 2014) hampering our modeling capability.

In fact, a common problem in ecophysiological studies is the high 
degree of overlapping between the temporal patterns of environmen-
tal variables. Radiation, temperature, and vapor pressure deficit show 
a high degree of self-correlation, with solar activity being the main 
driver for these processes. The plant organs perceive these stimuli 
in different, sometime contrasting ways. Shortwave radiation is the 
resource determining the photosynthetic process and favoring the 
opening of stomatal guard cells. The vapor pressure deficit has an op-
posite effect in controlling stomatal opening, although it is difficult to 
disentangle its effects from those of temperature, the driving parame-
ter for its computation (Duursma et al., 2014).

The linkage between plant gas exchange and environmental con-
straints, particularly temperature and soil water availability, is a well-
established concept in plant physiological ecology (Schwarz et al., 
2004; Yi et al., 2010). Radiation and vapor pressure deficit are fre-
quently used as further limiting factors in several biogeochemical mod-
els, particularly in those based on light use efficiency, like the Prelued 
model (Mäkelä et al., 2008) and in remote sensing based models, like 
MOD 17 (Running, Thornton, Nemani, & Glassy, 2000). However, it 
is still to be defined the extent of the direct limitation of the environ-
mental processes, or the mediated effect through vegetation modifi-
cations in a slower response. For instance, Michaletz, Cheng, Kerkhoff, 
and Enquist (2014) have suggested that the variability of gross primary 
productivity is driven by a broad range of biotic and abiotic factors, 
mainly through changes in vegetation phenology and physiological 
processes, and not through direct environmental limitations.

Modeling growth and evapotranspiration have become an import-
ant challenge in agriculture, as it might predict future scenarios of crop 
productivity and resource availability under changing climatic condi-
tions. Current knowledge of interactions between environmental driv-
ers and fruit tree physiology mainly derives from cuvette assessment 
of gas exchange at leaf level (e.g., Giuliani et al., 1997). This approach 
gives detailed information on short-term effects of environmental 
forcing, but, as measurements are generally carried out for short pe-
riods, it requires an upscaling for medium- and long-term (weeks to 
years) assessments (Jarvis & McNaughton, 1986). On the contrary, the 
eddy covariance (EC) technique allows better insights into physiologi-
cal responses at different timescales, although it does not achieve the 
same level of detail as cuvette-based studies do.

The necessity to use data for model parameterization at the appro-
priate scale is a concept widely acknowledged in the modeling com-
munity. To date, only a few studies addressed the question about the 
modeling parameter variation at the different timescales. Analyzing 
the interactions in temperate and tropical ecosystems, these stud-
ies consistently found that environmental variation is responsible 
for short-term variation in CO2 exchange but biological variability 
is responsible for longer-term variation in CO2 exchange (Braswell, 
Sacks, Linder, & Schimel, 2005; Keenan, Davidson, Moffat, Munger, 
& Richardson, 2012; Richardson, Hollinger, Aber, Ollinger, & Braswell, 
2007; Wu et al., 2015).

Do the same holds true for crops? In managed ecosystems and in 
fruit orchards in particular, the interannual variability in productivity is, 
in contrast, maintained low by management practices (Ceschia et al., 
2010; Scandellari et al., 2016; Zanotelli et al., 2015). Although several 
factors can affect the amount of fruits that trees bear every year, dif-
ferent winter pruning intensities across the years allow setting a rela-
tive homogeneous number of flower buds, with the aim of minimizing 
the interannual variation in fruit yields. Other management practices, 
including the regular application of water and nutrients through irriga-
tion and fertilization, make the apple orchard an ideal, simplified eco-
system for the study of interactions at subannual timescales.

Therefore, we conceived this study under the general hypothesis 
that increasing the timescale, the correlation between environmental 
drivers and fluxes change and possibly increases. In fact, extending the 
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integration time, both hysteretic and delayed responses are captured, 
but long-term biological changes are not expected as a result of agro-
nomic practices.

In this study, thanks to the availability of a 6-year dataset of gas ex-
change measurements obtained through the EC technique in an apple 
orchard, we analyzed the evapotranspiration (ET) and the net ecosys-
tem exchange (NEE) responses to environmental drivers at different 
timescales, from half-hourly to multiannual, and addressed the two 
following questions:

1.	 Does the relation between environmental drivers and biological 
fluxes change across the timescales?

2.	 Can we improve the modeling capability of fluxes showing a hyster-
etic response to environmental drivers by increasing the time of 
integration?

Addressing these questions will improve our understanding of the 
interaction between climate forcing and the productivity of a commer-
cially relevant crop type in the context of climate change, and inductively 
will give indications for the wider ecosystem modeling perspective. To 
answer these questions, we firstly analyzed the temporal patterns of the 
different variables. Then, by the use of the wavelet coherence analysis 
and the analysis of phases, we analyzed the strength of the correlations 
and the phases at the correlation peaks. To get insight into the shape 
of the specific relationships, we developed new empirical equations to 
describe the correlations at the different scales and we obtained the 
correlation strength at the different time steps. Finally, we obtained syn-
thetic equations making use of a minimum of variables to describe the 
observed fluxes.

2  | MATERIAL AND METHODS

2.1 | Study site

Measurements were taken from 2009 to 2014 in an experimental site 
located in the municipality of Caldaro (46°21′N, 11°16′E, 240 m a.s.l.), 
located at the bottom of the Adige Valley (North Italy), within a com-
mercial apple growing district. Apple (Malus domestica Borkh.) trees of 
the Fuji cultivar grafted on dwarfing rootstocks were planted in 1999 in 
rows at a distance of 1 m along the row and 3 m between rows. Orchard 
management is carried out according to organic farming guidelines.

In the past, the site was formerly a bog, periodically inundated and 
after land reclamation (around 1826), the area was kept as a pasture 
with mulberry trees until the spread of apple cultivation in the sixties 
of the last century. The water table, controlled by an artificial drainage 
system, ranges for most of the time between 1.20 and 1.85 m deep. 
Due to capillary rise, moisture is therefore relatively high, at least in 
the lower part of the soil layer where roots develop. In addition to 
precipitation, in late winter, to prevent frost damages, and occasionally 
in summer, the site is irrigated by overhead sprinklers.

The soil (average of the upper 0–60 cm layer) consists of 11% 
sand, 44.5% clay and silt. Soil pH in pore water ranges from 7.2 (in the 
upper 0–20 cm) to 7.6 (between 40 and 60 cm soil depth). Details on 

carbon allocation and net ecosystem carbon balance can be found in 
Zanotelli et al. (2013) and in Zanotelli et al. (2015).

2.2 | Instrumental set-up

Eddy covariance and meteorological instrumentation were installed in 
spring 2009. The data period spanning from 2009 to 2014 was used in 
this study. EC instrumentation consists of a sonic anemometer Gill R3, 
Limington, UK, and a Li 7000 CO2/H2O infrared gas analyzer (Li7000, 
LiCor Biosciences, US, LiCor henceforth), kept in a temperature con-
trolled box. The tower is 8 m high, and air intake occurs through a 
12 m polyethylene tube, 4 mm inner diameter, and one Acro 50 
Pall filter, replaced each second week. Zero reference was given by 
chemicals (Ascarite 2 and magnesium perchlorate). At the beginning of 
2013, the analyzer was replaced by a Li7200 (LiCor). The new analyzer 
was horizontally mounted without filtering at 1.5 m distance from the 
air intake tube.

Meteorological measurements included a CNR1 (Kipp and Zonen, 
Holland) net radiometer, for short- and long-wave incoming and out-
going radiation; a SKP 215 PAR quantum sensor (Skye Instruments 
Ltd., UK); an air temperature and humidity probe HMP110 (Vaisala, 
Finland); an array of six SWC sensors TDR type CS610 (Campbell 
Scientific. Inc., USA), of which one was inserted vertically up to 30 cm 
below ground, and was taken as reference, and the others were used 
to assess the horizontal and vertical spatial variability. Meteorological 
data were sampled at 0.1 Hz frequency and collected at 30 min inter-
vals by a CR3000 data logger (Campbell Scientific, USA).

2.3 | Computational methods

2.3.1 | Eddy covariance data analysis

Turbulent flux measurements with the EC technique were performed 
using EDDYSOFT software (Kolle & Rebmann, 2007; Mauder et al., 
2008). The following operative details were applied as follows: (1) No 
detrending, no high- or low-pass filtering corrections were used; (2) 
a two-axis rotation of coordinates was applied each 30 min; (3) the 
inductance due to the presence of the air intake tube was calculated. 
The software automatically calculated the lag time for CO2 each half 
hour to maximize the covariances between fluctuations in vertical 
wind velocity and gas dry mole density.

In addition, the analysis of stationary conditions for CO2 turbu-
lent flux and of integral turbulent characteristic following Foken and 
Wichura (1996) was performed. As a result, half hours for which the-
oretical concerns existed on Reynolds decomposition because of lack 
of stationarity or for which the turbulence was not well-developed and 
not suitable for further detailed analyses (Göckede et al., 2008) were 
flagged for their recognition. After quality check of the measurements, 
flux values collected during nonstationary periods or during periods 
of not well-developed turbulence, particularly frequent in winter 
and at night were excluded. After the removal of low-quality flagged 
data, gap filling was calculated according to Reichstein et al. (2005). 
The online processing tool, hosted at the Max Planck Institute for 
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Biogeochemistry, was used (http://www.bgc-jena.mpg.de/bgc-mdi/
html/eddyproc/).

2.3.2 | Computation of canopy conductance

To disentangle radiation, temperature and water pressure deficit in-
teractions in their daily patterns, we derived the canopy conductance 
by inverting the Penman–Monteith equation, and by constraining it 
using observed evapotranspiration values. We followed the approach 
used by Pérez-Priego, Serrano-Ortiz, Sanchez-Cañete, Domingo, and 
Kowalski (2013), assuming a canopy completely coupled with the 
atmosphere (Jarvis, 1985; Jarvis & McNaughton, 1986) and, hence, 
evapotranspiration regimes imposed by the atmospheric demand

where gc is canopy conductance, Eimp is observed evapotranspi-
ration values, ρa is air density (kg/m−3), cp is the specific heat of air 
(0.00101 J/K), λ is the latent heat of vaporization of water (2.45 kJ/kg 
at 293.15 K), γ is the psychrometric constant (0.066 kPa/K), and D is 
the water pressure deficit.

2.4 | Treatment of data and statistics

2.4.1 | Analysis of the relationships of environmental 
variables and satellite NDVI versus observed ET and 
NEE fluxes at different timescales

Environmental variables to consider were selected (excepted for diffuse 
radiation, not available) following Law et al. (2002), Nemani et al. (2003), 
and Groenendijk et al. (2011), while satellite (MODIS) NDVI was se-
lected as a surrogate of LAI. To assess the effect of environmental vari-
ables (PAR, Tair, SWC, VPD) and observed fluxes (ET, NEE) at different 
timescales, the whole dataset was filled using the online tool as specified 
above. When the gaps in EC data exceeded 16 days, the whole period 
was discarded. The seasons winter 2009, winter and spring 2011, and 
summer 2012 were therefore also excluded from further computation. 
To fill biweekly NDVI data, the singular spectral analysis (SSA) inter-
polation procedure was used (Buttlar, Zscheischler, & Mahecha, 2014; 
Kondrashov & Ghil, 2006; Korobeynikov, 2010; Sifuzzaman, 2009).

Measured half-hour values were averaged (T, VPD, SWC, NDVI) 
or summed (PPFD) to obtain the value in the selected time interval. 
Selected representative timescale intervals were the half hour, the 
day, the month and the season; winter season was considered from 
December to February, and the other seasons were defined conse-
quently. For visualization purposes, the dataset was divided into sub-
groups having the same width, and statistics of average, median, 1st 
and 99th percentile were computed.

2.4.2 | Wavelet coherence analysis

The wavelet transform originated in geophysics in the early 1980s 
for the analysis of seismic signals and is becoming a common tool for 

analyzing localized variations of power within a time series. By de-
composing a time series into time–frequency space, both the domi-
nant modes of variability and how those modes vary in time can be 
determined.

The wavelet coherence analysis (Cazelles et al., 2008; Sá, Sambatti, 
& Galvao, 1998; Torrence & Compo, 1998; Torrence & Webster, 1998) 
is a tool to study the linear relation between two signals by determin-
ing the correlation between their spectra. Any analysis based entirely 
on spectral methods (e.g., the Fourier transform) must ignore any tem-
poral structure of the signal beyond phase information and so coher-
ence cannot give any information on dynamically varying dependence 
between the signals.

The wavelet decomposition works similar to a spectrum, sepa-
rating the harmonics in a signal while assigning a “wavelet power” to 
them, which is proportional to the overall variance. The most import-
ant harmonics will be the ones with high wavelet power. To overcome 
many of the shortcomings of signal analysis based on the Fourier 
transform, which is caused by essentially neglecting time resolution, 
the wavelet transform has been established as an important technique 
in time–frequency analysis in the last two decades.

In recent years, wavelet analysis has been used in many studies of 
geophysical data, such as river levels, turbulence over plant canopies, 
and pollutant concentrations (Collineau & Brunet, 1993; Stoy et al., 
2013; Terradellas, Soler, Ferreres, & Bravo, 2005; Zeri, Oliveira-Junior, 
& Bastos Lyra, 2011) and also to study the interactions between envi-
ronmental drivers and ecosystem fluxes (Braswell et al., 2005; Wagle 
et al., 2016). Wavelet coherence analysis is able to synthetically iden-
tify the points where two variables are correlated in a two dimen-
sional space representing time and frequency. In this study, we used 
the “Biwavelet” package (http://biwavelet.r-forge.r-project.org) of the 
R software (R Development Core Team, 2015), and we selected the 
Morlet function (Mi et al., 2005). We added the analysis of the phase, 
following Grinsted, Moore, and Jevrejeva (2004).

2.4.3 | Single regression analyses at 
multiple timescales

To quantify the relations between the environmental variables (VPD, 
PAR, T, and SWC) and the observed biological fluxes (NEE, ET) at dif-
ferent timescales (half hour, day, month, and season), different re-
gression equations were developed and applied in this study. In this 
analysis, the NEE sign was changed (–NEE) to ease regressions. The 
regression equations used, tested at all the different timescales con-
sidered, are defined below.

The relations of ET and –NEE with PAR (Equations 2 and 3) were 
derived from previous works (Montagnani, 2000 for ET and Ruimy, 
Jarvis, Baldocchi, & Saugier, 1995; for –NEE). The following equations 
were used as follows:

For ET

For –NEE

(1)gc=Eimp

(

λγ

ρacp

)

D−1

(2)f=aETx(1−EXP(−xbET))

http://www.bgc-jena.mpg.de/bgc-mdi/html/eddyproc/
http://www.bgc-jena.mpg.de/bgc-mdi/html/eddyproc/
http://biwavelet.r-forge.r-project.org
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The relations of ET and –NEE with temperature (Equations 4 and 
5) were assumed to be logistic. This assumption is not of general use, 
as in some ecosystems the relation with the temperature tends to de-
crease, at least in the case of –NEE, when the temperature increases 
above a given threshold (see Niu et al., 2011). However, such a de-
crease was not evident in our dataset, and therefore, the three (for ET) 
or four parameters (for –NEE, to account for respiration) in the logistic 
equations for ET and NEE were used.

For ET

For –NEE

The observed relations with the SWC were weak. We therefore 
used the only suitable regression equation, the linear one, for both ET 
and –NEE:

Preliminary observations showed that, instead of a decay as it is 
generally assumed in modeling (e.g., Dolman, 1991), or a decay start-
ing at about 1 kPa (Oren et al., 1999) both NEE and ET have a gen-
erally positive relation with VPD, possibly reflecting the ample water 
availability at the site and the direct evaporation from the soil. It was 
therefore necessary to develop new equations concerning VPD. These 
equations are of more general use, as they allow the representation 
of a decrease, an increase, and a decrease starting from a point of 
maximum as it is frequently observed (Duursma et al., 2013, 2014; 
Farquhar, 1978; Franks, Cowan, & Farquhar, 1997). The relation with 
VPD and ET was as follows

and with –NEE was as follows

(3)f= (aNEExbNEE)∕(aNEEx+bNEE)+cNEE

(4)f=aET∕(1+bETEXP(cETaETx))

(5)f=aNEE∕(1+bNEEEXP(cNEEaNEEx))+dNEE

(6)f=aETx+bET

(7)f=aNEEx+bNEE

(8)f=aETx (1+1∕(bETEXP(xcET)))

(9)f=aNEEx (1+1∕(bNEEEXP(xcNEE)))+dNEE

F IGURE  1 Observed patterns in time along the measurement period (2009–2014) at the daily timescale. Top panel: average air temperature 
(air Temp), vapor pressure deficit (VPD), and daily cumulative photosynthetic active radiation (PAR); second panel: soil water content and 
precipitation; third panel: measured NEE and satellite-derived normalized difference vegetation index (NDVI); bottom panel: evapotranspiration 
(ET)
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The same linear equation used to describe the SWC effect on ET 
and –NEE (Equations 6 and 7) was also used to assess the correlation 
between NDVI and observed fluxes.

2.4.4 | Multiple regression analysis

In order to test the relative importance of environmental parameters 
to the carbon and water fluxes, multiple linear regression models with 
NEE or ET, as the response variables, and PAR, air T, VPD soil SWC 
and NDVI as continuous predictor variables, were built. We used 
four datasets differing in the temporal scale of both the response and 
predictor variables: every half-hour data (n = 92,640), daily averages 
(n = 1,930), monthly averages (n = 63), and seasonal averages (n = 19). 
The procedure used, starting from the full model (all variables and 
their interactions), identifies the minimum adequate model by back-
ward deletion procedure (discarding variables with a p value > .05). 
We used the “lm” function from the R statistical computing environ-
ment (R Development Core Team, 2015). The relative importance of 
the significant terms was obtained applying the function “calc.relimp” 
of the R package “Relaimpo” (Groemping, 2006) using the default 
options.

3  | RESULTS

3.1 | Temporal pattern of the considered variables

3.1.1 | Meteorology, soil conditions, NDVI, and 
observed H2O and CO2 fluxes

Multiannual patterns of observed meteorological and soil vari-
ables are shown in Figure 1. During the considered period 
(January 2009–December 2014), air temperature ranged between 
−10.6°C and 36.5°C, with an average of 12.3°C. Average annual 
global radiation was 5,032.5 MJ m−2 year−1, with a minimum of 
4,976.5 MJ m−2 year−1 during 2014 and a maximum of 5,082.2 dur-
ing 2012. The lowest annual maximum VPD of (34.3 hPa) was re-
corded in June 2014, while the absolute maximum was observed 
in August 2013 (43.7 hPa). Average precipitation was 1,008 mm, 
ranging from 806 mm (2011) to 1,277 mm (2014). Irrigation was 
provided in spring to control frost and during summer (with the 
exception of 2014, when summer irrigation was not needed) by 
overhead sprinklers. This additional water, approx. 200 mm/year 
on average, prevented any possible water deficit stress events. As 
a result, SWC was often close to the maximum soil water-holding 
capacity.

During the 6-year study period, the observed H2O and CO2 fluxes 
displayed a clear seasonal pattern with a maximum in summer. In 
spring, NEE fluxes started to increase (become more negative) later 
than ET and displayed a more even distribution of maximal sink values 
around −4.9 g C day−1. Interestingly, the wet 2014 year showed the 
highest maximal daily sink (−6.0 g C day−1) and the lowest maximal 
ET (2.6 mm/day), therefore representing the maximum water use effi-
ciency in the observational period.

3.1.2 | Observed average patterns of measured and 
calculated variables at daily and annual timescales

Analyzing the average pattern at the scales of earth rotation (day, 
Figure 2a) and revolution (year, Figure 2b), we can understand 
how the different physical and biological variables are related to 
the sun–earth interaction. In Figure 2, all the considered variables 
are normalized to ease the pattern recognition. During the day, the 
first variable to reach its maximum is the stand canopy conductance 
(11:30 hr). Then, in the range of 1 hr around midday, PAR, NEE, and 
ET reach their maximum when maximal stand canopy conductance 
is already decreasing. Temperature and VPD maximum occur at 
15:00 hr. NEE is perfectly lined with the maximum radiation, which 
occur in the interval between 12:00 and 12:30 local standard time. 
SWC does not show any notable variability at this scale.

At the annual scale (Figure 2b), NEE and PAR are not tightly 
correlated as they are at the daily scale. In spring, NEE starts to 
increase later than ET and grows more rapidly as compared to PAR. 
PAR and NEE on average reach their maximum in the same period, 
in the first half of July (DOY 192, Figure 2b). The maximum in ET 
occurs a few days later, in mid-July (DOY 196), 2 weeks after the 

F IGURE  2 Normalized average patterns, with moving average, 
of the environmental drivers (PAR; VPD; Tair; SWC), other stand 
variables (canopy conductance, sensible heat, NDVI) and observed 
biological fluxes (ET; NEE) at daily (a) and annual scales (b). Data, 
shown in the time domain, represent averages of the 6 years
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maximum in VPD (DOY 182), while the air temperature average 
maximum is observed in late August (DOY 233). At the annual 
scale, the most asymmetric pattern is displayed by sensible heat 
(H) which reaches its maximum on DOY 108 (April), when the veg-
etation cover, as indicated by the low NDVI, is still far from its 
maximum.

The stand canopy conductance, the VPD and the ET show a sim-
ilar annual pattern, with a broad maximum in the central part of the 
year. T lags all other variables (maximum at DOY 233, August 20). SWC 
displays an irregular pattern with its minimum in July (DOY 185) and 
maximum in November (DOY 320).

3.2 | Correlation between the observed variables

3.2.1 | Hysteresis between observed variables at 
daily and annual timescales

Using the same dataset composed by daily and annual averaged pat-
terns as used in Figure 2, we can evaluate the relationship between ob-
served variables and the considered fluxes in the variable’s domain. In 
Figure 3, with a few exceptions, we observe positive relations between 
environmental parameters and biological fluxes (ET, NEE) with variable 
counterclockwise, rate-dependent hysteresis (see Zhang et al., 2014). 
At a given intensity of the parameter value, we generally observe larger 
flux values in the morning at the daily scale and in spring at annual 
scale. In some cases, the hysteresis is wide: Notably, an ample rate-
dependent hysteresis is observed at daily scale between T, VPD and 
ET, NEE (Figure 3c,g) while PAR and VPD show a wide hysteresis with 
NEE (and not with ET) at annual scale (Figure 3b,h). Even wider is the 
hysteresis between H and both ET and NEE at annual scale (Figure 3n).

Exceptions are the relations of SWC with both ET and NEE, which 
is partly time dependent and negative at daily scale and irregular at 
annual scale. The relation between PAR and NEE shows an almost bi-
jective correspondence at daily scale (Figure 3a), while clockwise hys-
teresis is found only between canopy conductance and both ET and 
NEE at daily scale (Figure 3k), and between NDVI and both ET and 
NEE at annual scale (Figure 3j).

3.2.2 | Wavelet coherence analysis

By means of the wavelet decomposition, we can analyze the coher-
ence between the NEE and ET and the other environmental variables 
and identify the common oscillatory behavior of fluxes and drivers at 
the different scales, from half-hour to year. With the analysis of the 
phase, we can further indicate if the oscillations of drivers precede or 
follow those of biological fluxes.

The wavelet coherence analysis between PAR and ET shows a 
very strong correlation at daily and subdaily scales (more than 16 half 
hours, Figure 4a); the variables are tightly in phase at these scales. 

Increasing the scale, the correlation becomes generally weaker and 
does not apply to the entire season. Only at annual scale (see bottom 
of the figure), the correlation between the two variables shows again 
high significance.

The correlation between T and ET (Figure 4b) is weak at subdaily 
scale, but it increases at scales higher than the day; a shift in phase 
indicates that the ET phase precedes that of T. At the annual scale, 
the correlation becomes significant and in phase. In Figure 4c, we can 
observe the relationship between ET and SWC. As expected, these 
variables are not significantly correlated at any scales, and we cannot 
identify any phase. In Figure 4d, we can observe the correlation be-
tween ET and VPD. At daily and subdaily scales, the correlation and 
the phase are quite similar to those of T, indicating a relatively strong 
coherence with a shift in phase, as also VPD, like T, follows ET peaks. 
We can observe interesting periods of significant coherence between 
these two variables at scales from daily to seasonal in all the years ex-
cept 2011. Similarly to T, the coherence becomes strong and in phase 
at the annual scale.

In Figure 5, we can observe the correlation between NEE and the 
same environmental drivers. Overall, the coherence between NEE with 
environmental drivers is similar to that shown by ET, but somehow 
weaker. Given the presence of both positive (respiration) and negative 
(assimilation) NEE values, the phase can be either positive (autumn and 
winter) or negative (summer). The PAR and NEE (Figure 5a) are tightly 
in antiphase at the daily scale only, and nearly completely in antiphase 
at the annual scale. The coherence between NEE and T (Figure 5b) 
is similar to that found for ET, with strong coherence not only at the 
daily scale but also at the annual scale. Also in this case, the variables 
are not in phase, NEE precedes T and shows opposite correlation 
in spring–summer with respect to autumn–winter periods. The cor-
relation with SWC (Figure 5c), as expected, is always very weak, and 
the phases are undistinguishable. In the case of VPD (Figure 5d), the 
correlation is weaker with NEE than for ET, but still quite strong. The 
variables are not in phase at the daily scale: NEE precedes VPD at the 
daily scale, but becomes in phase and negative, therefore indicating a 
positive influence on assimilation at the annual scale.

3.2.3 | Relationship between environmental 
constraints and observed ET and NEE at 
different timescales

Through the analyses at different timescales of the relationships be-
tween environmental drivers and biological fluxes (ET, NEE), it is pos-
sible to evaluate how these relations evolve, and possibly change, in 
the different time-periods used to group the data.

The relationships between environmental variables and ET are 
graphically displayed in Figure 6 and evaluated numerically in Table 1. 
We can observe that the relationship between PAR and ET is posi-
tive and monotonic along the entire time ranges. The two-parameters 

F IGURE  3 Normalized relationships at daily and annual scale between main environmental drivers and observed fluxes. Left side panels (a, c, 
e, g, i, k, m) show the correlations at daily scale, right side panels (b, d, f, h, j, l, n) show the correlations at annual scale. Same data and variables 
as in Figure 2, but shown in the environmental variable domain. First and second half of the datasets are shown in different colors
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equation used to model their relationship (Equation 2) is significant 
at half-hourly (r2 = 0.82) and daily scales (r2 = 0.76), but not at larger 
scales. PAR represents the highest correlated parameter with ET at half 
hour and daily scales, and only the third at monthly and seasonal scales. 
Conversely, the three-parameters equation describing the relationship 
between T and ET (Equation 3) increases its strength increasing the 
timescale, with the r2 increasing from 0.52 (hh) to 0.89 (season). This 
relationship is clearly logistic at short timescales, with a high level of 
scattering, while at larger scales it becomes almost linear and the scat-
tering decreases. The linear relationship of SWC with ET (Equation 6) is 
quite surprisingly negative at all the timescales, but the r2 is, however, 
low. The relationship between VPD and ET is generally positive along 
the entire range, with a saturation effect when the VPD approaches its 
maximum; at half-hour scale, these two variables are correlated with 
r2 of 0.54; the r2 increases at the larger scales, reaching values of 0.88 
at seasonal scale. The relationship between NDVI and ET do have a 
biological interpretation at monthly and seasonal scales only, as the 
satellite data were collected beweekly. At these scales, the correlation 
is low, but increasing with scale (r2 = 0.34 at seasonal scale).

The relationships between environmental variables and –NEE at 
different timescales are shown in Figure 7 and Table 2. At half-hour 
scale, the relationship between PAR and –NEE shows the well-known 
nonrectangular hyperbolic relationship, with the saturation effect, 
however, just about visible. At higher timescales, the parameter indi-
cating the maximum assimilation capacity becomes not significant and 
the saturation effect less evident. Although the r2 generally increases 
with timescales, similarly to what is observed for ET, the significance 
of the regression between PAR and –NEE decreases. At half-hour 
timescale, the relationship of air T with –NEE shows values around 
zero at temperature below 4°C, and an ample scatter along a logistic 
response curve at higher temperature values. At this scale, the r2 is 
very low (0.19). Increasing the scale, the relationship between T and 
–NEE becomes nearly linear, and the r2 increases. At seasonal scale, 
the r2 is 0.89, and T is the most correlated variable. The relationship 
between SWC and –NEE is barely visible, with the lowest values (neg-
ative, assimilation) in the lowest range, indicating an apparent negative 
role of SWC in the carbon sequestration capacity at all the scales. The 
relationship between VPD and –NEE is almost logistic at half-hourly 

F IGURE  4 Wavelets coherence analysis between observed ET fluxes and environmental drivers: (a) PAR, (b) T, (c) SWC, (d) VPD. X axis 
represents the time period of observation (6 years), the y axis represents the frequency of the waves, from multiannual at the bottom to half 
hourly at the top. Fading colors in the bottom outside a round part indicate the not-significant part of the image. Red color indicates the highest 
correlation, blue represents the minimum and yellow intermediate values; arrows indicate the presence of statistically significant correlation. 
Arrows angle (trigonometric convention) indicates the phase relationship: horizontal arrows indicate that the variables are in phase, inclined 
arrows indicate that a phase shift exists between the variables
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timescale, with an increasing but saturating function, with 90% of –
NEE attained at 20 hPa, a large scattering and a low r2 (0.26). This rela-
tionship becomes more linear and the correlation coefficient increases 
at seasonal scale, making VPD the second best-correlated parameter 
with –NEE, according to Equation 9 (r2 = 0.72). The relationship be-
tween NDVI and –NEE increases with scales and reaches a value of 
r2 = 0.34 at seasonal scale.

3.2.4 | Modeling the relationships among the 
observed variables at the different timescales

The multiple regression analysis revealed that both NEE and ET could 
be predicted by different numbers and types of environmental param-
eters depending on the temporal scales at which the data are arranged 
(Table 3). The r2 values increase always moving from shorter (half hour) 
to longer (seasonal) temporal scale. Half-hour data of both NEE and ET 
are affected by several parameters, but most of the variability was ac-
counted for by PAR, followed by VPD and air T. At the daily scale, NEE 
variability could be explained mainly by four predictors, air T, PAR, VPD, 
and NDVI, while ET by three of them: T, PAR, and VPD. Soil moisture, 
although significant, always explains a relatively small fraction of the 
total variability of the response factors at daily scale. Both at monthly 

and seasonal scales, the only significant predictor of NEE data is air T. 
Monthly ET data are predicted by both VPD and air T, while VPD is 
the only significant predictor of ET data at the seasonal scale (Table 3).

4  | DISCUSSION

4.1 | Analysis of the multiannual dataset composed 
by half-hourly data

The availability of databases encompassing timescales ranging from 
minutes to years, as recently made available by the spread in the use 
of the EC technique, has allowed the study of the temporal effects on 
the observed relationships between biological fluxes and environmen-
tal variables. In this study, we have analyzed several environmental 
variables that, with the exception of soil water availability, signifi-
cantly varied at both small- and large-temporal scales.

Using linear and nonlinear regressions, wavelet coherence and 
phase shift analyses, we answered two main questions: (1) whether 
the relation between weather variables and biological fluxes changes 
with the time of integration and (2) whether the modeling capability of 
the meteorological variables showing a hysteretic relation with biolog-
ical fluxes increase with timescale. The answers highlight the specific 

F IGURE  5 Wavelets coherence analysis between observed NEE fluxes and environmental drivers: (a) PAR, (b) T, (c) SWC, (d) VPD. Same 
conventions as for Figure 4
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functional properties of the considered agricultural ecosystem, and 
have a relevant modeling consequence.

4.1.1 | Does the relation between environmental 
drivers and biological fluxes change across timescales?

Our results clearly indicate that timescale strongly affects the 
way environmental parameters are related to either NEE or ET. 

To explain this finding, we have to consider that the multiple 
environmental variables are differently aggregated according to 
the scale. Sun–earth interactions are the main driver of the re-
lationships between environmental factors and biological func-
tions. The effects of environmental parameters on the exchange 
of carbon dioxide and water vapor are mediated by the heating 
and the cooling of atmosphere, vegetation and soil, and by the 
time needed to develop the biological structures (e.g., LAI) and 

F IGURE  6 Relations between environmental drivers (PAR, T, SWC, VPD) and satellite NDVI versus observed ET fluxes. Boxplots represent 
the 50% distribution percentile, vertical bars represent 99% distribution. Same colors represent same distribution interval in the different 
timescales. (a) PAR, (b) T, (c) SWC, (d) VPD, (e) NDVI
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biochemical compounds (e.g., chlorophyll content), which occur 
separately at different scales. Any relationship is inherently en-
tangled with those produced by other drivers. The apparent rela-
tionship at a given scale is therefore influenced by the different 
combination of concurrent variables.

4.1.2 | Can we improve the modeling capability of 
fluxes showing a hysteretic response to environmental 
drivers by increasing the time of integration?

We tested the hypothesis that increasing the time of integration in-
creases the overall modeling capability, as hysteretic and delayed re-
sponses to environmental drivers are increasingly captured. We made 
this hypothesis considering the stabilizing effect of the management 
on the agricultural systems (Lauri et al., 2009; Zanotelli et al., 2015). 
Therefore, we supposed an opposite pattern with respect to what was 
found in natural ecosystems, where the direct effect of environmental 
drivers loses importance while increasing the timescale, in favor of 
biologically mediated interactions (Richardson et al., 2007; Wu et al., 
2015).

Besides a preliminary technical reason, that is, the reduction in 
random errors influencing half-hourly data more than aggregated ones 
(Goulden, Munger, Fan, Daub, & Wofsy, 1996), we can postulate two 
main reasons to explain these differences: (1) the capture of progres-
sively larger parts of delayed responses and (2) the reduction of hyster-
etic effects at the longer timescales.

On the one hand, by extending the time window beyond a given 
interaction, it is possible to capture a progressively larger part of the 
delayed responses of any single variable. Increasing the scale, we can 
progressively capture the delayed effects of stomatal openness, the 
maturation of the photosynthetic machinery, and the enhanced pho-
tosynthates demand during fruit maturation.

On the other hand, in the analysis of the interactions between 
drivers and fluxes, we can observe that interactions are generally not 
in phase in the time domain. These out-of-phase interactions corre-
spond to “rate-dependent” hysteresis in the variable domain (Zhang 
et al., 2014). In some cases, the environmental forcing occurs before 
the peak in the ecosystem flux and induced delayed response. This is 
the case, for instance, of the spring rise in temperature, that precedes 
the ET, and more markedly, the NEE rise. In other cases, the peak of 
the environmental forcing takes places after the flux peak. In fact, both 
ET and photosynthesis directly respond to radiation, while other en-
vironmental drivers such as temperature, although having a generally 
positive influence on fluxes, frequently lag by a time larger than that of 
the flux response.

4.2 | Correlations between drivers and fluxes at the 
different scales

The effects of the combined interactions, in phase and not in phase, 
can be simply evaluated through the variation of the correlation 
coefficients between fluxes and drivers in different integration 
periods.T
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At half-hourly scale, both linear (used in the Relaimpo analysis) 
and nonlinear regressions (used in custom-made nonlinear functions) 
indicate PAR as the most important driver of ET and NEE, almost com-
pletely in phase. At this scale, the correlation of PAR with both ET and 
NEE was strong, and the phase shift limited. Instead, the relationship 
between VPD and ET showed a clear hysteresis in the variable domain. 
This hysteresis was explained mechanistically by Bohrer et al. (2005) 

and by Matheny et al. (2014) as an effect of hydraulic stress occurring 
in the afternoon.

At the daily scale, most of the effects related to daily phase shift 
disappear, but delayed effects are yet minimally taken into account. At 
this scale, as it can be seen by linear and nonlinear analyses (Tables 1 
and 2), the PAR begins to lose part of its relevance in the flux deter-
mination, in favor of drivers that are not in phase at subdaily scales, 

F IGURE  7 Relations between environmental drivers (PAR, T, SWC, VPD) and satellite NDVI versus observed NEE fluxes, with the same 
graphical conventions as in Figure 6. (a) PAR, (b) T, (c) SWC, (d) VPD, (e) NDVI
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such as temperature and VPD. This is also the scale where the wavelet 
analysis shows the highest correlation for most of the drivers.

At the monthly scale, part of the delayed effects linked to leaf de-
velopment (LAI; chlorophyll content; effect of fruit load on photosyn-
thesis) is taken into account. Although the wavelet analysis does not 
show any specific correlation at this scale, the correlation coefficients in 
linear and nonlinear regressions generally increase. This is particularly 
evident for T and NEE and for both T and VPD and ET (Tables 1 and 2), 
while the relative importance of PAR consistently decreases (Table 3).

At the seasonal scale, the effects of leaf development are mostly 
taken into account. At this scale, the radiation increasingly loses its rel-
evance and its modeling capability in favor of drivers that, at daily and 
seasonal scale, show not-in-phase effects, like temperature and, no-
tably, VPD. Linear and nonlinear regressions show some difference in 
the output, but the increased relevance of the drivers occurring not in 
phase with fluxes at half-hourly scale, like T and VPD, is always evident 
(Matheny et al., 2014; Wohlfahrt & Galvagno, 2017; Zhang et al., 2014).

4.3 | Consequences for modeling

Ecosystem functioning is the result of multiple processes having vari-
ous speed and response time. Interpreting and reconstructing these 
interactions across time is a main challenge for ecosystem modeling 
(Wu et al., 2015); regardless of the fact that mechanistic or empirical 
approaches are used, a correct representation of the correlations be-
tween environmental drivers and fluxes at the different scales is always 
needed. The mechanistic method is thought to be more suitable in this 
regard (Rastetter, Aber, Peters, & Ojima, 2009) because each underlying 
process is represented at the proper timescale. However, in our study, 
we obtained increasing modeling performance applying an empirical 
method, introducing temporal aggregation of drivers and responses.

In order to take into account both delayed and anticipated cor-
relations two possible computational strategies can be used in em-
pirical models. First, one can model separately these effects: The 
well-established approach of thermal sum, or other phenological mod-
eling approaches based on spring warming (Chuine, Cour, & Rousseau, 
1999; Jolly, Nemani, & Running, 2005; Melaas et al., 2013) are exam-
ples that show how a delayed effect of temperature on vegetation can 
be considered. The second approach is to capture delayed effects, or 
anticipated ones, together with current interactions by extending the 
time window of data integration. In this way, out-of-phase effects are 
increasingly captured as the timescale increases.

In our study, we showed that a simple average at a given scale can 
improve the correlations between drivers and processes at the same 
scale. A similar result was found by Razavi, Elshorbagy, Wheater, and 
Sauchyn (2015), who used a moving average to better correlate driver 
and output.

Studies in temperate and tropical ecosystems (Richardson et al., 
2007; Wu et al., 2015) showed that an opposite pattern can be ob-
served, and long-term hysteresis due to biological responses can take 
place, reducing the correlation with meteorological drivers at the lon-
ger scales. Also in managed ecosystems, care should be taken to avoid 
overaveraging: in fact, statistical significance and part of ecosystem 

signaling are lost when increasing the averaging time. Long-term data 
records are necessary to obtain averaged data with statistical sig-
nificance at annual or multiannual scale. This observation highlights 
the relevance of long-term monitoring infrastructures, such as LTER, 
NEON, or ICOS, that provide the potential for exploring these rela-
tionships at larger scales (i.e., annual to decadal) in the different eco-
system types (Chu, Baldocchi, John, Wolf, & Reichstein, 2017).

We suggest that current difficulties in modeling some ecosystem 
phenomena, such as the lagged effect of drought (Liang et al., 2015; 
Von Randow et al., 2013), the linkage between photosynthesis and 
decomposition process (Stoy et al., 2009), or the ecosystem resilience 
(Johnstone et al., 2016) depend on the large hysteretic and lagged ef-
fects that can be captured only along annual or multiannual integration 
periods.

In this study, we have quantitatively demonstrated the importance 
of different drivers on carbon and water cycling at multiple timescales. 
Interactions among variables at short scales do have little forecast capa-
bilities with respect to conveniently aggregated long-term data records. 
The dataset used, although quite large, is still not able to be used to infer 
in a statistically significant way the relationships between the meteoro-
logical drivers and the biological fluxes at scales larger than seasonal. 
The findings as obtained through the Relaimpo analysis show that with 
increasing timescale, the number of variables needed to represent the 
observed biological fluxes decrease, and largely change when the times-
cale increases. This has relevant and largely unexplored consequences 
for scale dependent ecological modeling. The observation that radia-
tion decreases its influence when increasing the considered timescale 
suggests a decreasing ability of the commonly used light use efficiency 
models to describe the variability in the fluxes at the longer scales.

The power of satellite products such as NDVI to describe the 
seasonal variability in the fluxes appears to be limited, and mostly 
confined to the identification of the green-up during spring. The ca-
pacity of the VPD to predict the fluxes, and particular ET, at the longer 
scales reflects the key role of this driver in regulating the gas exchange 
between the considered vegetation and the atmosphere. This sug-
gests that VPD can be a good predictor of ET from medium to longer 
timescales.

5  | SUMMARY AND CONCLUSIVE  
REMARKS

This study presents the results from the longest data series of mete-
orological, satellite, and EC-based biological fluxes measured above an 
irrigated apple orchard. The dataset is unique in providing consistent 
observations of an economically relevant woody crop over 6 years.

The analysis encompassing the average daily and annual patterns 
of constraint on the fluxes, the wavelet coherence analysis and the 
nonlinear regression modeling, clearly shows that not-in-phase inter-
actions between environmental drivers exist, in particular between T 
and VPD and observed biological fluxes. Extending the time of the 
integration window, the effect of the phase shift in the time domain, 
corresponding to a hysteresis in the environmental variables domain, 
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tend to vanish. Similarly, the correlations tend to be more linear and 
less scattered when extending the integration time.

At the smaller scales (half hour, day), several variables have to be 
taken into account to model the observed fluxes, and the modeling 
capability is relatively low. Instead, at the larger scales (month, sea-
son), we were able to model up to 90% of the observed variability in 
the fluxes with a reduced number of variables (one or two). In particu-
lar, while PAR is the most effective parameter to model half-hour and 
daily interactions, the VPD is particularly effective in describing the 
observed monthly to seasonal variability in ET, and T is particularly 
effective in explaining NEE at the same scales.

This study showed a marked difference in the relevance of explan-
atory variables at the different scales. While in natural ecosystems the 
biological variability tends to be dominating at timescales larger than 
1 month (Richardson et al., 2007; Wu et al., 2015), we observed an in-
creasing explanatory capacity of meteorological constraints also at the 
largest scales (seasonal), and only a small increase in correlation with 
biological-related variables (NDVI). We hypothesize that this feature 
is tied with agronomic practices tending to maximize the crop perfor-
mances and stabilize its relations with the environment.

This work suggests that, when biological-related variables are not 
relevant, a statistical elaboration of input data to reduce the impact of 
phase shift and hysteresis among variables and fluxes can improve the 
modeling capacity of some explanatory variables, particularly those, 
like T and VPD, which are not in phase with observed fluxes. Finally, 
the observation about the changing variables needed to explain the 
observed fluxes in natural and managed ecosystems at the different 
timescales opens new questions and perspectives regarding environ-
mental modeling in a changing climate.
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