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Optimizing Silicon photomultipliers 
for Quantum Optics
Giovanni Chesi1, Luca Malinverno   1, Alessia Allevi1,2, Romualdo Santoro1, Massimo Caccia   1,  
Alexander Martemiyanov1,3 & Maria Bondani   2

Silicon Photomultipliers are potentially ideal detectors for Quantum Optics and Quantum Information 
studies based on mesoscopic states of light. However, their non-idealities hampered their use so far. An 
optimal mode of operation has been developed and it is presented here, proving that this class of sensors 
can actually be exploited for the characterization of both classical and quantum properties of light.

Nowadays, Quantum Technologies are receiving a boost due to their potential impact in the field of information 
processing. In particular, photonics represents an ideal platform thanks to the high transmission rates and the 
robustness of optical states against decoherence effects. In this context, the development of new light sources 
and detectors, more compact and versatile, is a priority. For what concerns detection, the last two decades have 
seen the implementation of novel classes of photodetectors endowed with photon-number-resolving capabil-
ity. Among them, Silicon photomultipliers (SiPMs)1–5 have received only a moderate attention in the field of 
Quantum Optics since their non-idealities have till now prevented their use in revealing quantum light features6,7. 
On the other hand, the use of SiPMs would be highly desirable due to their compactness, robustness and cost.

SiPMs are arrays of cells connected in parallel to a common output. Each cell is a p-n junction operated above 
the breakdown voltage so that a single carrier is likely to trigger a Geiger-Müller (GM) avalanche multiplication 
by impact ionization. SiPMs feature single-photon sensitivity and an unprecedented photon-number-resolving 
capability, providing information about the intensity of the incoming light by counting the number of fired cells. 
The quantum efficiency of the new SiPMs can reach a maximum of 60% in the blue spectral region.

SiPMs are affected by spurious stochastic effects: dark count, cross talk and after pulses. Frequency of dark 
counts, namely spurious avalanches triggered by thermally generated charge carriers, increases with bias voltage 
and temperature. Optical cross talk8 arises since electrons accelerated in the avalanche process produce secondary 
photons that may trigger avalanches in a neighboring cell. While this phenomenon was significant (of the order 
of 20%) in the first generations of SiPMs, it has been decreased to a few percent in the latest generation, in which 
metal-filled trenches around the cells inhibit photon propagation. SiPMs can be also affected by after pulses, 
which are defined as triggered avalanches due to the release of trapped carriers captured in previous avalanches. 
In the new generation of these detectors after-pulsing is negligible.

In this paper, we consider the latest generation of SiPMs and investigate to which extent the non-idealities 
could be detrimental for the effective exploitation of such detectors in Quantum Optics. By testing classical states 
of light we show that a comprehensive theoretical model, in which dark counts and cross talk are included, is in 
excellent agreement with the values of statistical moments and distributions obtained from the experimental data. 
We demonstrate that by a proper pulse shaping, digitization and processing, the impact of the spurious effects 
can be made negligible. In particular, by means of a peak-and-hold acquisition system we are able to properly 
reconstruct the photon-number statistics of the measured states without the need of taking into account the 
non-idealities. These results are crucial for the observation of non-classical features of light.

Results and Discussions
The detector model.  As mentioned in Section 1, SiPMs are characterized by the presence of dark-count and 
cross-talk effects. The occurrence of dark counts is a stochastic process that in the temporal domain is randomly 
distributed according to a Poissonian distribution. This means that, when the detector output is integrated over a 
gate synchronous with the light source, the mean value of dark counts depends linearly on the gate width.
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The dark-count rate (DCR) can be directly obtained by measuring, in the absence of light, the frequency of the 
detection events that are above the electronic noise threshold. Optical cross-talk events4,9,10 can occur simultane-
ously to the light signal (prompt cross talk) or at a later time (delayed cross talk). The first ones occur when the 
GM-avalanche-generated photons are directly absorbed into the active layer of the cell, thus triggering an ava-
lanche simultaneous with the primary absorbed photons. There is no possibility to discriminate between primary 
detection events and prompt cross-talk events, since the last ones contribute to the signal as additional fired cells. 
Nevertheless, the rate of prompt cross-talk events can be directly estimated as the ratio

ε ν ν= / , (1)2 1

where ν1 is the DCR measured by setting the threshold at half the amplitude of the signal corresponding to a 
single avalanche, and ν2 is the DCR when the threshold is set to one and half single-cell signal11. In order to 
obtain the values of ν1 and ν2, DCRs have been measured by scanning the threshold values (Fig. 1). As to delayed 
cross-talk events, if a photon generated by the GM avalanche is absorbed in the epitaxial layer, parasitic electric 
field could move it into the active layer and trigger an avalanche at a later stage. The temporal development of 
delayed cross-talk probability has been investigated in ref.12, where an empirical model for the cross-talk proba-
bility density function, δε(t), has been proposed:
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In Eq. (2), a is a constant, and τxc is a characteristic time. This model correctly accounts for the behavior of cross 
talk at times shorter than the temporal development of the detector signal. The integral of Eq. (2) over different 
choices of gate widths yields the effective cross-talk probability ε to be used in the model for detection. In the 
following Section, we will show that this model is consistent with our data.

In order to interpret the experimental data, we have developed a comprehensive model for SiPMs13. First of all, 
we assume that the detection process of the entire SiPM array is described by a Bernoullian distribution, Bm,n(η), 
so that the distribution of photoelectrons, Pel(m), can be written as a function of the distribution of photons, 
Pph(n), through
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where η is the detection efficiency, n is the number of incident photons, and m that of photoelectrons. Dark 
counts can be modelled by a Poissonian distribution
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where 〈m〉dc is the mean value of dark counts. Moreover, the optical cross-talk effect, which is a genuine cascade 
phenomenon, at first order can be written as6
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k l l k
,

2

being ε the probability that the avalanche from a cell triggers one neighbor cell, l is the number of photo-triggered 
avalanches and of dark counts, and k is the resulting number of avalanches including cross talk.

Moreover, we assume that the amplification of the detector is described by a multiplicative parameter, γ14. 
Thus, the photon-number distribution of the detector output is given by

Figure 1.  Threshold scan of SiPM performed at room temperature with no impinging light.
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where xout is the single-shot output of the overall detection chain. According to this model, 〈xout〉 = γ〈k〉 = γ(1 + ε)
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First- and second-order moments.  The analysis of the low-order moments of photon-number distri-
butions, such as mean value and variance, can be sufficient to characterize the nature of light. For instance, it is 
well-known that the value of the Fano factor15

σ
=

〈 〉
F n

n
( ) ,

(7)
n
2

in which σn
2 is the variance and 〈n〉 the mean number of photons, is sufficient to discriminate among Poissonian, 

sub-Poissonian and super-Poissonian statistics, and hence can serve as an indicator of nonclassicality16.
In order to check the reliability of the SiPMs in detecting the characteristics of light states, we consider the 

first two moments of photon distributions, and use them to calculate the Fano factor. According to the model 
described above13, the Fano factor for the SiPM output is a linear function of the first moment 〈xout〉

σ
γ ε

ε
=

〈 〉
=

〈 〉 + 〈 〉
〈 〉 +

+
+

+F x
x

Q
m m

x( ) 1 3
1

,
(8)

x
out

,out
(2)

out

el dc

dc
out

where σ= + 〈 〉 〈 〉 + 〈 〉 −+Q m m m( )/( ) 1mel dc
2

dc dc  is the Mandel factor of the detected light.

Poissonian statistics.  The photon-number distribution of a coherent field is Poissonian, so that σ〈 〉 =n n
2. In this 

case, Eq. (8) reduces to
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For the data we present, we decided to independently estimate the value of γ, as it corresponds to the distance 
between two consecutive peaks in the pulse-height spectrum and can be determined by means of a multi-peak fit 
of the spectrum histogram modelling each peak with a Gaussian function13.

In Fig. 2 we show the experimental values of the Fano factor as a function of the mean value of the output 
together with the linear fitting curves, in which ε is the only fitting parameter and γ is fixed. All the data presented 
in the figure were obtained by the same dataset acquired with the digitizer and integrated in post processing over 
different gate widths, as explained in Sect. Methods. In detail, different colors correspond to different integration 
gate widths: black to 350-ns gate, red to 100-ns gate, blue to 70-ns gate, and cyan to 50-ns gate. In more detail, for 
the curves in Fig. 2 we obtained the fit parameters shown in Table 1.

The horizontal linear behavior described by Eq. (9) is well supported by all the experimental data. By compar-
ing the values of ε for each choice of gate width, we note that a larger integration gate results in a larger number 
of cross-talk-affected events, thus leading to a larger Fano factor. In particular, all the values of ε are comparable 
to that determined with the standard strategy described above, i.e. ε = 0.03 ± 0.01. The decrease of the cross-talk 
probability for small gate widths can be explained by considering the temporal distribution of cross-talk events, 
which, from Eq. (2), can be written as

Figure 2.  Fano factor for Poissonian statistics as a function of the mean output of the detector. Different colors 
correspond to different integration gate widths: black to 350-ns gate, red to 100-ns gate, blue to 70-ns gate, and 
cyan to 50-ns gate. Dots: experimental data; lines: fitting linear curves in which ε is the only fitting parameter.
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where ε0 is the prompt cross-talk probability and T is the integration time (gate width). In Fig. 3 we show the 
value of cross talk obtained from the calculated Fano factor as a function of the gate width for a chosen mean 
value (dots + error bars). The experimental data exhibit two rather different trends for short and long times. For 
T < 150 ns, the data are well fitted by the model in Eq. (10) (red curve), while for longer gate widths the trend 
is linear (blue curve). Noting that a 150-ns gate entirely covers the evolution of the signal, we can safely assess 
that the contribution at longer gates only comes from cross-talk events triggered by dark counts, which are lin-
ear in the gate width. By fitting the data in Fig. 3 up to T = 150 ns with Eq. (10) we get: ε0 = 0.0219 ± 0.0024, 
a = 0.0004 ± 0.0001, and τxc = 53 ± 9 ns. For longer times we fit the data with ε = mT + q and obtain m = 2.2 
104  ±  0.1 104 Hz and q = 0.0372 ± 0.0004. The term mT can be interpreted as the cross-talk probability associated 
to dark-count events.

Multi-mode thermal statistics.  In the case of pseudo-thermal light impinging on the SiPM, the photon-number 
distribution is generally multi-mode thermal with μ modes equally populated. In this case, the Fano factor 
reduces to
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in which 〈xdc〉 = γ〈m〉dc is the mean number of dark counts. For multi-mode thermal light the Fano factor is a 
rational polynomial function, whose minimum value is Fmth(0) = γ(1 + 3ε)/(1 + ε), that is the Fano factor of 
coherent light. In Fig. 4 the experimental values of Fano factor are in good agreement with the fitting curves cal-
culated according to Eq. (11). We note that in the calculation of such curves, for each choice of the gate width 
(50 ns, 70 ns, 100 ns, and 350 ns), we used the values of cross-talk probability ε estimated in the case of coherent 
light. Also the factor γ was separately estimated to further reduce the number of parameters. Since the different 
sets of data share the same parameters (μ and 〈x〉dc), for all the gate widths we performed a fitting procedure by 
imposing χ =ν 12  and we assumed a scaling of 〈x〉dc linear with the gate width. Moreover, since the light is the 
same for all the gate widths, we assumed that they shared the same value of μ. The obtained values are shown in 
Table 2. We notice that the values of dark counts correspond to a DCR of ~160 kHz, which is quite similar to the 
rate independently measured with the standard technique presented above, i.e. 140 kHz. The values of the fitting 

Gate width ε CI (ε) χν
2

350 ns 0.0480 (0.0467, 0.0494) 2.34

100 ns 0.0370 (0.0356,0.0383) 0.68

70 ns 0.0374 (0.0359, 0.0390) 0.60

50 ns 0.0351 (0.0336, 0.0366) 0.75

Table 1.  Values of the fitting parameter ε of the Fano factor as a function of the gate width in the case of 
coherent light. The symbol CI indicates the 95% confidence interval. In the last column the χ2 per degree of 
freedom is shown.

Figure 3.  Cross-talk probability as a function of the length of the gate for 〈 〉 .~m 1 2. Dots + error bars: 
experimental data; red and blue curves: theoretical fitting curves for short and long times, respectively.
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parameters prove that, as expected, a larger integration gate width leads to a larger occurrence of non-idealities. 
Indeed, not only the cross-talk probability increases, but also the mean number of dark counts.

Statistics.  The knowledge of all the moments of photon-number distribution can in principle provide much 
more information about the state under investigation. Even if the photon-number distribution represents only a 
portion, namely the diagonal, of the density matrix of an optical state, its knowledge is sufficient in many appli-
cations, such as metrology17, material probing18, biomedical optics19, and optical communication protocols20.

In this Section, we deal with the reconstruction of Poissonian statistics and of multi-mode thermal statistics 
by considering two choices (100 ns and 50 ns) of integration gate width.

For what concerns coherent light, in Fig. 5 we show the statistics of the actual signal amplitude k on a logarith-
mic scale: 100-ns gate in panel (a) and 50-ns gate in panel (b). The mean value of the measured light was roughly 
the same in both cases, namely 〈k〉 = 1.3. The data, shown as gray columns + black error bars, are plotted together 

Figure 4.  Fano factor for multi-mode thermal statistics as a function of the mean output of the detector. 
Different colors correspond to different integration gate widths: black to 350-ns gate, red to 100-ns gate, blue to 
70-ns gate and cyan to 50-ns gate. Dots: experimental data; lines: fitting curves with fitting parameters 〈x〉dc and 
μ, while ε is fixed from the plots in Fig. 2.

Gate Width 〈xdc〉 CI (〈xdc〉) DCR (kHz) μ CI (μ)

350 ns 0.0563 (0.0544, 0.0582) 161 ± 11 1.2234 (1.2225, 1.2243)

100 ns 0.0187 (0.0168, 0.0206) 187 ± 38 1.2234 (1.2225, 1.2243)

70 ns 0.0086 (0.0065, 0.0107) 123 ± 60 1.2234 (1.2225, 1.2243)

50 ns 0.0080 (0.0078, 0.0082) 160 ± 8 1.2234 (1.2225, 1.2243)

Table 2.  Values of the fitting parameters 〈x〉dc and μ of the Fano factor as functions of the gate width in the case 
of multi-mode thermal light. The symbol CI indicates the 95% confidence interval.

Figure 5.  Reconstructed P(k) distributions in the case of coherent light for two choices of gate widths: 100 ns in 
panel (a) and 50 ns in panel (b). Gray columns + black error bars: experimental data; magenta dots: theoretical 
fitting curves in case the detector is affected by cross talk; blue triangles: theoretical curves in the absence of 
cross talk. The values of the χ2 per degree of freedom are: 34.47 and 28.02 in the absence of cross talk and 25.19 
and 23.07 in the presence of it, respectively.
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with two possible fitting curves. The blue triangles represent the theoretical expectation in the case of coherent 
light,

m m
m

mP ( )
!

exp( ), (12)

m

coh =
〈 〉

−〈 〉

whereas the magenta dots take into account the occurrence of cross-talk effect at the detection stage13:
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where pFq is the generalized hypergeometric function. In Eqs (12) and (13), the term 〈m〉 also includes the con-
tribution of dark counts that cannot be discriminated from that of detected photons due to the light statistics. In 
the theoretical expectation according to Eq. (13), we used the values of ε shown in Table 1. We note that, in each 
panel, the two theoretical curves are quite different from each other, especially for large numbers of k, and the 
complete theory that includes the cross-talk effect better fits the data.

As a second example of statistics reconstruction, in Fig. 6 we plot P(k) in the case of multi-mode thermal 
light with 〈k〉 = 1.3 for the same choices of gate width shown above. In more detail, the experimental data were 
obtained by integrating the signal over 100 ns in panel (a) and 50 ns in panel (b). In both cases the data are shown 
together with the theoretical fitting curves in the absence of cross talk (blue triangles)
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Note that in Eq. (15) we do not consider the contribution of dark counts. Indeed, the values of 〈x〉dc shown in 
Table 2 are negligible with respect to the mean value of k. Thus, the term 〈m〉 represents the true mean number of 
detected photons. In this case the models in the presence and in the absence of cross talk do not differ too much 
from each other (as also proved by the χ2 per degree of freedom reported in the caption of Fig. 6) and are well 
superimposed to the data up to a quite large number of photons (up to 10). The discrepancy for larger numbers 
is emphasized by the logarithmic scale, even if the absolute values are quite similar and almost negligible (of the 
order of 10−4).

Correlations.  The study of cross-correlations between the two parties of bipartite systems represents a pow-
erful method to highlight the fluctuations of photon numbers, that goes beyond the direct reconstruction of the 
photon-number distributions. For instance, correlations have been used to emphasize the difference between a 

Figure 6.  Reconstructed P(k) distributions in the case of multi-mode thermal light for 100-ns (a) and 
50-ns (b) gate width. Gray columns + black error bars: experimental data; magenta dots: theoretical fitting 
curves in case the detector is affected by cross talk; blue triangles: theoretical curves in the absence of cross 
talk. In the presence of cross-talk effect, the values of the number of modes are μ = 1.5148 ± 0.5387 and 
μ = 1.4790 ± 0.5201, respectively. The corresponding χ2 per degree of freedom is 14.24 in (a) and 14.79 
in (b). On the contrary, in the absence of cross-talk effect we got μ = 1.3972 ± 0.0113 in panel (a) and 
μ = 1.3733 ± 0.0113 in panel (b). The corresponding χ2 per degree of freedom is 10.85 in (a) and 11.91 in (b). 
The contribution of dark counts is not considered in the theoretical fitting curves.
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thermal statistics and a super-thermal one21,22. Moreover, they are of fundamental importance for many appli-
cations, such as for imaging23–26 and generation of conditional states27,28, both for classical and quantum states.

The calculation of photon-number correlations requires shot-by-shot determinations of the number of 
photons, a task that becomes harder and harder as the number of photons increases. In order to test the capa-
bility of SiPMs in properly revealing the presence of cross-correlations for different gate widths, we consider 
pseudo-thermal light divided at a balanced beam splitter. Ideally, the shot-by-shot correlation coefficient for 
detected photons in the case of a multi-mode thermal state reads as:

μ μ

μ μ
Γ =
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+ 〈 〉 ⋅ + 〈 〉
.

m m
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1 1 2 2

Taking into account the presence of cross-talk effect and dark counts and using the relation between 〈m〉 and 
〈k〉 = (〈m〉 + 〈m〉dc)(1 + ε), Eq. (16) must be modified as follows29:

ε ε μ μ

μ ε μ ε
Γ =

〈 〉 + − 〈 〉 〈 〉 + − 〈 〉

+ 〈 〉 + − 〈 〉 + 〈 〉 + − 〈 〉
.

−

− −

m m m m

m m m m

[ /(1 ) ] [ /(1 ) ]( )

[1 ( /(1 ) )] [1 ( /(1 ) )] (17)

1 1 dc,1 2 2 dc,2 1 2
1

1
1

1 1 dc,1 2
1

2 2 dc,2

In Fig. 7 we show the reconstructed shot-by-shot correlation coefficient for four different choices of gate 
widths, namely 350 ns (black dots), 100 ns (red dots), 70 ns (blue dots), and 50 ns (cyan dots). The experimental 
data are shown together with the fitting curves calculated according to Eq. (17), in which the values of cross-talk 
are those obtained from the evaluation of the Fano factor (see Table 1). As to dark counts, we used the value 
reported in Table 2 for each gate width. The only left fitting parameter is then the number of modes μ, which was 
assumed to be the same for the two outputs of the beam splitter. The values of μ are shown in Table 3 together 
with the values of the χ2 per degree of freedom. We note that, given the same mean value 〈k〉, the highest values of 
Γ correspond to the shortest gate width and thus to the smallest values of ε and 〈m〉dc. This behavior proves that 
the presence of cross-talk effect and dark counts decreases the amount of cross-correlation. Indeed, such effects 
independently occur in the two employed detectors. However, it is worth noting that including the non-idealities 
is only necessary when the signal is integrated over long gate widths. On the other hand, the data corresponding 
to 50-ns gate could be well fitted by a curve in which both dark counts and cross-talk effect are set equal to zero. 

Figure 7.  Experimental correlation coefficient Γ (dots + error bars) as a function of 〈k〉 for pseudo-thermal 
light together with theoretical fitting curves (lines). Different colors correspond to different gate widths, namely 
350 ns (black), 100 ns (red), 70 ns (blue), and 50 ns (cyan). The fitting parameter is μ, while ε is fixed from the 
plots in Fig. 2 and 〈m〉dc from the values reported in Table 2. The fitting parameter obtained in the four cases is 
shown in Table 3.

Gate Width μ CI (μ) χν
2

350 ns 1.3015 (1.2876, 1.3154) 0.28

100 ns 1.2647 (1.2543, 1.2750) 0.34

70 ns 1.2473 (1.2370, 1.2576) 0.30

50 ns 1.2331 (1.2230, 1.2432) 0.38

Table 3.  Values of the fitting parameter μ of the correlation coefficient as a function of the gate width in the case 
of multi-mode thermal light. The symbol CI indicates the 95% confidence interval. In the last column the χ(2) 
per degree of freedom is shown.
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This result confirms that for the employed SiPMs the correction given by Eq. (17) to Eq. (16) is substantially neg-
ligible, at least for small gate widths.

A further improvement.  All the results achieved so far indicate that the shorter the gate the most negligi-
ble the non-idealities are. However, the integration over short gates can rise an issue: The setting of the gates is 
quite delicate, since a precise control of temporal delays is required. In order to optimize the acquisition of the 
light signal and make the spurious stochastic effects negligible, we designed a low-noise shaping amplifier. When 
this device is connected to a SiPM output, the typical output signal appears as in Fig. 8. Due to this shaping, it 
is possible to implement a full digital peak capture procedure with the DT5730 digitizer, that gets rid of the non 
simultaneous spurious effects. The difference between this digitizer and the one described in Sect. Methods is the 
sampling rate, which is twice as large (500 MS/s). In Fig. 9 we show a typical pulse-height spectrum after the SiPM 
detected a coherent light beam, where a good peak separation is appreciable. It is worth noting that, at variance 
with the pulse-height spectra obtained from the integration of the digitized signals (see Sect. Methods), the peak 
corresponding to 0 photons in Fig. 9 is asymmetric and its distance from the 1-photon peak is different from the 
typical peak-to-peak distance. The reason for this bias is due to the specific analysis procedure, which consists 
in evaluating shot-by-shot the height of the peak. Since also in the absence of light the maximum of the signal 
is calculated, the 0-photon peak is not centered in 0, but rather translated in the positive direction. In this case, 
the S/N corresponding to Fig. 9 is calculated as the ratio betweeen the mean value of the 1-photon peak and its 
width. In particular, its value is S/N = 13 ± 1.2, which is lower than the maximum value corresponding to a spe-
cific integration gate width (see Sect. Methods for details). However, the peak-and-hold circuit allows for a better 
reconstruction of the statistical properties since the stochastic effects are essentially negligible. On the contrary, in 
the case of integration over a specific gate width we have seen that such effects play an important role modifying 
the statistical properties of light. Indeed, the reconstructed photon-number distributions shown in Fig. 10 do 

Figure 8.  A single-shot detector signal, acquired with the peak-and-hold circuit, is indicated as black curve. 
The red arrow indicates that in this case the height of the peak was extracted shot-by-shot.

Figure 9.  Normalized pulse-height spectrum corresponding to a coherent state with 〈m〉 = 2.56, obtained by 
applying the peak-and-hold acquisition system to the signal output.
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not require to consider non-idealities to match the theoretical expectations. This configuration encourages the 
exploitation of the new generation of SiPMs in the Quantum Optics context.

Conclusions
We presented a thorough analysis of the capability of the new generation of SiPMs produced by Hamamatsu 
to properly reconstruct the statistical properties of classical states of light. We demonstrated that we are able to 
describe the detector outputs by including in our theoretical model cross-talk effect and dark counts. We pointed 
out how, under proper experimental conditions, these drawbacks can be neglected. In fact we proved that the 
influence of these effects on the measurement of light states depends on the integration gate, thus making the 
peak-and-hold acquisition strategy preferable. Indeed, by using a peak-and-hold acquisition system matched 
with a proper front end electronics, dark counts can be neglected, as, so far, the optical cross talk. Even if further 
improvements are still needed, such as a better beam coupling into fibers, the employed detection chain paves 
the way towards the exploitation of SiPMs in more complex schemes. For instance, this kind of detectors could 
be used in the homodyne-like detection scheme based on hybrid photodetectors (HPDs) that we recently applied 
to coherent-state discrimination30 and to quantum-state reconstruction31. Since SiPMs are more compact than 
HPDs, they would allow the portability of the apparatus, thus increasing the number of possible application fields.

Methods
The detection chain: processing and data acquisition.  The current investigation has been performed 
using two SiPMs (MPPC S13360-1350CS)32, produced by Hamamatsu Photonics33, each one having 667 pixels 
in a 1.3 × 1.3 mm2 photosensitive area, a pixel pitch equal to 50-μm, and a quantum efficiency of 40% at 460 nm.

Figure 10.  Reconstructed P(k) distributions in the case of coherent light acquired with the peak-and-hold 
circuit to the output signal. (a) Coherent light with 〈m〉 = 0.76. (b) Coherent light with 〈m〉 = 2.56. Gray 
columns + black error bars: experimental data; blue triangles: theoretical curves in the absence of cross talk. The 
corresponding χ2 per degree of freedom is 8.31 in (a) and 1.33 in (b). The values of fidelity are also shown.

Figure 11.  A single-shot detector signal, acquired with the digitizer, is indicated as red curve together two 
possible integration gates, T. The gate ending with the vertical gray line is 100-ns long, whereas the one ending 
with the vertical light gray line is 350-ns long.
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Each detector output was sampled by a desktop waveform digitizer (DT5720, CAEN) operating at 12-bit res-
olution and at 250-MS/s sampling rate. The acquired traces were then integrated in post processing over different 
gate widths T, ranging from the whole waveform time evolution ( ~T 350 ns) down to the few-nanosecond-long 

Figure 12.  Experimental setup for the measurement of coherent and multi-mode thermal states. See the text 
for details.

Figure 13.  Normalized pulse-height spectra corresponding to a multi-mode thermal state with 〈 〉 ~k 2 
acquired with the digitizer and then integrated over different gate widths. Black: 50-ns gate; red: 350-ns gate.

Figure 14.  Signal-to-noise ratio S/N for the digitized signals in Fig. 13 as a function of the integration time, T.
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peak duration. A typical digitized trace is shown in Fig. 11 as red curve together with two possible integration 
gates, which are indicated by the vertical black line on one side and by the vertical gray or light gray line on the 
other side.

Experimental setup for the measurement of classical states of light.  As shown in Fig. 12, the 
Poissonian light was provided by the second harmonic (at 523 nm) of a mode-locked Nd:YLF laser amplified at 
500 Hz (High Q Laser), whereas the multi-mode thermal was obtained by passing the same laser beam through a 
rotating ground-glass disk and collecting nearly one single coherence area with an iris located 1 m apart from the 
disk34. Each light source was equally divided by means of a half-wave plate followed by a polarizing cube beam 
splitter, at whose outputs the two SiPMs were positioned. Multi-mode optical fibers with 600-μm-core-diameter 
were used to deliver the light to the sensors. In order to collect the same light at different mean values, a variable 
neutral density filter wheel was used to attenuate the light from 0 to 2 optical densities. For each intensity, we 
recorded the response to ~120,000 consecutive laser pulses. In Fig. 13 we show two typical pulse height spectra 
corresponding to multi-mode thermal states with roughly the same mean number of photons (〈 〉 ~m 2). The 
signal was acquired with the digitizer and then integrated in post processing over 350-ns and 50-ns gate widths. 
We note that for the short gate the separation among peaks is worse than the one for the long gate, since a smaller 
number of samplings is considered. In Fig. 14 we plot the signal-to-noise ratio (S/N) corresponding to the light 
signal used to produce Fig. 13 as a function of the integration time. The S/N is here defined as the ratio between 
the mean value of the integral of 1-photon peak and its variance. We note that the S/N increases at increasing 
values of the integration gate, up to a maximum value, which corresponds to the extinction of the signal, occur-
ring at T ~ 150 ns (see Fig. 11). Note that similar values of S/N are achieved for very different settings of T (see e.g. 
T ~ 50 ns and T ~ 350 ns), at which the measurement is differently affected by spurious stochastic effects. In Sect. 
Results and Discussions we show that the choice of the best integration width cannot be based on S/N values, at 
least for Quantum Optics applications.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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