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Abstract Since diabetic cardiomyopathy was first

reported four decades ago, substantial information on its

pathogenesis and clinical features has accumulated. In the

heart, diabetes enhances fatty acid metabolism, suppresses

glucose oxidation, and modifies intracellular signaling,

leading to impairments in multiple steps of excitation–

contraction coupling, inefficient energy production, and

increased susceptibility to ischemia/reperfusion injury.

Loss of normal microvessels and remodeling of the extra-

cellular matrix are also involved in contractile dysfunction

of diabetic hearts. Use of sensitive echocardiographic

techniques (tissue Doppler imaging and strain rate imag-

ing) and magnetic resonance spectroscopy enables detec-

tion of diabetic cardiomyopathy at an early stage, and a

combination of the modalities allows differentiation of this

type of cardiomyopathy from other organic heart diseases.

Circumstantial evidence to date indicates that diabetic

cardiomyopathy is a common but frequently unrecognized

pathological process in asymptomatic diabetic patients.

However, a strategy for prevention or treatment of diabetic

cardiomyopathy to improve its prognosis has not yet been

established. Here, we review both basic and clinical studies

on diabetic cardiomyopathy and summarize problems

remaining to be solved for improving management of this

type of cardiomyopathy.

Keywords Diabetes mellitus � Heart failure �
Pathophysiology � Infarct size � Signal transduction �
Therapy

Introduction

The number of patients with diabetes has been increasing

worldwide in the past two decade, and these patients are

predisposed to serious cardiovascular morbidity and

mortality [1]. The impacts of diabetes on the development

of atherosclerotic vascular diseases have been established,

and results of recent clinical trials have indicated that not

only hyperglycemia but also other risk factors need to be

controlled for preventing atherosclerotic vascular events

in diabetic patients [2, 3]. On the other hand, non-ische-

mic heart failure associated with diabetes has received

much less attention than coronary and cerebral vascular

events.

Population-based studies have shown that the risk of

heart failure is increased two- to threefold by diabetes

[4, 5]. The presence of diabetes substantially accelerates

development of heart failure in patients with myocardial

infarction [6, 7], hypertension [8], or atrial fibrillation [9],

leading to poorer prognosis. Diabetes predicts poor prog-

nosis independently of coronary artery disease and level of

left ventricular ejection fraction (LVEF) in heart failure

patients [10, 11]. However, the concept of ‘‘diabetic car-

diomyopathy’’ is still controversial, and a specific strategy

to prevent or treat heart failure associated with diabetes has

not been established. In this article, we review results from

recent basic and clinical studies regarding ‘‘diabetic car-

diomyopathy’’ and discuss its pathogenesis (Figs. 1, 2),

diagnosis, and management. Although type 1 diabetes

mellitus (T1DM) and type 2 diabetes mellitus (T2DM)

differ in etiology and metabolic profiles, the two types

share many features of cardiomyopathy. In this review, we

mainly focus on myocardial changes that are commonly

observed in both T1DM and T2DM and briefly discuss

their differences if applicable.
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Definition and clinical phenotype of diabetic

cardiomyopathy

Definition of diabetic cardiomyopathy

‘‘Diabetic cardiomyopathy’’ is a concept that was intro-

duced in 1972 by Rubler et al. [12], who examined

pathology of four autopsy cases with diabetic glomerulo-

sclerosis and no known cause of heart failure. The current

typical definition of diabetic cardiomyopathy comprises

structural and functional abnormalities of the myocardium

in diabetic patients without coronary artery disease or

hypertension [13]. Obviously, however, this type of car-

diomyopathy should be present also in diabetics with cor-

onary artery disease and/or hypertension, though it is

difficult to separately assess the contribution of diabetic

cardiomyopathy to overall ventricular dysfunction in such

cases.

Interstitial and perivascular fibrosis is a histological

hallmark of diabetic cardiomyopathy [12, 14, 15], and the

extent of fibrosis correlates with heart weight [15]. In

addition to the increase in collagen deposition, cross-link-

ing of collagen fibers may be increased by diabetes, con-

tributing to reduction in ventricular compliance [16].

Clinical evidence to support this notion is actually sparse,

but some studies [17–19] indicated that glycation of col-

lagen fibers is indeed increased in hearts of diabetic

patients.

‘‘Cardiomyocyte hypertrophy’’ in diabetic cardiomyop-

athy is referred to in some earlier reviews, but its contribution

to ‘‘ventricular hypertrophy’’ is not clear. Human myocar-

dium biopsied at the time of coronary bypass surgery showed

an increased cross-sectional area (CSA) of cardiomyocytes

and interstitial fibrosis in diabetic patients compared with

those in non-diabetics [20]. However, human biopsy studies

by Yarom et al. [21] and Kawaguchi et al. [22] showed that

the average myocyte diameter was not significantly

increased by diabetes alone. Photographs of the histology of

autopsy cases presented in earlier reports [12, 14, 15] show

hypertrophic cardiomyocytes mixed with atrophic ones in

diabetic cardiomyopathy. Increase in the CSA of cardio-

myocytes with or without interstitial fibrosis has been

reported for different animal models of T1DM and T2DM

[23–25], but significant reduction in the CSA of cardio-

myocyte was observed in a model of T1DM, Akita

(Ins2WT/C96Y) mouse [26]. Taken together, cardiomyocyte

hypertrophy appears to be a frequently observed feature but

not a requisite of diabetic cardiomyopathy. We speculate that

long-standing metabolic derangements and modification of

microcirculation (see section ‘‘Abnormalities in microvas-

culature’’ below) by diabetes induce different levels of

hypertrophy, atrophy, and loss of cardiomyocytes in the

myocardium depending on the duration of diabetes and/or

co-morbidities such as hypertension.

Although it has not been included in the definition,

increased susceptibility to ischemia/reperfusion injury may

be an important feature of diabetic cardiomyopathy. Two

clinical studies showed that myocardial infarct size after

coronary reperfusion therapy was larger by 30–80 % in

diabetic patients than in non-diabetic patients [27, 28]. The

difference was observed even though coronary blood flow

was similarly restored by percutaneous coronary interven-

tion in the diabetic and non-diabetic groups [27].

Clinical phenotype of diabetic cardiomyopathy

Ventricular morphology

Previous studies using transthoracic echocardiography

(TTE) has indicated that diabetes (mostly T2DM) is asso-

ciated with left ventricular (LV) hypertrophy or concentric

LV remodeling (i.e., increased LV mass [LVM]-to-LV

end-diastolic volume ratio) in females but not consistently

Fig. 1 Proposed mechanisms of contractile dysfunction by diabetes.

EC coupling excitation–contraction coupling, APD action potential

duration, SR sarcoplasmic reticulum, FFA free fatty acid, CFR
coronary flow reserve, SMC smooth muscle cell

Fig. 2 Proposed mechanisms of diabetes-induced increase in sus-

ceptibility of the myocardium to ischemia/reperfusion-induced

infarction. mPTP mitochondrial permeability transition pore, SMC
smooth muscle cell
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in males [29–34]. However, TTE is not always suitable for

elderly and/or obese patients, in whom image quality is

frequently low. Magnetic resonance imaging (MRI) does

not have such a disadvantage, and a recent study using this

modality demonstrated significant association of insulin

resistance and hyperglycemia with increase in LVM and

LVM-to-LV end-diastolic volume ratio regardless of age

and gender [35, 36]. Compared with studies on T2DM, few

studies on T1DM have shown an increase in LV mass [37–

42] possibly due to the younger age and lower incidence of

hypertension in T1DM patients recruited to those studies.

Interstitial fibrosis in diabetic hearts can be assessed by

integrated backscatter (myocardial ultrasound reflectivity)

in two-dimensional echocardiography [43–45] and by late

gadolinium (Gd) enhancement in cardiac MRI [46]. Two-

dimensional echocardiography indicated an increased

integrated backscatter index in the ventricular septum by

55 % and posterior wall by 15 % in diabetic patients as

compared with that in non-diabetic controls [45]. Kwong

et al. [46] reported that late Gd-enhancement in MRI was

present in 28 % of diabetic patients without clinical evi-

dence of myocardial infarction. Which of the two clinical

methods is more sensitive for the detection of ventricular

fibrosis in diabetic hearts remains unclear.

LV diastolic and systolic dysfunction

The most frequent echocardiographic finding in asymp-

tomatic T1DM and T2DM patients is LV diastolic

dysfunction with normal LVEF. Diastolic dysfunction is

detectable in diabetic hearts without hypertrophy [37, 47,

48], indicating that hypertrophy is not a requisite of dia-

betes-induced ventricular dysfunction. It is difficult to

rigorously characterize differences, if any, in ventricular

dysfunction between T1DM and T2DM since age and co-

morbidities in study subjects are not comparable between

the studies on T2DM and those on T1DM.

LV diastolic dysfunction evaluated from transmitral LV

filling pattern (i.e., abnormal relaxation and/or pseudo-

normal filling) (Fig. 3) was observed in 47–75 % of

asymptomatic normotensive patients with well-controlled

T2DM [49–51]. Tissue Doppler imaging (TDI) (Fig. 3) is

more sensitive for detection of LV dysfunction than con-

ventional TTE. It enables measurement of myocardial tis-

sue velocities in the longitudinal direction, and the peak

early diastolic myocardial velocity (E0) reflects the global

LV diastolic function. Kosmala et al. [52] and Di Bonito

et al. [53] reported that E0 was significantly lower in dia-

betic patients without hypertension than in normal subjects.

In a study by Boyer et al. [51], TDI showed LV diastolic

dysfunction in 63 % of asymptomatic T2DM patients,

while conventional Doppler echocardiography showed the

dysfunction in only 46 % of the subjects.

Systolic LV function is also impaired by diabetes,

though its incidence appears lower than that of diastolic

dysfunction. In several, but not all, studies in the literature,

patients with diabetes mellitus had smaller LV fractional

shortening (LVFS) and mid-wall shortening than those in

Fig. 3 Examples of Doppler

echocardiography in a healthy

subject and a T2DM patient.

Transmitral flow patterns are

shown for a healthy subject

(a) and a T2DM patient (b).

Peak velocities during early

diastole (E) and late diastole

(A) are shown. E/A ratios are 2.2

and 0.6 in a, b, respectively. c,

d show tissue Doppler imaging,

with positioning of sample

volume at the septal mitral

annulus, in a healthy subject and

a T2DM patient, respectively.

The diabetic patient (d) had

lower peak velocities during

systole (S0) and early diastole

(E0) (7.5 and 6.0 cm/s,

respectively) than those in the

healthy subject (c 8.5 and

15.0 cm/s, respectively)
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subjects with normal glucose tolerance [30, 31, 35]. The

discrepancy in the literature may be attributable to LV

load dependence of LVFS and to relative insensitivity of

LVFS in detecting subtle systolic dysfunction. In fact,

more sensitive indices of systolic function in TDI and

strain rate imaging (SRI) (Fig. 4) consistently indicate

subclinical reduction in LV systolic function by diabetes

[54–56].

Three studies using TDI [52, 54, 55] showed that the

peak systolic velocity (S0) was 11–20 % lower in normo-

tensive T2DM patients than in non-diabetic subjects,

though LVEFs were similar. SRI enables quantitative

measurement of regional LV function independent of car-

diac rotational motion and tethering effect. Two-dimen-

sional speckle tracking, by which strain rate in all three

directions (longitudinal, circumferential and radial) can be

determined without angle dependency, has been employed

in recent studies for assessment of LV systolic and diastolic

dysfunctions in T2DM patients [57, 58]. Ng et al. [57]

reported that longitudinal strain was reduced with pre-

served radial/circumferential strains in asymptomatic

patients with uncomplicated diabetes mellitus. More

recently, Ernande et al. [58] showed that both longitudinal

and radial strains were reduced after adjustment for blood

pressure, age, and body mass index in asymptomatic dia-

betic patients. Significant LV dysfunction was also detec-

ted in T1DM by TDI [38, 40, 41]. Taken together, the

findings by TDI and SRI suggest that impaired longitudinal

LV shortening, reflecting subendocardial dysfunction, is

one of earliest signs in diabetic cardiomyopathy.

Response to stress tests

Emerging evidence indicates the presence of latent LV

dysfunction in diabetic hearts. Ha et al. [47] showed that S0

and E0 during an exercise test were significantly lower by

10–15 % in T2DM than in non-diabetic controls, though

both S0 and E0 were within normal ranges at rest in the two

groups. In a study by Jellis et al. [59], who defined

abnormal E0 (septal E0) at rest as \2SD of normal for age

and abnormal E0 at peak exercise stress as\-9.9 cm/s, E0

at stress was abnormally low in 49 % of the T2DM patients

with normal E0 at rest. Palmieri et al. [60] reported that

peak exercise stroke volume index and cardiac index were

significantly lower in patients with uncomplicated T1DM

than in non-diabetic normotensive controls, though LV

TDI parameters were comparable in the two groups.

Hence, it is likely that prevalence of diabetic cardiomy-

opathy is much higher than that previously thought in both

types of diabetes. Furthermore, latent LV dysfunction

caused by diabetes does not appear to be a trivial problem

since blunted increase in systolic blood pressure/end-sys-

tolic LV volume ratio (SP/ESV) by exercise is associated

with poor prognosis [61].

Mechanism of contractile dysfunction of diabetic

myocardium

Different animal models of T1DM (e.g., streptozotocin

[STZ]-treated and alloxan-treated animals) and T2DM

Fig. 4 Tissue Doppler-derived

strain and strain rate of the left

ventricle. a, b show strain and

strain rates, respectively, in a

normal control. Ss septal peak

strain, SRs strain rate in systole,

SRe strain rate in early diastole.

c shows comparison of LV

strain rates in normal controls

(white bars, n = 15) and

normotensive T2DM patients

without coronary artery disease

(black bars, n = 15). *P \ 0.05

versus control. (S. Yuda,

unpublished data)
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(e.g., Goto-Kakizaki rat, Otsuka-Long-Evans-Fatty rat

[OLETF], ob/ob mouse) have been used for investigation

of mechanisms by which diabetes impairs contractile

function of the heart. In the following sections, we pri-

marily discuss the findings commonly observed in both

T1DM and T2DM models, unless otherwise stated.

Impairments in excitation–contraction coupling

Diabetes significantly modifies action potential, Ca2? tran-

sient and Ca2? sensitivity of contractile elements in cardio-

myocytes [62–66]. Prolongation of action potential duration

(APD) and slower decay of Ca2? transient are consistently

observed in diabetic cardiomyocytes. It is notable that such

changes in the Ca2? transient were observed before devel-

opment of systolic ventricular dysfunction. Peak amplitude of

Ca2? transient was reduced in some [64, 65, 67–69], but not all

[70–72], models of diabetes.

As for prolongation of APD, reduction in transient

outward K? (Ito) current has been shown in most animal

models of diabetes [62, 63, 65, 66, 73], though reduced

expression of L-type Ca2? channel was an additional

abnormality in some models [64, 74]. The prolongation of

APD is potentially a compensatory mechanism for pre-

serving Ca2? influx in cardiomyocytes with down-regu-

lated L-type Ca2? channel. However, it could lead to

untoward outcomes. A study by Sah et al. [75] showed that

down-regulation of Ito induces enhanced Ca2? cycling and

activation of calcineurin, leading to interstitial fibrosis and

ventricular contractile dysfunction.

Down-regulation of Kv4.2 (one of alpha-subunit sub-

families of the voltage-gated K? channel) expression

underlies reduction in Ito current in diabetic hearts. The

mechanism of the Kv4.2 down-regulation remains unclear,

but inactivation of pyruvate dehydrogenase (PDH) and

activation of peroxisome proliferator-activated receptor-a
(PPARa) may be involved. In the diabetic myocardium,

PDH is inhibited by PDH kinase-4 (PDK4) [76–78], and

inhibition of PDH by 3-bromopyruvate has been shown to

reduce the Ito current in normal cardiomyocytes [79].

Conversely, reduced Ito current in postinfarct remodeling

hearts was restored by 4–5 h treatment with dicholoroac-

etate or pyruvate [79]. PDK4 is one of enzymes that are up-

regulated by activation of PPARa [80, 81], and chronic

cardio-specific activation of PPARa has been shown to

down-regulate protein expression of both a-subunit (Kv4.2/

KCND2) and b-subunit (KChIP2/KCNIP2) of the Ito

channel, reducing Ito current density [82]. Hence, it is

possible that PPARa activation by increased fatty acid

uptake is upstream of PDH inhibition in the mechanism of

Kv4.2 down-regulation by diabetes.

Slowed decay in Ca2? transient in diabetic cardiomyo-

cytes is theoretically attributable to reduced rate of Ca2?

removal from the cytosol and/or reduced affinity of tro-

ponin C, a major Ca2? buffer in the cytosol, for Ca2?. As

for the effect of diabetes on affinity of troponin C to Ca2?,

a study by Ishikawa et al. [70], the only one to our

knowledge, showed that Ca2? affinity of troponin C was

similar in STZ-induced diabetic and non-diabetic cardio-

myocytes. On the other hand, studies using different animal

models of diabetes consistently indicated reduction in

protein level of sarcoplasmic reticulum Ca2? ATPase 2a

(SERCA2a) [83], and phospholamban phosphorylation was

enhanced in some of the models [63, 64]. In addition,

posttranslational modifications of SERCA2a by diabetes

were reported by Bidasee et al. [84]; they found non-

enzymatic glycosylation of SERCA2a (i.e., formation of

advanced glycation end products [AGEs] on SERCA—see

section ‘‘Remodeling of extracellular matrix’’ for details)

in a model of T1DM, which potentially compromises pump

activity of SERCA2a. Another Ca2? handling protein for

Ca2? efflux, Na?–Ca2? exchanger (NCX), is preserved in

the diabetic heart [71]. These findings indicate that down-

regulation of SERCA2a is a primary mechanism of delayed

decay in Ca2? transient. The mechanism by which diabetes

reduces SERCA2a expression is unclear, though involve-

ment of nuclear O-GlcNAcylation was recently suggested

by results of experiments using adenovirus-mediated

overexpression of O-GlcNac transferase and O-GlcNAcase

[85, 86].

Increased leakage of Ca2? from the sarcoplasmitc

reticulum (SR) has also been reported as an abnormality in

diabetic hearts. Belke et al. [68] showed that Ca2? leak

under blockades of NCX and ryanodine receptors (RYRs)

was significantly increased in ob/ob mice and that the

increase was associated with reduced expression of

FKBP12.6, a regulatory factor of RYRs. In a study that

determined local SR Ca2? release as ‘‘Ca2? sparks’’ by use

of a fluorescent Ca2? probe, frequency of the Ca2? sparks

was increased by 60 % in association with reduction of

both RYR2 and FKBP12.6 by 50 % in the myocardium of

rats with STZ-induced diabetes [87]. Interestingly, the

increase in local Ca2? sparks and down-regulation of

RYR2 and FKBP12.6 were attenuated by candesartan,

indicating involvement of AT1 receptor activation [69].

The Ca2? leak via dysfunctional RYRs and reduced Ca2?

uptake by SERCA2a appear to be responsible for signifi-

cant reduction in SR Ca2? store by diabetes [67].

Change in Ca2? sensitivity of contractile proteins by

diabetes is controversial. Data are contradictory (i.e.,

decrease vs. increase in Ca2? sensitivity) even in the same

T1DM model (STZ-induced diabetes) [88, 89]. In a study

using cardiomyoytes from T2DM patients undergoing

coronary artery bypass surgery, significant reduction of

Ca2? sensitivity was observed [90]. There is no clear

explanation for the contradictory results.
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Metabolic derangements

Turnover of ATP (up to 35 kg/day) is many times of its

pool, and extraction of energy from substrates is not very

large (*25 %) in the myocardium [91–93]. Thus, a small

reduction in the efficiency of ATP synthesis could signif-

icantly compromise cellular functions, including contrac-

tion and relaxation. Diabetes reduces the efficiency of

energy production by increase in fatty acid uptake and

suppression of glucose oxidation. Fatty acid oxidation is

augmented not only by elevation of plasma level of fatty

acid but also by activation of PPARa. PPARa is activated

by intracellular fatty acids and up-regulates multiple

enzymes relevant to fatty acid metabolism [94, 95]. PPARa
contributes also to suppression of glucose oxidation by

up-regulation of PDK4 transcription [96]. Most of the

cytosolic long-chain acyl-CoAs are used for b-oxidation in

mitochondria, and approximately 80 % of acetyl-CoA in

the heart of a model of T2DM, db/db mouse, was found to

be fatty acid-derived both when perfused with low glucose/

low fatty acid buffer and when perfused with high glucose/

high fatty acid buffer [97].

Glucose oxidation is inhibited at multiple steps in dia-

betic hearts. Uptake of glucose is impaired in diabetic

hearts by down-regulated expression of GLUT4/GLUT1

and by blunted sarcolemmal translocation of GLUT4 in

response to insulin [98, 99]. Impaired tyrosine phosphor-

ylation of the insulin receptor and insulin receptor sub-

strates and blunted activation of PI3K-Akt signaling are

involved in the deficient response of diabetic hearts to

insulin. In addition, activities of hexokinase, phospho-

fructokinase, and PDH are inhibited by long-chain

acyl-CoA, citrate, and PDK4 in the diabetic myocardium

[96, 100, 101].

Mitochondrial dysfunction is also responsible for

reduced efficiency in energy production in the diabetic

heart as recently reviewed by Bugger and Able [102].

Production of cytotoxic reactive oxygen species (ROS) was

augmented in mitochondria in different types of diabetes.

Increased fatty acid oxidation, which has higher oxygen

cost than glucose, and increased activity of uncoupling

proteins (UCPs) in mitochondria appear to underlie the

augmented ROS production. ROS can directly activate

UCP3 and further reduce efficiency of ATP production in

mitochondria [103, 104].

Extra-mitochondrial ROS level is also increased in a

model of T2DM (obese Zucker rat). In this model,

increased metabolic flux to the pentose phosphate pathway

augments generation of Nox-derived ROS by the elevation

of NADPH level due to up-regulated activity of glucose-6-

phophate dehydrogenase (G6PD) [105]. Protein kinase C

(PKC) contributes to the up-regulation of G6PD. However,

such up-regulation of G6PD activity in the myocardium

was not detected in a model of T1DM (STZ-induced dia-

betes) [106].

An important question is whether supply of ATP is

indeed insufficient for its demand in diabetic cardiomyo-

cytes. A clue to the answer to this question is change in the

phosphocreatine (PCr)/ATP ratio. Reduction of PCr/ATP

ratio indicates suppressed ATP production and/or sup-

pressed production of PCr from ATP by the creatine kinase

(CK) system. Determination of PCr and ATP in the human

myocardium by magnetic resonance spectroscopy (MRS)

showed that the PCr/ATP ratio is significantly reduced by

diabetes and that the ratio negatively correlates with

plasma free fatty acid level or live triglyceride level [107,

108]. These observations support the notion that supply of

ATP in response to intracellular demand is compromised in

diabetic hearts. It is notable that the cardiac metabolic

derangement indicated by PCr/ATP precedes ventricular

dysfunction detectable at rest in the diabetic heart but

possibly underlies the dysfunction unmasked by stress tests

(section ‘‘Response to stress tests’’).

Remodeling of extracellular matrix

Distinguishing from enzymatic glycosylation of proteins,

non-enzymatic formation of stable glycosylation product

by Amadori rearrangement (Amadori product) is called

glycation. Glycated proteins undergo a series of chemical

rearrangements to form complex compounds with cross-

links, which are referred to as advanced glycation end

products (AGEs). AGEs have been shown to be increased

in plasma by hyperglycemia, aging, and renal failure [16,

109–111]. Accumulation of AGE in collagen was associ-

ated with reduced collagen turnover, indicating the possi-

bility that cross-linking of collagen makes collagen

resistant to hydrolytic turnover [112]. Such AGE-mediated

cross-linking of collagen is thought to be responsible for

increased stiffness of arteries and the myocardium. In fact,

AGE in the myocardium increases in T1DM and T2DM,

and positive correlations of serum level of AGEs with

ventricular isovolumetric relaxation time, arterial stiffness,

and carotid intimal thickness have been shown in diabetics

[109, 110, 113]. Furthermore, treatment with an inhibitor

of AGE formation (aminoguanidine) prevented ventricular

dysfunction in diabetic rats [114, 115]. Treatment with

alagebrium (ALT-711), an ‘‘AGE cross-link breaker’’,

restored the LV function and reduced myocardial collagens

in a canine model of diabetes [116], and its beneficial effect

on LV diastolic function was suggested in heart failure

patients with preserved ejection fraction [117].

Fibrosis in the cardiac interstitium and perivascular

space in diabetic patients is reproducible in animal models

at the late stage of diabetes. Contribution of the AT1

receptor to fibrosis is supported in the models of diabetes
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by three lines of evidence. AT1 receptor activity was up-

regulated in diabetic hearts [118, 119], and this receptor is

coupled with transforming growth factor-b1 (TGF-b1)

signaling, which stimulates collagen production [120, 121].

Inhibition of AT1 receptor activity by AT1 receptor

blockers (ARBs) or angiotensin converting enzyme (ACE)

inhibitors ameliorated interstitial fibrosis and significantly

improved LV function [120]. It should be noted that extent

of interstitial fibrosis and that of glycation of proteins do

not necessarily change in parallel [89].

Abnormalities in microvasculature

‘‘Microangiopathy’’ has been demonstrated in the myocar-

dium of diabetic patients, and it was reproducible in a rat

model of diabetes [12, 14, 21, 22, 122, 123]. Thickening of the

capillary basement membrane, medial thickening of the

arteriole, and perivascular fibrosis were observed in autopsy

samples of the ventricular myocardium by conventional his-

tology [12, 14, 21, 22]. Visualization of three-dimensional

morphology of microvessels by use of the microfill technique

showed microaneurysms, spasm, and spiral deformation of

microvessels in the myocardium of T1DM and T2DM [122].

These vascular changes are reproducible in rat hearts by STZ-

induced diabetes and hypertension [123].

In addition to morphology, density of the microvessels is

modified in the heart by diabetes. Yoon et al. [124] showed

that expression of vascular endothelial cell growth factor

(VEGF) in the heart is down-regulated by diabetes and that

the down-regulation is closely associated with reduction in

capillary density, apoptosis of endothelial cells and inter-

stitial fibrosis. Since insulin induces VEGF expression via

PI3K-Akt signaling [125], impairment of this signaling in

the diabetic heart may be responsible for the down-regu-

lation of VEGF expression. Furthermore, restoration of

VEGF by intramyocardial injection of plasmid DNA

encoding VEGF prevented loss of capillaries in diabetic

mice [124]. Unfortunately, data on VEGF expression in the

human diabetic myocardium are contradictory in the lit-

erature [126–128]. VEGF mRNA level in ventricular

biopsy samples from diabetic patients was reportedly

reduced [126], not changed in the non-ischemic area and

reduced in the ischemic area [127] or increased [128] as

compared with non-diabetic patients. Difference between

clinical backgrounds in study subjects might be involved in

the contradictory results in human studies.

Reduction in coronary blood flow reserve (CFR) by

diabetes has been demonstrated in both clinical and

experimental studies [129–131]. In diabetic patients, CFR

was inversely correlated with an index of LV relaxation

(time from R-wave on the electrocardiogram to the onset of

relaxation) [131]. In a rat model of obese T2DM (OLETF),

CFR was reduced and inversely correlated with wall-to-

lumen ratio of arterioles (\100 lm in diameter) and with

extent of perivascular fibrosis [129]. Activation of the

receptor for AGE (RAGE) in the endothelium by AGE

inhibits production of nitric oxide (NO) and up-regulates

expression of cell adhesion molecules [16]. Use of an AGE

cross-link breaker, alagebrium, significantly improved

flow-mediated dilatation in hypertensive patients [132].

Taken together, blunted NO production, AGE-mediated

stiffening of coronary media, reduced angiogenesis, and

perivascular fibrosis are possibly responsible for the

reduction of CFR in diabetic hearts.

Myocardial tolerance against ischemia/reperfusion-

induced necrosis

Changes in myocardial susceptibility to infarction

by diabetes

Although clinical studies indicate enlargement of infarct

size by diabetes in patients treated with reperfusion therapy

[27, 28], animal studies have shown different diabetes-

induced changes in infarct size as summarized in Table 1

[119, 133–181]. There were multiple differences in the

experimental preparations and protocols, and a single fac-

tor cannot explain the discrepancy in effects of diabetes on

infarct size. However, duration of the diabetic state and

plasma level of insulin (i.e., T1DM vs. T2DM) appear to

influence myocardial tolerance against infarction. In a

study by Ravingerová et al. [147], infarct size after 30-min

ischemia was smaller in diabetic rat hearts at 1 week after

STZ injection than in controls, but this infarct size limi-

tation was not detected 8 weeks later. Two other studies

have also shown that increased resistance of diabetic hearts

to ischemia/reperfusion injury at the early phase of diabetes

later disappeared [149, 150]. However, enlargement of

infarct size as early as 8 days after STZ injection was also

reported [134, 135, 137], indicating involvement of a factor

other than diabetes duration in infarct size change. As for

insulin level, diabetic models with obesity and hyperinsu-

linemia [119, 140, 142–144], except for a few reports

[153, 165], showed larger infarct size than that in

non-diabetic controls.

Diabetes-induced defects in intracellular protective

signaling

Diabetes is one of the pathological states that impair

intracellular signaling for cardiomyocyte protection.

Except for a few studies, previous studies showed that

cardioprotection achieved by ischemic preconditioning

(IPC) or ischemic postconditioning (IPost) is lost or

required extra-cycles of ‘‘conditioning’’ in experimental
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diabetes (Table 2) [141, 144, 145, 151, 153, 157, 159,

160, 163, 165, 166, 182]. Mimetics of IPC and IPost

(diazoxide, erythropoietin, [D-Ala2, D-Leu5]-enkephalin

acetate [DADLE] and isoflurane) were also ineffective in

limitation of infarct size in diabetic hearts [119, 141, 143,

158, 161–163, 169], confirming impairment of protective

signaling by diabetes.

Like animal models of diabetes, diabetic human hearts

have defects in cytoprotective mechanisms. Ishihara et al.

[183] showed that preinfarct angina pectoris, a clinical

counterpart of IPC, reduced CK release and improved

recovery of cardiac function and in-hospital survival after

acute myocardial infarction in non-diabetic patients but not

in diabetics. Impairment of IPC in human diabetes was also

shown during angioplasty [184] and during a treadmill

exercise test [185] by use of electrocardiographic severity

of ischemia as an endpoint. Direct evidence for diabetes-

induced loss of IPC protection in human hearts was pro-

vided by an in vitro experiment using atrial trabeculae

obtained at open heart surgery. IPC failed to suppress CK

release and contractile dysfunction after hypoxia/reoxy-

genation in vitro in atrial trabeculae from diabetic patients

[186, 187].

Multiple defects in cytoprotective signal pathways have

been indicated in diabetic hearts. Our recent studies have

shown that Jak2, being upstream of PI3K-Akt signaling, is

inhibited by enhanced calcineurin activity and that phos-

phorylation of GSK-3b by ERK is lost by an endoplasmic

reticulum stress-dependent mechanism in a rat model of

T2DM [119, 143]. Furthermore, protein level of active

GSK-3b, a pro-necrotic and pro-apoptotic kinase, was

increased in mitochondria, leading to increase in suscep-

tibility of mitochondrial permeability transition in response

to calcium overload [143]. On the other hand, a protective

mechanism downstream of GSK-3b phosphorylation

appears to be intact in diabetic hearts, since direct inhibi-

tors of GSK-3b limit infarct size similarly in diabetic and

non-diabetic animals [119, 143, 161, 162, 182].

There is limited information on whether glycemia con-

trol repairs defects in protective signaling in diabetic

hearts. Acute hyperglycemia induced by dextrose infusion

impaired infarct size limitation by IPC, a mitochondrial

KATP channel opener and anesthetic agents [158, 170, 172,

174–178], indicating a primary role of hyperglycemia in

impairment of protective signaling. Recently, Przyklenk

et al. [165] reported that the cardioprotective effect of IPost

was re-established in STZ-induced diabetic mice by pan-

creas islet cell transplantation. Transplantation of islet cells

in diabetic mice normalized blood glucose level and also

ERK signaling activated by IPost. Since dyslipidemia

reportedly attenuates the infarct size-limiting effect of IPC

[188–190], restoration of the protective effect of IPost in

Table 1 Effects of diabetes and

hyperglycemia on infarct size

GK rat Goto-Kakizaki rat,

OLETF rat Otsuka Long-Evans-

Tokushima Fatty rat, STZ
streptozotocin, WOKW rat
Wistar-Ottawa-Karlsburg W rat

Diabetes

Infarct size enlargement

STZ (±alloxan)-induced DM (dog, rat, mouse): Refs. [133–139]

Zucker rat: Refs. [140–142]

OLETF rat: Refs. [119, 143]

ob/ob mouse: Ref. [144]

Infarct size reduction

STZ (±alloxan)-induced DM (rabbit, rat): Refs. [145–152]

Zucker rat: Ref. [153]

GK rat: Refs. [153, 154]

No change in infarct size

STZ (±alloxan)-induced DM (dog, rabbit, rat, mouse): Refs. [147, 149, 150, 155–165]

GK rat: Refs. [166–169]

ob/ob mice: Ref. [165]

Hyperglycemia

Infarct size enlargement

Dextrose or glucose i.v. infusion (dog, rabbit, rat): Refs. [170, 171, 173]

No change in infarct size

Dextrose or glucose i.v. infusion (dog, rabbit, rat): Refs. [158, 170, 172, 174–178]

Metabolic syndrome

Infarct size enlargement

Rat (Western diet): Ref. [179]

No change in infarct size

Rat (high fat diet, WOKW rat): Refs. [180, 181]
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the diabetic heart by islet cell transplantation could have

been a result of normalization of both plasma glucose and

lipid profile. Nevertheless, circumstantial evidence to date

supports the notion that normalization of the metabolic

profile restores protective signaling mechanisms in the

diabetic heart.

Clinical diagnosis of diabetic cardiomyopathy

Currently, the best approach to the diagnosis of diabetic

cardiomyopathy is detection of functional and structural

changes in the LV and exclusion of other heart diseases

being responsible for the changes in a diabetic patient.

Diagnostic clues of diabetic cardiomyopathy are listed in

Table 3, TDI and SRI being the most practical for detec-

tion of diabetic cardiomyopathy on a daily basis.

Left ventricular diastolic dysfunction detectable by TDI

(and possible also by SRI) at exercise stress may be the

earliest sign of diabetes-induced LV dysfunction as dis-

cussed in section ‘‘Clinical phenotype of diabetic cardio-

myopathy’’. Thus, normal echocardiographic findings at

rest do not exclude presence of diabetic cardiomyopathy.

Studies to date support the notion that diastolic dysfunction

Table 2 Effects of diabetes and

hyperglycemia on

cardioprotection afforded by

pre- and postconditioning and

their mimetics

PC preconditioning, PostC
postconditioning, GSK-3b
glycogen synthase kinase-3b,

KATP channel ATP-sensitive

potassium channel, PDE3
phosphodiesterase 3, PPAR-a
peroxisome proliferator-

activated receptor-a, SWOP
second window of protection

Diabetes

Preserved protection

Ischemic PC (rat): Refs. [145, 166]

GSK-3b inhibitors (rat): Refs. [119, 143, 161, 162, 182]

PDE 3 inhibitor (rat): Ref. [169]

PPAR-a agonist (rat): Ref. [168]

Metformin (rat): Ref. [167]

Impaired protection

Ischemic PC (dog, rabbit, rat): Refs. [141, 151, 153, 157, 159, 166, 182]

Ischemic PC (SWOP) (rabbit): Ref. [160]

Ischemic PostC (rat, mouce): Refs. [144, 163, 165]

Erythropoietin (rat): Refs. [119, 143, 162]

KATP channel opener (dog, rat): Refs. [141, 158]

Opioid agonists (rat): Refs. [119, 161]

Volatile anesthetics (rat): Refs. [163, 169]

Hyperglycemia

Preserved protection

Volatile anesthetics (dog, rat): Refs. [172, 176]

Impaired protection

Ischemic PC (dog): Refs. [170, 175]

KATP channel opener (dog): Ref. [158]

Volatile anesthetics (dog, rabbit, rat): Refs. [172, 174, 176–178]

Metabolic syndrome

Impaired protection

Ischemic PostC (rat): Ref. [181]

Table 3 Diagnostic clues of

diabetic cardiomyopathy

CMR cardiac magnetic

resonance imaging, 2D two

dimensional, LV left ventricular,

MRS magnetic resonance

spectroscopy, SRI strain/strain

rate imaging, TDI tissue

Doppler imaging

Structural changes

LV hypertrophy assessed by 2D echocardiography or CMR

Increased integrated backscatter in the LV (septal and posterior wall)

Late Gd-enhancement of the myocardium in CMR

Functional changes

LV diastolic dysfunction assessed by pulsed Doppler echocardiography and TDI

LV systolic dysfunction demonstrated by TDI/SRI

Limited systolic and/or diastolic functional reserve assessed by exercise TDI

Metabolic changes

Reduced cardiac PCr/ATP detected by 31P-MRS

Elevated myocardial triglyceride content detected by 1H-MRS
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develops earlier than systolic dysfunction in diabetic

hearts. However, Ernande et al. [191] recently reported that

systolic longitudinal strain rate was abnormal in 28 % of

diabetic patients with normal diastolic function and in

35 % of those with diastolic dysfunction. Assessment

of interstitial fibrosis by integrated backscatter or

Gd-enhancement of cardiac MRI is possible [43–46], but

its diagnostic value has not yet been established.

A promising novel approach to diagnosis of diabetic

myopathy is characterization of metabolic changes in the

myocardium by 31P-MRS and by1H-MRS. As discussed in

section ‘‘Metabolic derangements’’, the PCr/ATP ratio, an

index of energy charge, is reduced in the myocardium of

diabetic patients compared with that in control subjects.

Recent studies using 1H-MRS have demonstrated that

increase in myocardial triglyceride content (i.e., myocar-

dial steatosis) was associated with LV diastolic dysfunction

in diabetic patients [192, 193]. Furthermore, Ng et al. [194]

showed that myocardial steatosis was independently cor-

related with LV longitudinal strain and with systolic and

diastolic strain rates determined by two-dimensional

speckle tracking imaging in patients with uncomplicated

diabetes mellitus. The possibility that myocardial steatosis

is a specific marker of the diabetic cardiomyopathy war-

rants further investigation.

Prevention and treatment of diabetic cardiomyopathy

Prevention of diabetic cardiomyopathy

Although high prevalence of subclinical myocardial dys-

function has been reported in the early stage of T1DM,

clinically relevant heart failure is relatively rare in this type

of diabetes. In an observational study, 462 T1DM patients

without a previous history of heart disease were followed

up, and it found that only 17 patients (3.7 %) developed

heart failure during a 12-year follow-up period [195]. The

patients who developed heart failure in this cohort were

older and had longer diabetes durations (35 ± 9 years),

higher blood pressure, and higher prevalence of albumin-

uria and retinopathy than those in patients without heart

failure. In contrast, heart failure develops more frequently

in patients with T2DM [4, 5], which is frequently associ-

ated with other co-morbidities, such as hypertension, pre-

disposing to heart failure. Hence, it is unlikely that

glycemic control alone is sufficient for the prevention of

diabetic cardiomyopathy.

A number of clinical trials have been conducted to

evaluate the impact of glycemic control on the prevention

of cardiovascular events in T2DM. However, end-points in

the studies were atherosclerotic cardiovascular events and

death, leaving non-ischemic heart failure not specifically

determined. A recently published meta-analysis including a

total of 27,049 subjects in the UKPDS 33 (UK Prospective

Diabetes Study 33), ACCORD, ADVANCE, and VADT

trials showed that mortality was not affected by intensive

glycemic control, with hazard risks of 1.10 for cardiovas-

cular death (95 % confidence interval [CI]; 0.84–1.42) and

1.04 for all-cause death (95 % CI: 0.90–1.20) [196]. These

findings may appear to argue against the notion that tight

glycemic control is beneficial for prevention of diabetic

cardiomyopathy. However, the results do not preclude the

possibility that intensive glycemic control commenced at

an earlier stage of diabetes together with control of other

risk factors prevents heart failure in diabetic patients. This

speculation is supported by a few lines, at least, of evi-

dence. First, clinical studies using TDI showed that gly-

cemic control improved LV diastolic function in T2DM

[197, 198]. Second, the Steno-2 trial [199] showed that

simultaneous control of glycemia, hypertension, and dysl-

ipidemia significantly reduced cardiovascular events and

mortality in T2DM patients. Third, a recent meta-analysis

of clinical trials on hypertension indicates that diabetes

increases incidence of heart failure by more than fourfold

in hypertensive patients [8].

Whether incidence and/or outcome of heart failure differ

depending on the type of hypoglycemic agent selected for

hyperglycemia control remains unclear. This issue has not

been addressed by a prospective randomized clinical trial.

In observational cohort studies and retrospective analyses

of registered patients, use of metformin is associated with

low incidence of heart failure compared with other glyce-

mia control regimens [200]. Furthermore, clinical out-

comes in diabetic patients with heart failure were better in

groups treated with metformin [201, 202]. Aguilar et al.

[202] matched metformin-treated and metformin-untreated

groups of diabetic patients with heart failure and showed

that mortality was lower in the metformin-treated group.

In contrast with metformin, thiazolidinedione (TZD) has

been shown to increase incidence of ‘‘heart failure’’ in

diabetes compared with sulfonylurea. Unfortunately, it is

not clear whether the increase in ‘‘heart failure’’ by TZD

indeed reflects worsening of LV function or just retention

of fluids [203–206]. In fact, recent studies have suggested a

favorable effect of TZD on cardiac function [207, 208]. Six

months of treatment with pioglitazone improved diastolic

function assessed by Doppler echocardiography in hyper-

tensive patients in proportion to the amelioration of insulin

resistance [207]. The same duration of treatment with

pioglitazone was also reported to improve diastolic func-

tion and LV compliance assessed by MRI in uncomplicated

T2DM patients [208]. It is notable, however, that

improvement in the function could not be explained by

treatment-related myocardial metabolic change assessed by

positron emission tomography and MRS. Nevertheless,
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prospective clinical trials are necessary to clarify efficacies

of hypoglycemic agents in prevention of diabetic

cardiomyopathy.

Management of heart failure in diabetic patients

Optimal treatment of heart failure in diabetic patients has

not been specifically addressed, and relevant information is

limited to effects of diabetes on the efficacy of a heart

failure therapy in subgroup analyses of trials. In earlier

studies, ACE inhibitor was suggested to be similarly

effective in diabetic and non-diabetic patients with heart

failure with reduced LVEF [209, 210] and that was the case

for ARB as well [10]. In contrast, the benefit of a b-blocker

on mortality may be attenuated in diabetic patients, espe-

cially in elderly patients [211, 212]. Under the standard

treatment with these agents, prognosis of heart failure

patients with diabetes is worse than that of heart failure

patients without diabetes irrespective of LVEF levels [10,

213]. Heart failure with preserved LVEF is a primary

phenotype in diabetes, and therapy to improve prognosis of

this type of heart failure in general is still under intensive

investigation [214].

Perspectives

Accumulating evidence obtained by novel imaging tech-

niques (i.e., TDI, SRI, MRS) indicates that these tech-

niques for functional and metabolic analyses of human

hearts will make it possible to formulate clinical parame-

ters for diagnosis of diabetic cardiomyopathy. Such diag-

nostic criteria would facilitate the design of prospective

studies to search for optimal therapy for prevention and

treatment of this cardiomyopathy. Numerous questions

regarding pathogenesis of diabetic cardiomyopathy still

remain, but molecular mechanisms of down-regulation

of SERCA2a, mitochondrial dysfunction, and defects in

cytoprotective signaling appear particularly important

issues for designing novel therapies for restoration of

contractile function and prevention of progressive heart

failure. Novel therapy is in urgent need since even mild

diastolic dysfunction in diabetic hearts has been shown

to be associated with more than a threefold increase in

all-cause mortality [215].
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(2002) Influence of diabetic state and that of different sulfo-

nylureas on the size of myocardial infarction with and without

ischemic preconditioning in rabbits. Exp Clin Endocrionol

Diabetes 110:212–218
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Galiñanes M (2006) Mitochondrial dysfunction as the cause of

the failure to precondition the diabetic human myocardium.

Cardiovasc Res 69:450–458

187. Sivaraman V, Hausenloy DJ, Wynne AM, Yellon DM (2010)

Preconditioning the diabetic human myocardium. J Cell Mol

Med 14:1740–1746

188. Ueda Y, Kitakaze M, Komamura K, Minamino T, Asanuma H,

Sato H, Kuzuya T, Takeda H, Hori M (1999) Pravastatin

restored the infarct size-limiting effect of ischemic precondi-

tioning blunted by hypercholesterolemia in the rabbit model of

myocardial infarction. J Am Coll Cardiol 34:2120–2125

189. Kyriakides ZS, Psychari S, Iliodromitis EK, Kolettis TM,

Sbarouni E, Kremastinos DT (2002) Hyperlipidemia prevents

the expected reduction of myocardial ischemia on repeated

balloon inflations during angioplasty. Chest 121:1211–1215

190. Ungi I, Ungi T, Ruzsa Z, Nagy E, Zimmermann Z, Csont T,

Ferdinandy P (2005) Hypercholesterolemia attenuates the anti-

ischemic effect of preconditioning during coronary angioplasty.

Chest 128:1623–1628

191. Ernande L, Bergerot C, Rietzschel ER, De Buyzere ML, Thi-

bault H, Pignonblanc PG, Croisille P, Ovize M, Groisne L,

Moulin P, Gillebert TC, Derumeaux G (2011) Diastolic dys-

function in patients with type 2 diabetes mellitus: is it really the

first marker of diabetic cardiomyopathy? J Am Soc Echocardi-

ogr 24:1268–1275

192. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R,

Levine BD, Raskin P, Victor RG, Szczepaniak LS (2007) Car-

diac steatosis in diabetes mellitus: a 1H-magnetic resonance

spectroscopy study. Circulation 116:1170–1175

193. Rijzewijk LJ, van der Meer RW, Smit JW, Diamant M, Bax JJ,

Hammer S, Romijn JA, de Roos A, Lamb HJ (2008) Myocardial

steatosis is an independent predictor of diastolic dysfunction in

type 2 diabetes mellitus. J Am Coll Cardiol 52:1793–1799

194. Ng ACT, Delgado V, Bertini M, van der Meer RW, Rijzewijk

LJ, Hooi Ewe S, Siebelink HM, Smit JW, Diamant M, Romijn

JA, de Roos A, Leung DY, Lamb HJ, Bax JJ (2010) Myocardial

steatosis and biventricular strain and strain rate imaging in

patients with type 2 diabetes mellitus. Circulation 122:

2538–2544
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