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Abstract: Examining the circular economy model is crucial to enable the scaling up of industry and
anthropogenic circularity practice. Electrical and electronic waste plastic (e-plastic) has become the
focus of urban mining and circular economy due to its rapid growth, valuable resource and potential
risks. This article focuses on the recycling companies’ experience in China from 2012 to 2017. The
average recycling rate was 33.3% and the recycling amount in 2017 was 558 kt. A two-dimensional
coupling model of economic development and renewable resources is firstly constructed. Eventually,
four typical resource-based regional models are summarized, namely for demonstration regional
model, commissioned regional model, traditional model and potential regional model. It also puts
forward differentiated suggestions in terms of maintaining demonstration, strengthening policies,
promoting transformation, and tapping potential. At the same time, it is recommended to explore the
construction of large-region resource-based recycling centers and big data centers in resource-based
demonstration areas.

Keywords: electronic waste; plastic; circular economy; anthropogenic circularity; model

1. Introduction

Waste plastics is an emerging environmental issue of recent global concern. China has
formulated policies such as bans and restrictions on plastics to promote the management
of plastics. Electronic waste (e-waste) mainly includes various waste home appliances,
communication equipment and products, and precision electronic instruments and meters
discarded by enterprises and institutions. Waste home appliances are the main source. The
plastic content in waste home appliances accounts for 10–20% of the total weight of plastics
consumed in China throughout the year [1,2]. Some previous literatures indicated that the
plastic content of waste household appliances in the United States accounts for roughly 30%
of the total annual plastic consumption, the European Union about 40%, and Japan around
50%, all of which are significantly higher than that in China [3,4]. Among the discarded
household appliances are TV sets, washing machines, air conditioners, refrigerators, and
microcomputers, called “four machines and microcomputer” in Chinese. Recycling of
plastics from e-waste (e-plastic) is of great significance for improving the efficiency of
plastic resource utilization and reducing the cumulative environmental impact [5].

Technical processes of resource recycling of waste plastics from household appliances
mainly include direct melting, thermal cracking, and energy recovery [6]. Direct melting
refers to a method in which waste plastics are reheated and plasticized after pretreatment
steps such as sorting, crushing, and drying, and then used. Thermal cracking refers to
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the method of heating waste plastics at high temperature under oxygen-free and low-
oxygen conditions to break C-C bonds and C-H bonds, and re-polymerizing free radicals
to generate smaller molecules [7]. Energy recovery refers to a method of incineration of
waste plastics that are difficult to reuse to generate heat. Basically, the selection of the
abovementioned technologies depends upon the quality of waste plastics. Direct melting is
used for higher-quality waste plastics, thermal cracking for medium-quality waste plastics,
and incineration for energy recovery for lower-quality waste plastics [8].

In terms of e-waste recycling policies, developed countries mainly adopt the extended
producer responsibility (ERP) system, which extends the responsibility of producers to
the full life cycle of products, especially recycling, resource utilization and detoxification
disposal. The European Union has formulated the detailed laws and regulations on elec-
tronic waste governance. The Wasted Electrical and Electronic Equipment Directive (WEEE
Directive) is a representative document. The United States has promulgated the Resource
Protection and Recycling Law. Japan has promulgated the Law on Promoting Effective Utilization
of Resources, which clarifies the minimum ratio of recycling of various electronic wastes.
Through comparison, China can further learn from experience in terms of the accuracy of
laws and regulations and the diversity of means. Over two decades, China has tightened
up the laws and regulations related to e-waste. The first is the guiding policies in the basic
laws, the second is the special management regulations and standards for waste electrical
and electronic products, and the third is the technical specifications and management
regulations for the recycling of waste plastics [9]. However, in practice, there are also
serious problems such as insufficient policy implementation and lack of resource utilization
standards for waste plastics from household appliances [10].

Currently, there are inadequate studies on the resource utilization of e-waste plastics.
Most of the existing studies do not distinguish waste plastics from other waste, and mainly
focus on the classification and sorting process, and physical separation [11,12]. There is
a lack of systematic and in-depth analysis on e-plastic recycling, especially summarizing
the typical patterns of regionally differentiated resource utilization so as to formulate
regionally differentiated resource policies. Overall, regarding the resource utilization of
e-plastics, it is necessary to examine two perspectives. One is to conduct studies from the
perspective of improving the efficiency of resource utilization, and the other is derived from
the perspective of reducing the cumulative impact of the environment. Either way, there is
a need to first conduct research on the standardized recycling volume and typical patterns
of resource utilization of e-plastics in China so as to understand the basis for benchmark.

2. Materials and Methods
2.1. Brief Analysis of Classification of Existing Estimation Methods

Currently, the idea of estimating the content of plastics from e-waste is mainly based
upon the different collection methods of waste. There are two main estimation methods.
The first is to directly measure the collected e-waste in its original mixed state without
classification. For example, Stenvall (2013) uses infrared spectroscopy to measure the plastic
composition of three different sources of e-waste batches [13]. The plastics used in the
composition analysis are mainly based on random selection from the real waste streams
from 14 samples out of three batches. The results show that the main components are
high-impact polystyrene (HIPS, 42 wt%), acrylonitrile-butadiene-styrene copolymer (ABS,
38 wt%), and polypropylene (PP, 10 wt%). The disadvantage of this method is that there are
considerable differences in the measurement even within one batch. The second is to firstly
classify the collected e-waste, and then measure the specific weights of different types
of plastics in each category. For example, Martinho (2012) divides e-waste into cooling
equipment, small electronic and electrical waste, printers, copying equipment, central
processing unit (CPU), cathode-ray tube (CRT) monitors, and CRT TV sets [14]. A total
of about 3400 pieces of equipment have been measured. The results show that the main
components are polystyrene (PS), ABS, polycarbonate (PC)/ABS, HIPS, and PP.
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2.2. Construction of Estimation Method

This article estimates the content of waste plastics from the “four machines and
microcomputer” collected in China. The estimation mainly includes two steps. First is
to estimate the proportion of all plastics in the “four machines and microcomputer”, and
the second is to estimate the proportion of the main types of waste plastics in the “four
machines and microcomputer”. According to the actual situation of the existing estimation
methods, this article separately estimates the “four machines” and “microcomputer”.

As for the “four machines”, in the first step, this article mainly refers to Oguchi’s
estimation methods and results [15]. In the second step, this article mainly refers to Yang
(2011)’s estimation methods and results [16]. Oguchi (2011) divided the electronic and
electrical waste into 21 categories [15], and obtained data on the proportion of waste plastics
in 9 categories according to relevant literature. The 12 remaining categories and a total
of 62 kinds of scrap products were dismantled, and the waste plastics they contained
were weighed to calculate the proportion of waste plastics. We use the estimation results
of refrigerators, washing machines, air conditioners, CRT TVs, plasma TVs, and liquid
crystal display (LCD) TVs. Yang (2011) dismantled the “four machines” collected in China
and obtained the proportion of the main types of waste plastics [16]. The main types of
waste plastics include five types, namely ABS, PS, PP, polyethylene (PE), and polyvinyl
chloride (PVC).

With respect to the “microcomputer”, since the original data does not distinguish
between laptops and desktop computers, this article looks at them together for estimation.
For the first estimation step, this article mainly refers to the data of Li (2015) for estima-
tion [17], and for the second estimation step, this article mainly refers to the data of the
Japanese magazine “Plastic Times”. The advantages of the estimation method in this paper
are that firstly, it provides more accurate waste plastic content data for the “four machines
and microcomputer”, which is a unique classification collection method in China; second,
for the main types of waste plastics in China’s “four machines and microcomputer”, given
the data on the proportion of waste plastics obtained through real dismantling, the results
are more credible.

3. Results
3.1. Analysis of the Basic Situation of E-Waste Plastics in China

According to static analysis, from the perspective of regions (see Table S1 of Supple-
mentary Materials), the total annual output of e-plastics was ranked as East China, Central
China, North China, Southwest China, South China, Northeast China, and Northwest
China. In 2017, the total amount in East China ranking the first was 195,083 tons, and that in
Northwest China which ranked the last was 20,473 tons. East China was 9.53 times of that in
Northwest China. There were three regions with a total volume of more than 100,000 tons,
namely 195,083 tons in East China, 121,337 tons in Central China, and 100,643 tons in North
China (Figure 1a).

From the perspective of administrative regions, the top three with the most annual out-
put of e-waste plastics were Henan Province (Central China), Hebei Province (North China)
and Anhui Province (East China). The last three (in order from last to first) were Liaoning
Province (Northeast China), Qinghai Province (Northwest China) and Gansu Province
(Northwest China). In 2017, Henan Province ranked first with a total of 58,139 tons. Liaon-
ing Province had a total of 569 tons, and Henan Province was more than 100 times that
of Liaoning Province. There were 14 administrative regions with a total of more than
10,000 tons, of which there were five in East China (a total of seven), three in Central China
(three in total), three in North China (five in total), and one in Southwest China (four in
total), one in South China (two in total), one in the Northeast (three in total), none in the
Northwest (five in total); two administrative regions with a total of below 1000 tons, one in
the Northeast (three in total) and one in the Northwest (five in total).
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According to dynamic analysis, in 2012, processing companies in the subsidy list
of e-waste products processing funds (hereby referred to as processing companies) were
set up in China. As of 2017, a total of 109 processing companies (none in Hainan and
Tibet) were set up in 29 administrative regions in China. Six years later, the processing
volume of processing companies was stabilized in a capacity level. In order to compare
the development of various administrative regions, this article determines the average
value of the total amount of e-waste plastics from 2012 to 2016 and compares it with the
corresponding data in 2017.

From a regional perspective, the ranking order in terms of total annual e-waste plastics
amount is follows: East China, Central China, North China, Southwest China, South China,
Northeast China and Northwest China, and the ranking stays the same in terms of the
average amount from 2012 to 2016 (SM Table S2). In 2017, the total amount of East China
ranking the first was 195,083 tons, which was 1.59 times of the average from 2012 to 2016.
The total amount of Northwest China ranking the last was 20,473 tons, which is 1.78 times
of the average from 2012 to 2016. Both regions had a substantial increase. In 2017, the
amount in East China was 9.53 times of that in Northwest China, and 10.65 times in terms
of average from 2012 to 2016. In 2017, there were three regions with a total volume of more
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than 100,000 tons, namely 195,083 tons in East China, 121,337 tons in Central China, and
100,643 tons in North China. Only one region had a total volume of over 100,000 tons in
terms of the average from 2012 to 2016, and that was East China with 122,601 tons.

From the perspective of administrative regions, the top three with the most annual
output of e-waste plastics are the Henan Province (Central China), the Hebei Province
(East North China), and the Anhui Province (East China). The last three (in order from back
to front) are the Liaoning Province (Northeast Region), the Qinghai Province (Northwest
Region) and the Gansu Province (Northwest Region). In terms of the average amount from
2012 to 2016, the Henan Province, among the top three, ranked from the third place to the
first place. The Hebei and Anhui provinces replaced the Sichuan and Jiangsu provinces as
the second and third places, respectively. Among the last three, the Gansu Province replaced
the Inner Mongolia Autonomous Region as the third place. In 2017, the Henan Province
ranked the first with a total volume of 58,139 tons, and the Liaoning Province ranked at the
bottom with a total volume of 569 tons. The Henan Province is more than 100 times that in
the Liaoning Province. In terms of the average from 2012 to 2016 (Figure 1b), the difference
is nearly 60 times, which means a huge increase. The extreme difference in processing
capacity has greatly expanded. In 2017, there were 14 administrative regions with a total
of more than 10,000 tons, of which five were in East China (a total of seven), three were
in Central China (three in total), three were in North China (five in total), and one was
in Southwest China (four in total), one was in South China (two in total), one was in the
Northeast (three in total), and none were in the Northwest (five in total). Compared to 2012
to 2016, two administrative regions, i.e., the Inner Mongolia Autonomous Region and the
Heilongjiang Province, are new to the list. There are two administrative regions with a total
volume of less than 1000 tons, including one in the Northeast Region (three in total) and
one in the Northwest Region (five in total), which is the same as that during the period
from 2012 to 2016.

3.2. Analysis on the Recovery Rate of China’s E-Waste Plastic Standards

It can be seen from Table 1 that excluding the initial year 2012, for a total of 5 years
from 2013 to 2017, the highest standard recovery rate was 37.6% in 2015, and the lowest
was 29.6%, a difference of eight percentage points. The 5-year average standard recovery
rate was 33.3%. The standardized recycling rate was basically stable at one-third, which
was lower than that of the agricultural sector (48%) and the transportation sector (42%),
but higher than that of the construction sector (31%), the packaging sector (12%), and the
daily-use sector (12%). There is still much room for improvement.

Table 1. Standard recovery rate of waste plastics in four machines and microcomputer.

Year 2012 2013 2014 2015 2016 2017

Generation amount (kt) 1 748 914 1097 1295 1505 1723
Recycling amount (kt) 52 271 350 487 512 558

Recycling rate (%) 7 29.6 31.9 37.6 34 32.4

Note: 1 Data source from refs. [18,19].

3.3. Typical Regional Model of E-Plastic Recycling in China

The abscissa is the relative abundance of renewable resources, which refers to the per
capita e-waste plastics in each administrative region (tons/10,000 people)/the national
per capita e-waste plastics (tons/10,000 people). The ordinate is the relative level of
economic development, which refers to the per capita GDP of each administrative region
(ten thousand yuan/person)/national per capita GDP (ten thousand yuan/person). The
horizontal and vertical axes, respectively, take the national average value point as the origin,
hence the four quadrants. Correspondingly, four types of areas are formed.

The characteristic of the first quadrant is that the relative abundance of renewable
resources and the relative level of economic development is greater than the national
average, indicating that the level of resource utilization is ascendant, and the level of
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economic development is high. The characteristic of the second quadrant is that the relative
abundance of renewable resources is below the national level, and the relative level of
economic development is greater than the national average, indicating that the level of
resource utilization is low, but the level of economic growth is relatively high.

The characteristic of the third quadrant is that the relative abundance of renewable
resources and the relative level of economic development are both lower than the national
average, indicating that the level of resource utilization is inferior, while the level of
economic development is low. The characteristics of the fourth quadrant are that the
relative abundance of renewable resources is greater than the national level, and the
relative level of economic development is less than the national average, indicating that the
level of resource utilization is high, but the level of economic development remains low.

It can be seen from Figure 2 that the first quadrant includes four administrative regions
of Tianjin, Hubei, Zhejiang and Jiangsu. The second quadrant includes six administrative
regions of Shanghai, Shandong, Beijing, Guangdong, Chongqing and Fujian, and the third
quadrant includes Jilin, Xinjiang, Shanxi, Shaanxi, Yunnan, Guizhou, Qinghai, Guangxi,
Gansu, and Liaoning, as a total of ten administrative regions. The fourth quadrant covers
Jiangxi, Hebei, Anhui, Ningxia, Henan, Heilongjiang, Sichuan, Inner Mongolia, and Hunan,
as a total of nine administrative regions.
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Figure 2. Provincial distribution of e-plastics recycling.

Each quadrant is further divided (Figure 2). With the origin as the center, rectangles
with sides of 0.5 and one unit in each of the four quadrants are drawn to divide each
quadrant into three regions to reflect the resources recycling and economic development
level in the same quadrant. In Quadrant I, I = 0.5 includes one administrative region (Hubei),
I = 1 includes two administrative regions (Zhejiang and Jiangsu), and I > 1 includes one
administrative region (Tianjin). In Quadrant II, II = 0.5 includes two administrative regions
(Shandong and Guangdong), II =1 includes two administrative regions (Chongqing and
Fujian), and II> 1 includes two administrative regions (Shanghai and Beijing). In Quadrant
III, III = 0.5 includes three administrative regions (Jilin, Xinjiang and Shaanxi), and III = 1
includes seven administrative regions (Shanxi Yunnan, Guizhou, Qinghai, Guangxi, Gansu
and Liaoning). In IV quadrant, IV = 0.5 includes five administrative regions (Henan,
Heilongjiang, Sichuan, Inner Mongolia and Hunan), IV = 1 includes four administrative
regions (Jiangxi, Hebei, Anhui and Ningxia), and IV > 1 has no administrative regions.

Figure 3 shows the large-scale distribution of e-plastics in 2017. It can be seen from
Figure 2 that the first quadrant includes two regions, i.e., North China and Northeast China,
the second quadrant includes two regions, i.e., Southwest and South China, the third
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quadrant includes two regions, i.e., Northeast and Northwest, and the fourth quadrant
includes 1 region, i.e., Central China. When each quadrant is further divided, as shown in
Figure 3, in Quadrant I, I = 0.5 includes one region in East China, I = 1 includes one region
in North China, and the rectangle with I > 1 has no region. In Quadrant II, the rectangle
with I = 0.5 includes two regions, i.e., Southwest and South China, and II = 1 has no region,
and II > 1 has no region. In Quadrant III, III = 0.5 includes two regions of Northeast and
Northwest, and both III = 1 and III > 1 have no region. In Quadrant IV, IV = 0.5 includes
one region of Central China, and both IV = 1 and IV > 1 have no region.
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4. Discussion

The recycling of waste plastics in China’s electrical and electronic industries has dual
attributes [20]. One is the improvement of resource utilization efficiency, and the other is
the ecological and environmental protection effect brought by waste reduction.

Figure 4 is a conceptual model of a typical model of recycling e-waste plastics in
China, based on the above two-dimensional coupling model [21]. Three typical patterns of
resource utilization areas can be summarized as follows:

Model 1, resource-based demonstration area, quadrant 1, typical area, Tianjin
Mode 2, resource-based commissioned area, quadrant 2, typical area: Fujian
Model 3, resource-based traditional area, quadrant 3, typical area, Gansu
Model 4, resource-utilization potential area, quadrant 4, typical area, Heilongjiang
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Model 1. This model is characterized by a high level of economic development, a large
reserve of renewable resources, and a low degree of environmental impact. The typical area
is Tianjin. The developed economy results in a large amount of household appliances per
capita, and the spatial distribution density of renewable resources is relatively high. Thanks
to a well-developed transportation system and a sound policy system, the operating cost of
the collection and transportation system is lower. The saturated operation of standardized
treatment facilities lowers the cost of resource utilization and improves efficiency. In
turn, the recycled products obtained from resource utilization supplement the needs of
economic development to a certain extent, and at the same time, the impact on the ecological
environment in this process is correspondingly reduced.

Model 2. This model is characterized by a high level of economic development, a small
reserve of renewable resources, and a high degree of environmental impact. The typical
area is Fujian. The developed economy results in a large amount of household appliances
per capita, and the spatial distribution density of renewable resources is relatively high.
However, there are too few standardized treatment facilities (only one in 2017), which
severely restricts the on-site treatment capacity. In turn, the recycled products obtained
from resource utilization do not contribute much to the economic development. At the
same time, the impact on the ecological environment has not been mitigated in this process.

Model 3. This model is characterized by a low level of economic development, a small
reserve of renewable resources, and a high degree of environmental impact. The typical
area is Gansu. The less developed economy results in small amount of per capita household
appliances. The lower spatial distribution density of renewable resources, together with
the less developed transportation system and imperfect policy system, leads to higher
operation cost of the collection and transportation system. The unsaturated operation of
standardized treatment facilities results in higher cost of resource utilization higher and
lower efficiency. The recycled products obtained from resource utilization supplement
the needs of economic development to a certain extent, thereby promoting economic
development. At the same time, in this process, the impact on the ecological environment
has decreased accordingly.

Model 4. This model is characterized by a low level of economic development, a large
reserve of renewable resources, and a low degree of environmental impact. The typical area
is Heilongjiang. A more developed transportation system and a sound policy system result
in a lower operation cost of waste collection and transportation system. The saturated
operation of standardized processing facilities leads to lower cost of resource utilization and
higher efficiency. At the same time, in this process the impact on the ecological environment
has decreased accordingly. Although the level of economic development is relatively low,
high-efficiency resource utilization will facilitate local economy.

We found that the average recycling rate of e-plastics in China in the past five years was
33.1%, which reached the level of the European Union, the United States, and Japan [22,23].
The global recycling rate of all types of plastic was around 9% in 2015 [24,25]. While China’s
recycling rate of plastic was much higher, there is still potential for further improvement
room for e-plastic recycling.

5. Conclusions

On 4 August 2021, the Chinese government issued the “Notice of the Three Departments
on Encouraging Home Appliance Manufacturers to Carry out Recycling Target Responsibility
Actions”. This article identified four typical resource-based regional models and put forward
differentiated suggestions. For the resource-based demonstration area, the priorities are
to summarize the demonstration model, maintain the advantages of the demonstration,
and expand the influence of the demonstration. It is also necessary to expand the standard
dismantling targets, including small household appliances in the standard dismantling list
during the “14th Five-Year Plan” period, and to explore an optimized path for collection
and transportation. For resource-based entrusted areas, the priorities are to investigate
the flow of cross-regional entrustment to find out the economic feasibility and potential
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environmental impact of cross-regional collection and transportation. There is also a need
to explore the necessity of strengthening the implementation of standardized dismantling
policies and improving on-site processing capabilities.

For traditional resource-based areas, the short-term priorities are to develop specific
measures to optimize and standardize dismantling policies in the process of promoting
economic transformation and development, and to reserve resource management space
for further economic development. Moreover, it is necessary to explore the feasibility
of developing a local resource recycling industry as a leading industry. Regarding the
resource-based potential areas, the crucial tasks in the near term are: (i) to equip and
standardize dismantling and other resource-based facilities catering to the economic devel-
opment trends, (ii) to extend the resource-based industrial chain, and (iii) to explore the
necessity and feasibility of setting up large-region resource-based dismantling centers and
big data centers.

In summary, the differentiated recommendations are summarized largely as follows:
maintain demonstration, strengthen policies, promote transformation, and tap potential.
The focus of current work should be on resource-based demonstration areas and resource-
based potential areas, and at the same time carrying out basic work for resource-based
entrusted areas and resource-based traditional areas. In addition, it is also necessary to
explore to build large-regional resource-based dismantling centers and big data centers in
resource-based demonstration areas.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph19052807/s1, Table S1: The basic data of China’s e-plastics generation in 2017; Table S2:
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