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Identifying multiple sclerosis subtypes using
unsupervised machine learning and MRI data
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Sridar Narayanan5, Charles R. G. Guttmann6, Frederik Barkhof 1,2,7,8, Daniel C. Alexander 2,

Alan J. Thompson 1, Declan Chard 1,9,10 & Olga Ciccarelli1,9,10

Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The

pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratifi-

cation. Machine learning can identify groups with similar features using multidimensional

data. Here, to classify MS subtypes based on pathological features, we apply unsupervised

machine learning to brain MRI scans acquired in previously published studies. We use a

training dataset from 6322 MS patients to define MRI-based subtypes and an independent

cohort of 3068 patients for validation. Based on the earliest abnormalities, we define MS

subtypes as cortex-led, normal-appearing white matter-led, and lesion-led. People with the

lesion-led subtype have the highest risk of confirmed disability progression (CDP) and the

highest relapse rate. People with the lesion-led MS subtype show positive treatment

response in selected clinical trials. Our findings suggest that MRI-based subtypes predict MS

disability progression and response to treatment and may be used to define groups of

patients in interventional trials.
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There is a pressing need in neurology to define disease phe-
notypes based on their underpinning mechanisms, as an
important step towards stratified medicine. The con-

sequences of redefining disease subtypes based on biology rather
than on clinical grounds alone are that clinical trials should be
better able to recruit patients who are likely to benefit from the
medication under investigation. New technologies, such as artificial
intelligence and machine learning, can evaluate multidimensional
data to identify groups with similar features. Such methods, applied
to visible abnormalities on MRI scans, have great promise in clas-
sifying patients who share similar pathobiological mechanisms
rather than common clinical features1.

Multiple sclerosis (MS), which affects more than 2.8 million
people globally, is primarily classified according to clinical
symptoms rather than on well-defined pathological mechanisms2.
Current practice divides MS into four phenotypes: clinically iso-
lated syndrome (CIS), relapsing-remitting MS (RRMS), primary-
progressive MS (PPMS) and secondary progressive MS (SPMS)3.
Two descriptors underly these phenotypes: (i) disease activity, as
evidenced by relapses or new activity on magnetic resonance
imaging (MRI) and (ii) progression of disability3. Phenotypes and
their descriptors are routinely used in clinical trials to select
patients and to guide treatment assignment.

Imaging, immunologic, or pathologic investigations often show
more similarities than differences across the MS clinical pheno-
types: CIS patients may evolve into RRMS, and the majority of
RRMS patients transition into SPMS over time2,3. The precise
timing of these transitions is challenging to ascertain, because
they are often based on the subjective recollection of symptoms
and interpretation of signs. SPMS and PPMS share many MRI
features and pathogenic similarities4. If we could instead delineate
well-defined subtypes that are aligned with underpinning
pathobiological changes, we would be able to identify subgroups
to which treatment mechanisms do or do not apply and address
these long-standing ambiguities. MRI is a strong candidate for

data-driven disease classification, because it better reflects the MS
pathogenic mechanisms than purely clinical descriptions5.

Neurodegenerative disorders have a long prodromal period
and are lifelong. A key barrier in identifying subtypes of these
disorders is to stitch together observations from cross-sectional or
longitudinal studies (which are rarely more than a few years
long). Grouping individuals on the basis of a similar appearance
on a single time-point MRI is not sufficient, as patients belonging
to the same subgroup would show different abnormalities as their
disease evolves and would appear different. We have recently
developed an unsupervised machine learning algorithm, called
Subtype and Staging Inference (SuStaIn)6, to uncover data-driven
disease subtypes with distinct temporal progression patterns. This
ability to disentangle temporal and phenotypic heterogeneity
makes SuStaIn different from other unsupervised learning or
clustering algorithms. The algorithm identifies a set of subtypes in
the training data, which can be cross-sectional; each subtype is
defined by a pattern of change in a set of features, such as MRI
abnormalities. Once the SuStaIn subtypes and their MRI trajec-
tories are identified, the resulting disease model can determine
how closely a patient, whose MRI is unseen, belongs to each
subtype and stage.

Here, we aimed to redefine subtypes of MS based on a data-
driven assessment of the pathological changes visible on MRI
scans, rather than the evolution of clinical symptoms, with a view
to targeting therapies to subpopulations who share pathogenic
mechanisms7. In this manuscript, we use phenotype when
referring to standard clinical phenotypes (RRMS, PPMS and
SPMS) and subtype when referring to MRI-based subtypes,
identified using SuStaIn. We applied SuStaIn to a training dataset
from previously published clinical trials and observational MRI
studies (Table 1) to define subtypes that optimally explained the
temporal and phenotypic MRI heterogeneity, and then validated
them in an unseen (independent) set (Table 1), thereby con-
firming the generalisability of the model. Our secondary aim was

Table 1 Collated datasets.

Study name Population Design Participants with
eligible MRI

Visits with MRI Published protocol
citation number

MS datasets in the training dataset**
Siena Mixed Observational 149 595 36

Basel Mixed Observational 81 239 37

DEFINE- CONFIRM,
ENDORSE

RRMS RCT (phase 3) 1071 5208 31

OPERA 1 RRMS RCT (phase 3) 801 3025 32

OPERA 2 RRMS RCT (phase 3) 824 3044 32

ASCEND SPMS RCT (phase 3) 1002 5095 25

Lipoic acid SPMS RCT (phase 2) 41 111 28

MS-STAT 1 SPMS RCT (phase 2) 131 373 26

MAESTRO 3 SPMS RCT (phase 3) 539 1753 29

Lamotrigine SPMS RCT (phase 2) 97 251 27

ARPEGGIO PPMS RCT (phase 2) 409 946 42

INFORMS PPMS RCT (phase 3) 323 758 24

PROMISE PPMS RCT (phase 3) 458 740 23

OLYMPUS PPMS RCT (phase 2/3) 396 1630 22

MS datasets in the validation dataset**
CLIMB RRMS Observational 319 1950 38

ORATORIO PPMS RCT (phase 3) 701 2724 17

BRAVO RRMS RCT (phase 3) 1,203 3009 33

MS-SMART SPMS RCT (phase 2) 425 1151 30

MAESTRO 1 and 2 SPMS RCT (phase 3) 420 1570 29

** We chose training and validation datasets a priori.
Number of patients for each MS phenotypes in the Basel cohort are: 56 RRMS, 19 SPMS, and 6 PPMS and in the Siena cohort are 143 RRMS, 9 PPMS, and 9 SPMS.
Abbreviations: RCT= double-blind randomised controlled trial; RRMS= relapsing-remitting multiple sclerosis; SPMS= secondary progressive multiple sclerosis; PPMS= primary progressive multiple
sclerosis.
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to determine whether there were differences in progression of
disability, disease activity and treatment response between the
SuStaIn-derived subtypes at study entry.

Results
MRI-based subtypes. Patient characteristics (age, sex, Expanded
Disability Status Scale or EDSS, and disease duration) were
similar between the training (N= 6322 patients) and the valida-
tion datasets (N= 3068 patients) (Table 2). Of the 18 MRI fea-
tures measured, 13 significantly differed between the MS training
dataset and control group, and these were retained in the SuStaIn
model (see Supplementary Results and Supplementary Fig. 1).
Three subtypes, with distinct patterns of evolution, were identi-
fied in the training dataset and validated in the validation dataset.
On the basis of the earliest MRI abnormality seen in the SuStaIn-
defined trajectories, we termed these subtypes cortex-led, normal-
appearing white matter (NAWM)-led, and lesion-led (Fig. 1). The
pattern of temporal progression for each subtype was char-
acterised as a sequence of stages, each marked by a different
combination of changes in regional grey matter volume, NAWM
T1/T2 ratio and lesion load (Supplementary Fig. 2). The cortex-
led subtype was characterised by an early cortical atrophy in the
occipital, parietal, and frontal cortex, which was followed by
atrophy in the other grey matter regions and focal T2 lesion
accrual and, in the late stage, by a reduction in the T1/T2 ratio (as
a proxy for diffuse subtle tissue damage) of the NAWM regions
(Fig. 1). The NAWM-led subtype was characterised by an early
reduction in the T1/T2 ratio of the cingulate bundle and corpus
callosum, followed by a reduction in T1/T2 ratio in the cerebellar,
temporal and parietal NAWM, atrophy of the occipital cortex, T2
lesion accrual, and, in the late stage, by atrophy of other cortical
regions and the deep grey matter (Fig. 1). The lesion-led subtype
was characterised by an early and extensive accrual of T2 lesions,
which was followed by early and severe deep grey matter atrophy,
atrophy of the occipital, parietal and temporal cortex, and, in the
late stage, by a reduction in NAWM T1/T2 ratio (Fig. 1). Staging
reflected the pattern of MRI changes within the specific data-
driven subtype (Supplementary Fig. 2). The probability that each
individual belonged to each of the SuStaIn subtypes is shown in
Fig. 2.

When looking at the clinical characteristics of the three
subtypes (Table 3), the lesion-led subtype had the highest EDSS,
the longest disease duration, the highest lesion load at baseline,
the highest lesion accrual over time, and the smallest cortical and
deep grey matter volumes at baseline (all p < 0.001). Additionally,

the lesion-led subtype showed the highest SuStaIn stage at
baseline and the highest annual increase in SuStaIn stage in both
the training and validation datasets (Table 3). The most frequent
subtype in both the training and validation datasets was the
cortex-led subtype, followed by the NAWM-led subtype in the
training dataset and the lesion-led subtype in the validation
dataset (Table 3). There were no differences in age and sex
between the MS subtypes (Table 3).

Differences in disability progression and disease activity across
subtypes. There was a statistically significant difference in the rate
of EDSS progression between the three subtypes in both the
training and the validation datasets (log-rank test for three-group
comparison, treated and placebo/active comparator patients
combined, p= 0.05 and p= 0.006, respectively, Fig. 3b). In par-
ticular, in the training dataset, the lesion-led subtype had 30%
higher risk of developing 24-week confirmed disability progres-
sion (CDP) than the cortex led subtype (95% confidence intervals
(CIs): 5–62%, p= 0.01) (Fig. 3a); similarly, in the validation
dataset, the lesion-led subtype had 32% higher risk of 24-week
CDP than the cortex-led subtype (CIs: 9% to 59%, p= 0.004)
(Fig. 3b). No other differences in progression of disability
between subtypes were seen.

When we investigated the differences in disease activity
(relapse rate and enhancing lesions) across subtypes in the
training and validation dataset, we found that the lesion-led
subtype had the most active disease. When looking at contrast-
enhancing lesion counts at the study entry, the lesion-led subtype
had the highest number (average count in the training dataset=
2.28, SE= 0.33 and average count in the validation dataset= 2.35,
SE= 0.23, p < 0.001 for all pairwise comparisons). In the training
dataset, the cortex-led subtype had an average contrast-enhancing
lesion count of 0.93 (SE= 0.15) and 1.38 (SE= 0.29) in the
validation dataset. The NAWM-subtype had an average count of
0.51 (SE= 0.29), p < 0.001) in the training dataset and 1.04 (SE=
0.24) in the validation dataset. There was no difference in the
numbers of contrast-enhancing lesions between the NAWM-led
and the cortex-led subtypes in the training and validation
datasets.

Across the three subtypes, the lesion-led subtype had the
highest relapse rate in both the training dataset (average= 0.56,
SE= 0.07) and validation dataset (average= 0.41, SE= 0.03)
(Fig. 4). No other differences in the relapse rate across subtypes
were found.

Table 2 Patients’ characteristics in the training and validation datasets.

Clinical phenotypes

Training dataset (N= 6322) Validation dataset (N= 3068)

RRMS SPMS PPMS RRMS SPMS PPMS

Percentage of populationa 46% (2884) 29% (1837) 25% (1601) 49% (1522) 28% (845) 23% (701)
Age at study entryb 37.44 ± 9.2 49.41 ± 8.09 49.20 ± 8.41 36.53 ± 9.69 51.95 ± 7.92 44.58 ± 8.02
Female (%) 68% 65% 50% 69% 67% 50%
EDSSc 2.5 (1.5–3.5) 6 (5–6.5) 4.5 (4–6) 2.5 (1.5–4.5) 6 (5–7) 4.5 (2–7)
Disease duration (SD)b 4.62 ± 5.46 14.46 ± 8.77 4.47 ± 4.56 3.24 ± 4.42 17.52 ± 9.38 2.78 ± 3.1
Progression duration (SD)b — 5.24 ± 4.04 — — 6.38 ± 5.2 —

aThe total percentages may not add up to 100% because of rounding.
bAverage years with standard deviation in parentheses.
cMedian EDSS with interquartile range in parentheses.
Age, disease duration, EDSS and progression duration are calculated at the study entry.
NS non-significant, SD standard deviation, SE standard error of mean, NAWM normal-appearing white matter, EDSS expanded disability status scale, RRMS relapsing remitting multiple sclerosis, SPMS
secondary progressive multiple sclerosis, PPMS primary progressive multiple sclerosis.
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Patient stratification predicts disability progression. When we
applied SuStaIn to both the training and validation datasets, we
found that there were differences in the risk of disability pro-
gression between SuStaIn stages. Patients with the highest tertile
of stage at baseline (from stage 17 to 39) had the shortest time to
24-week CDP (log-rank p < 0.0001); additionally, they showed a
37% higher risk of 24-week CDP (95% CIs: 22–53%) than the
patients with the lowest tertile of stage (from stage 1 to 9) and
30% higher risk of 24-week CDP (95% CIs: 17–46%) than
patients in the middle tertile group (from stage 10 to 17) (all
p-values <0.001, see Fig. 5).

There were significant associations between SuStaIn subtypes
and stages at baseline with the time-to-24-week CDP (subtypes:
overall effect, β= 0.04, standard error= 0.01, p= 0.02; stages:
β=−0.06, standard error= 0.02, p < 0.001). However, in the
same model, there were no significant associations between the
standard clinical phenotypes or baseline EDSS with the time-
to-24-week-CDP (phenotypes: overall effect across RRMS,
SPMS and PPMS, β= 0.18, standard error = 0.15, p= 0.22),
(EDSS: β= 0.02, standard error = 0.03, p= 0.26) suggesting
that MRI-based subtypes were more strongly associated with
the risk of disability progression than the standard clinical
phenotypes.

Combining MRI-based subtypes with clinical data to predict
disease progression. The concordance index (±standard error)
was 0.55 ± 0.01 in a survival model with SuStaIn stages and
subtypes. The concordance index increased to 0.63 ± 0.01 when
we added clinical information (EDSS, clinical phenotype, time-
walk test and 9-Hole Peg Test) (p < 0.01 for performance increase
compared to the previous model).

Differences in treatment response between subtypes. There were
differences in treatment response (defined as the difference in EDSS
worsening for each subtype on treatment vs. placebo) between the
MRI-based subtypes. In particular, the lesion-led subtype showed a
significant treatment response in the three phase 3 randomised
controlled trials in SPMS and PPMS (N= 2099) that were either
positive or reported a trend towards a treatment response (Fig. 6).
Patients in the lesion-led subtype on active treatment had a sig-
nificantly slower worsening of EDSS than those on placebo (average
percentage difference: −66%, standard error ±25.6%, p= 0.009).
Similarly, in the pooled analysis of RRMS trials (N= 2696), the
lesion-led subtype on treatment showed a significant reduction in
the rate of EDSS worsening compared to the same subtype in pla-
cebo or active comparator arms (−89%, ±44%, p= 0.04). No dif-
ferences in the rate of EDSS worsening were observed between
treated patients and those on placebo/active comparator, who
belonged to both the NAWM-led and cortex-led subtype.

Discussion
The application of SuStaIn to a large set of MS MRI scans
identified three subtypes, characterised by distinct temporal pat-
terns of MRI changes that could be staged. Results from an
independent set corroborated these three subtypes. We found that
a patient’s baseline subtype and stage was associated with the
individual risk of disease progression. Combining MRI-based
subtypes with clinical information increased prognostic accuracy
when compared with using MRI information alone. The patterns
of MRI abnormality in these subtypes provide insights into dis-
ease mechanisms and, alongside clinical phenotypes, they may aid
stratification of patients for future interventional studies.

Our primary hypothesis was that a model based on MRI rather
than solely on clinical data helps to improve a biological
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3 sigma). The cortex-led subtype (left) showed cortical atrophy in the occipital, parietal and frontal cortex in the early stages of the sequences, and a
reduction in T1/T2 ratio in the NAWM in the later stages. The normal-appearing white matter (NAWM)-led subtype (middle) showed a reduction in T1/
T2 ratio of the cingulate bundle and corpus callosum in the earlier stages of the sequence, and deep grey matter and temporal grey matter atrophy in the
later stages. The lesion-led subtype (right) shows early and extensive accumulation of lesions in the earlier stages of the sequence, and a reduction in the
T1/T2 ratio in the NAWM in the later stages. The numbers on the left side represent SuStaIn stages. The minimum stage is 1 and the maximum stage is 39
(based on 13 variables that show mild (sigma= 1), moderate (sigma= 2) and severe abnormality (sigma= 3)). Acronyms: NAWM, normal-appearing
white matter; SD, standard deviation; GM, grey matter; T1/T2, T1-T2 ratio.
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Table 3 Characteristics of MRI-based subtypes in the training and validation datasets.

MRI-based subtypes

Training dataset (N= 6322) Validation dataset (N= 3068)

Cortex-led NAWM-led Lesion-led p-Value Cortex-led NAWM-led Lesion-led p-Value

Percentage of population 43% (2697) 32% (2011) 25% (1614) — 42% (1279) 21% (635) 38% (1154) —
Age ± SD 43.03 ± 10.28 43.70 ± 11.05 43.60 ± 10.48 NS 41.72 ± 10.43 43.13 ± 11.28 44.07 ± 11.45 NS
Female (%) 63% 63% 65% NS 61% 72% 64% NS
EDSS (IQR) 4.0 (3.5) 3.5 (3.0) 4.5 (3.0) <0.01 3.5 (3.5) 3.5 (3.5) 4.5 (3) <0.01
Disease duration 6.27 (6.92) 5.56 (6.82) 9.09 (8.33) <0.001 6.46 ± 8.49 7.2 ± 7.88 11.63 ± 10.72 <0.001
Lesion load (SD) 18.05 (20.20) 10.51 (12.35) 47.88 (31.14) <0.001 13.83 (13.8) 8.81 (8.48) 39.52 (27.2) <0.001
Lesion accrual in placebo
arms (SE)

1.02 (±0.31) 0.88 (±0.41) 2.64 (±1.50) <0.01 1.57 (0.30) 0.63 (0.12) 2.41 (1.51) <0.001

Brain volume (SE) 1119 (9.1) 1092 (1.2) 1089 (1.15) <0.001 1117 (3.4) 1120 (6.03) 1077 (4.82) <0.001
Cortical volume (SE)* 453.0 ± 1.7 476.60 ± 2.6 444.10 ± 2.8 <0.001 455.81 ± 0.52 477.32 ± 0.83 453.10 ± 0.96 <0.001
Deep grey matter volume (SE) 31.16 ± 0.04 32.97 ± 0.04 28.92 ± 0.07 <0.001 31.47 ± 0.55 32.92 ± 0.08 29.33 ± 0.08 <0.001
Baseline SuStaIn stage (SE) 14.54 ± 0.17 13.75 ± 0.13 16.15 ± 0.29 <0.001 11.49 ± 0.19 10.31 ± 0.27 13.82 ± 0.29 <0.001
SuStaIn stage annual increase in
placebo arms (SE)

0.18 (±0.10) 0.29 (±0.12) 0.66 (±0.18) <0.001 0.19 ± 0.21 0.12 ± 0.25 0.63 ± 0.15 <0.001

IQR interquartile range, NAWM normal-appearing white matter, EDSS expanded disability status scale, SE standard error, SD standard deviation, NS non-significant, ml millilitre.
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Fig. 3 MRI-based subtypes and disability progression in the placebo arms. The lesion-led subtype had a faster EDSS progression than the other two MS
subtypes in both the training (a) and validation (b) sets. Only placebo arms (or comparator arms) of the clinical trials are included. In both a and b we used
the log-rank test, with two-sided p-value, to compare survival curves (no correction for multiple comparisons). EDSS expanded disability status scale.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22265-2

6 NATURE COMMUNICATIONS |         (2021) 12:2078 | https://doi.org/10.1038/s41467-021-22265-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


understanding of MS disease progression. There were differences
in the risk of disability progression, disease activity and treatment
response across subtypes, which suggested that they reflected
different pathobiological mechanisms relevant to the manifesta-
tions of the disease. Among the three different subtypes, the
lesion-led subtype, which was characterised by early and extensive
lesion load, showed the fastest accumulation of lesions over time,
highest relapse rate and contrast-enhancing lesions, and highest
risk of 24-week confirmed disability progression. Interestingly the
lesion-led subtype showed the development of deep grey matter
atrophy after the T2 lesion accrual. These findings are consistent
with substantial focal inflammatory demyelination early on, with

neurodegeneration in the deep grey matter being secondary to
lesion accumulation8,9, related to the degeneration of tracts
transected in MS lesions or concomitant inflammatory processes
in the white matter and deep grey matter10,11. Notably, the lesion-
led subtype was the only subtype that showed a significant
treatment response in both RRMS and progressive (PP and SP)
MS trials, suggesting that SuStaIn, alongside clinical phenotypes,
may be used for selecting patients who are more likely to respond
to medications targeting inflammatory lesion activity.

When looking at the trajectory of MRI changes defining the
cortex-led subtype, this group showed early cortical atrophy in
the occipital and parietal regions, subsequent development of
atrophy in the other grey matter regions and accumulation of T2
lesions, and late NAWM abnormalities. This suggests that the
pathological underpinning of the cortex-led subtype is more
insidious and may relate to neurodegeneration in the cortex8,9

and compartmentalised, chronic inflammation in the white
matter, which is not reflected by the visible lesions. The con-
current development of cortical atrophy and accumulation of
lesions points to retrograde neurodegeneration of tracts trans-
ected in white matter lesions12. The majority of patients belonged
to the cortex-led subtype, in both the training and validation
datasets. This subtype responded to a lesser extent to treatments.
This observation suggests that the neurodegenerative component
of MS is clinically relevant and remains difficult to target with
treatments. It is important to note that SuStaIn disentangles not
only the sequence but also the severity of abnormality at each
stage. The parietal cortex showed the greatest early atrophy
(Supplementary Figure 2) of all cortical regions, regardless of
subtype. This might be related to the network mediated pathology
in areas of the cortex that were part of the default mode network,
such as the parietal lobe (which includes the precuneus) or those
connected to the visual system (the occipital cortex) show early
damage, as has been demonstrated in previous MRI and histo-
pathological studies12–14.
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Fig. 6 Predicting treatment response with MRI-based subtyping in
selected RCTs. Shows the change in EDSS worsening in MRI-based subtypes
in the pooled treatment arms of the ORATORIO, ASCEND and OLYMPUS
trials (n= 2099 patients) compared to the corresponding subtypes in the
pooled placebo arms (e.g., lesion-led subtype on treatment vs. lesion led
subtype on placebo and so forth). Patients in the lesion-led subtype had the
largest reduction in the rate of EDSS worsening and were the only group who
had a significant treatment response. The circle at the centre of each line
represents the model-estimated average of percentage EDSS change. Error
bars represent the standard error. Abbreviations: 9HPT, 9-Hole Peg test;
NAMW, normal-appearing white matter; EDSS, Expanded Disability Status
Scale; RRMS, relapsing-remitting multiple sclerosis; PPMS, primary
progressive multiple sclerosis; RCT, randomised controlled trial.
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When looking at the baseline SuStaIn stage, and change over
time, the lesion-led subtype had the highest stage at baseline, and
the most rapid increase over time. However, it is important to
note that stages are not comparable across subtypes: they repre-
sent different patterns of abnormalities, and linear and non-linear
changes from one stage to another, which is different across
subtypes.

The lesion-led subtypes had the worst prognosis in terms of
accumulation of pathology (faster lesion accumulation) and dis-
ability progression. Disease duration, both in the training dataset
(9.09 years) and the validation dataset (11.63 years), was the
highest in the lesion-led subtype. We postulate that this reflects a
shorter prodromal period in the lesion-led compared with other
subtypes; The higher relapse rate and faster rate of disability
progression may contribute to an early diagnosis15. Another
possibility is that longer disease durations in the lesion-led sub-
type reflect patients converting from another subtype as they
progress. However, this is unlikely to be the case, at least in the
time span of a clinical trial, as shown in our reliability analyses,
and natural history studies suggest that focal inflammatory
activity tends to diminish rather than increase over time16.

MRI-based subtyping predicted disability progression and
treatment response irrespective of clinical phenotypes. The MRI-
based subtypes and stages were more strongly associated with
EDSS worsening than the baseline EDSS or clinical phenotypes.
Even in the validation dataset, where the baseline EDSS ranged
from 3.5 to 4.0 for all the three MRI-based subtypes, the MRI-
based subtypes still predicted disability progression. We chose a
model based on MRI data, rather than including clinical data, to
enable a biological understanding of disease progression as
opposed to supervised or semi-supervised methods that may
include clinical outcomes. Taken together, the MRI-based sub-
types can be used alongside clinical phenotypes to add value in
prognosticating patient outcomes.

A discrepancy between training and validation datasets was
that the second most common subtype in the training dataset was
NAWM-led, while in the validation dataset it was lesion-led. This
may be explained by the characteristics of PPMS patients of the
ORATORIO trial in the validation phase. ORATORIO was a
phase 3 trial enriched with patients with active PPMS17. This
discrepancy highlights that the current phenotypic classification
of MS does not fully address the heterogeneity of patients,
whereas a data-driven subtyping system can provide a more
systematic and objective classification. We could have used
individual-based matching as opposed to study-based (clinical
trial-based) matching to balance the training and validation
dataset, however, we chose the latter to ensure that the treatment
response calculations were not biased by changes in the pro-
spectively, and randomly, recruited placebo arms. This choice
also enabled us to test our models in truly independent datasets
that were acquired by separate investigators at different times.

MS is heterogenous clinically and on MRI, so we included
clinical variables (EDSS, 9-Hole Peg Test, and Timed-Walk Test)
alongside MRI-based subtypes, to build a more comprehensive
model to predict patient outcomes. We found that including
clinical assessments at study entry significantly increased the
accuracy (concordance index of 0.63 vs. 0.55) of MRI-based
subtypes in predicting 24-week CDP. However, we did not
include clinical information in the SuStaIn model to subtype
patients, because these variables violate monotonicity (variables
move in one direction as disease progresses) and normative
assumptions (variables are drawn from the sample of healthy
volunteers from whom MRI data were acquired) of SuStaIn
algorithm6. We found that the MRI-based subtypes predicted
CDP whilst single MRI variables (lesion load and whole brain
volume) did not, suggesting that a comprehensive model is

necessary to achieve the difficult task to predict disability
progression.

We used data from a large number of clinical trials and
observational cohorts. This offered us several advantages, in
particular it provided a large dataset, with the ability to robustly
assess associations with clinical features and treatment responses,
and it meant that our findings can be used in future clinical trials
as we did not rely on advanced MRI scanning techniques and the
method has proven robust to potential confounding by differ-
ences between the many MRI scanners used. However, it also
meant that we were not able to use the most sensitive MRI
measures, and this was particularly the case for NAWM. Diffu-
sion tensor or magnetisation transfer imaging are more sensitive
to intrinsic tissue changes, but these are not routinely collected in
phase 3 clinical trials due to standardisation challenges18. Since
this measure can be affected by the choice of MRI protocol and
scanner, we paid special attention to trial effects, centre effects in
each trial, and 2D or 3D MRI data acquisition. To mitigate
potential differences across scanners we used an internal refer-
ence (ventricles) to normalise values (see Supplementary Meth-
ods). There were 772 centres in our study; when we looked at the
centre or site effects and compared it with the subtype effect
across MRI variables (including T1/T2), the MRI measures were
more strongly related to subtype than centre. We found similar
results when exploring the statistical effect sizes of MRI resolution
(2D vs. 3D). To measure and examine trial effects (e.g., recruit-
ment strategy and other confounding factors), we used leave-one-
dataset out cross-validation and found excellent consistency
across cross-validation folds. Our results were therefore robust to
scanner or acquisition effects, which is in line with our previous
multi-centre studies showing that grey mattery changes can be
quantified from multi-centre studies19,20. Our third strategy to
show robustness to centre and trial, was applying our model to
unseen data. Our model could predict clinical outcomes (EDSS
and disease activity) when applied to new centres in unseen data
sets, which confirmed that the centre effects are unlikely to sig-
nificantly affect the predictive performance. However, the output
classifications and staging are likely to be noisier than a model
trained with data from only a few scanners (bias-variance trade
off), which would have been less generalisable.

Our methodology has the potential to be extended to real-
world clinical data in future studies by adapting the model (e.g.,
retraining) to scans acquired in clinical practice and validation in
real-world data sets. The spinal cord is affected from early stages
in MS and its atrophy is independently associated with
disability21. However, spinal cord data is not routinely acquired in
MS trials and was not available in our study, and it would be
interesting in future studies to investigate if spinal cord measures
can also independently contribute to SuStaIn subtyping and
staging.

In conclusion, we have identified MRI-based subtypes that
provide insights into the pathobiological mechanisms of MS and
predict disease activity, disability progression, and treatment
response better than conventional clinical phenotypes. Our MRI-
based subtyping can be undertaken using MRI scans that are
already being acquired in clinical trials, and from a single time-
point, so it could be prospectively used to enrich future trials with
those most likely to respond to treatment, or to subtype patients
to specifically look for treatment effects that would otherwise
have been overlooked if assessed by clinical MS phenotypes alone.

Methods
Study design. Main goals of our analysis were to identify data-driven subtypes
using MRI measures, replicate and test the generalisability of our models in unseen
data sets. To perform MRI-based subtyping, we developed a subtyping model by
performing the steps summarised in Fig. 7, which included data preparation, MRI
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processing, extracting variables of interest from processed MRI scans, training an
unsupervised machine-learning model and testing it in unseen data sets. We
assessed the predictive ability of the SuStaIn subtypes and stages for clinical pro-
gression and treatment response, and whether the inclusion of baseline clinical
features improved the prediction of clinical progression.

Participants and clinical outcomes. We collected clinical and MRI data from 16
MS randomised-controlled trials (RCTs): five trials of PPMS17,22–24, seven trials of
SPMS25–30, and four trials of RRMS31–33; we also included three observational
cohorts with mixed MS subtypes17,22–29,31–38 (Table 1).

Each RCT and observational study had received ethical approval and
participants had given written, informed consents at the time of data-acquisition.
The Institutional Review Board at the Montreal Neurological Institute (MNI),
Quebec, Canada approved this study (Reference number: IRB00010120). The
pharmaceutical companies who provided the fully anonymised, individual patient
raw data, agreed to pooling data but not re-testing treatment response in individual
RCTs. We also included two healthy control data sets: (1) The S1200 Open Access
release of the Human Connectome Project, and (2) The UK Biobank data, which
were available for download on 1st of February 2019. This project was approved by
the UK Biobank (Reference number: 47233).

The Expanded Disability Status Scale (EDSS)39, which rates neurological
impairment, was scored as per individual study protocol. The EDSS was obtained
at least one month after a protocol-defined relapse. We defined disability
progression confirmed at 24 weeks (or confirmed disability progression (CDP)) as
a worsening of EDSS that was sustained on subsequent visits for at least 24 weeks.
EDSS progression was defined as a ≥1.5-point increase from a baseline EDSS of 0, a
≥1-point increase from a baseline score of 0.5 to 5.5, and a ≥0.5-point increase
from a baseline score greater than 5.5.

Brain MRI protocol and image processing. We collected the following brain MRI
sequences: T1-weighted, T2-weighted, and Fluid Attenuated Inversion Recovery
(T2-FLAIR) MRI (see Supplemental Material for details). We used brain 2D or 3D
T1-weighted scans to segment grey and white matter tissues, T2-FLAIR and T1-
weighted scans to segment lesions, and T2-weighted scans, together with T1-
weighted scans, to obtain T1/T2 ratio. Details of MRI protocols are explained in
publications associated with each dataset17,22–29,31–38.

We applied an identical cross-sectional pipeline (treating each visit
independently) to all the visits of patients and healthy controls in which

T1-weighted, FLAIR and T2-weighted MRI were available. We processed scans to
obtain the following 18 variables:

Volumes of the bilateral frontal, parietal, temporal, and occipital grey matter,
limbic cortex, cerebellar grey matter and white matter, brainstem, deep grey
matter and cerebral white matter
Volume of total T2 lesions
Regional T1/T2 ratio of normal-appearing white matter in the corpus callosum,
frontal, temporal, parietal, and occipital lobes, cingulate bundle and cerebellum.

Details of image analysis and quality control pipelines are explained in
the Supplemental Material. In brief, brain regions were defined based on the
Neuromorphometrics atlas (http://www.neuromorphometrics.com). Lesions were
segmented using Lesion Segmentation Toolbox53 and a deep convolutional neural
network-based method in DeepMedic54. Tissue segmentations were undertaken
using T1-weighted volumetric scans processed with Geodesic Information Flows
(GIF) software.T1/T2 ratio maps were calculated using a pipeline based on
Ganzetti and colleagues method40, modified to use ventricular CSF rather than the
vitreous humour T1/T2 ratios to normalise measures (scan anonymisation and
acquisition meant that not all scans included the eyes).

Statistical analysis
Outline. As mentioned above, SuStaIn is an unsupervised machine learning method
that combines disease progression modelling20 and clustering methods. SuStaIn
identifies a set of subtypes with specific patterns in the temporal progression of
input variables. What makes SuStaIn unique for modelling neurodegenerative
disorders is its ability to model heterogeneity in both the phenotypic and temporal
heterogeneity6, whilst other clustering methods can model one of these two aspects
at a time. We first trained and internally validated (cross-validated) SuStaIn in a
training dataset, and in the second part we tested it by using an external (unseen
and independent) validation dataset. We also investigated the associations between
SuStaIn subtypes and stages (and clinical phenotypes) and both disability pro-
gression and treatment response by using all the available datasets. In the second
part of the analysis, we explored whether there were differences in treatment
responses between MRI-based subtypes in three phase 3 RCTs in RRMS and in
three phase 3 RCTs in progressive MS.

Model training and validation. For each of the 18 MRI variables listed above, we
used the two datasets of healthy controls together to fit a Bayesian linear regression
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model with the total intracranial volume, sex, age and age squared as independent
variables, and each MRI variable as the outcome. We calculated the expected values
for each visit using this model and subtracted the observed values to obtain residual
values of each MRI variable. We refer to the residual values as adjusted values. We
used BAS package version 1.5.3 and R version 3.6.041. We evaluated study and
centre effects separately, as explained below in the internal validation and in
the Supplemental Methods. We calculated the Z-scores for each MRI variable at
each participant’s visit by subtracting the adjusted mean value of the healthy
volunteers from the adjusted observed value in patients and dividing each patient’s
MR variable by the standard deviation of the healthy volunteers.

From the 19 datasets available, we a priori chose 14 datasets to create a training
dataset, which was used for model training (including cross-validation). These were
three phase 3 RRMS trials31,32, three phase 3 PPMS trials22–24, two phase 3 SPMS
trial25,29, three phase 2 SPMS trials26–28, one phase 2 PPMS trial42 and two
observational cohorts36,37 (see Table 1 and Supplementary Fig. 3 for the complete
list). We set aside the remaining four datasets to create a validation dataset, which
was used to perform the model testing: one phase 3 RCT in RRMS33, one phase 3
RCT in PPMS17, one phase 2 and one phase 3 RCT in SPMS30, and one
observational cohort with mixed MS subtypes38 (Table 1).

To reduce the dimensionality of the models and computational expenses, we
selected the MRI variables, which were found to be ‘abnormal’ in MS when
compared with healthy controls. To do so, we carried out pairwise comparisons
between healthy volunteers and patients at their baseline visit and selected the MRI
measures whose differences between the groups were associated with a moderate to
large effect sizes (>0.5 Cohen’s D effect size). We included the volumes for the grey
matter areas and the T1/T2 values for the white matter regions, because the T1/T2
and the volume measures were highly correlated for each given region. We entered
the MRI variables resulting from the previous step into SuStaIn. Since lower values
of volume and T1/T2 ratio are expected to be associated with increased disability,
we flipped their signs so that higher Z-scores and estimated stages represented
disease worsening.

To find the optimal model (that is, the model with the highest likelihood of
explaining MRI variables), we carried out the internal validation with leave-one-
dataset-out cross-validation, which allowed us to choose the number of MS
subtypes, quantify the uncertainty associated with a given subtype trajectory (or the
evolution of MRI abnormalities), and evaluate the stability and robustness of
the model across different trials, and MRI protocols (Supplementary Fig. 4). With
the leave-one-dataset-out cross-validation procedure, we trained the model on 13
out of the 14 datasets, and evaluated it using the remaining dataset (held-out
sample). We permuted the training and held-out samples until every dataset was
used once as held-out sample, thereby iterating the procedure 14 times.

We selected the best fitting model, which means the model with the optimal
number of subtypes, and sequence of MRI abnormality changes in the same
subtypes. We started by fitting the SuStaIn model on the 13 training folds with only
one subtype and then increased the number of subtypes in steps of one. We
calculated the log-likelihood (which expresses predictive accuracy) of each held-out
fold for each model and chose the fitted model with the number of subtypes that
maximised this log-likelihood. We estimated the uncertainty of the quantification
(posterior distribution) using the Markov Chain Monte Carlo (MCMC) algorithm
with 100,000 iterations to sample from the posterior distribution of the most likely
sequences found in the previous step. To evaluate how consistent MRI-based
subtypes were across these 14 datasets in the train and internal validation dataset,
we quantified the effects of dataset (and, therefore MRI protocol) on subtype
trajectory. We quantified the degree of overlap of posterior distributions of
sequences for each subtype across 14 iterations of cross-validation, with the
Bhattacharyya coefficient43 between each pair of subtypes from different folds. The
Bhattacharyya coefficient ranges from 0 (no agreement) to 1 (perfect agreement).
We calculated all pairwise Bhattacharyya distances across all folds and subtypes
pairs for the optimal model and reported the average and standard deviation for
each subtype. We fitted our final trained model on all the 14 datasets in training
data set to obtain the optimal model to be used for validation.

To compare gender frequencies among MRI-based subtypes and clinical
phenotypes, we used Chi-square test. To compare ordinal and continuous outcome
variables (e.g., EDSS, SuStaIn stages, age and disease duration), and lesion and
cortical volumes we used general linear models (with Poisson distribution for
ordinal variables). For longitudinal analysis of lesion volume and cortical volume we
used mixed-effects models. In these mixed-effects models, we included hierarchical
random effects: the visit variable was nested in subject, and subject variable nested
in the dataset variable; we only used the placebo arms of the RCTs to evaluate the
natural course of MRI-based subtypes in the absence of treatments and included
total intracranial volume, age and sex as fixed-effects, nuisance variables.

Testing the newly developed model on the validation dataset. First, we applied
SuStaIn to the validation dataset to obtain subtype membership for each subject’s
visit at baseline (study entry). Secondly, to investigate the differences in the hazard
ratio of reaching the 24-week-CDP across the three MRI-based subtypes within
each trial, we used Cox regression models. To investigate whether there were
differences in disease activity between the MRI-based subtypes, we compared the
annual relapse rate in and the number of contrast-enhancing lesions at the study
entry using a general linear model17,33.

Analyses with merged training and validation datasets. We used SuStaIn to estimate
subtype stages along a trajectory or a sequence. Since there were 13 variables with
three Z-scores each, each subtype included 39 stages, which ranged from one (the
earliest stage) to 39 (the last stage). To investigate whether the MRI-based subtypes
and the standard clinical MS phenotypes were associated with disability progres-
sion, we constructed a mixed-effects model. In this model, time to reach 24-week-
confirmed EDSS progression was the outcome variable and trial was a random-
effects variable. Fixed-effects predictors were MRI-based subtypes and stages at
baseline, standard MS phenotypes, age, sex, and EDSS at baseline. We performed
additional analyses to test the reliability and stability of the SuStaIn subtypes over
time in both the train and test set (see Supplemental Material for details). To
compare the strength of associations of clinical MS phenotypes and MRI-based
subtypes with time to 24-week CDP, we used the standardised time-to-event
variables and compared the average effect sizes across the clinical phenotypes and
the MRI-based phenotypes using a general linear model.

Combining clinical variables with the MRI-based subtypes to predict disease progres-
sion. We used EDSS, Timed-Walk Test, and 9-Hole Peg Test performance at study
entry in addition to the MRI-based subtypes to predict time to 24-week CDP. We
used a Cox-regression model in which the time to 24-week CDP was the outcome
variable and MRI-subtypes, together with the other variables, including clinical scores,
were independent variables. To provide a measure of predictive performance of our
model at the individual level, we calculated the concordance index, which is the
fraction of pairs where the observation with the higher survival time had a higher
probability of survival, as predicted by our model. It ranges from 0 for no concurrence
to 1 for perfect prediction. Since clinical information violates SuStaIn assumptions of
monotonicity and normative distributions in healthy controls (explained in the
Discussion), we did not include them in the SuStaIn algorithm.

Difference in treatment response across MRI-based subtypes. We explored whether
there were differences in treatment responses across the MRI-based subtypes, by
looking at the rate (or slope) of EDSS worsening in three phase 3 RCTs in progressive
MS (ORATORIO, ASCEND and OLYMPUS22,25,44) pooled together, and in three
phase 3 RCTs in RRMS (DEFINE-CONFIRM-ENDORSE, OPERA1 and OPERA2)
also merged together. We chose these trials because they were either positive
trials17,31,32 or had a subgroup that showed a trend towards a treatment response in
previous publications22,25. For the RRMS trials, we merged the arms with different
doses of the experimental drug, included the placebo arms, and excluded the active
comparator arms. We used a linear mixed-effects model in which EDSS was the
outcome variable with group, time, and group x time interaction as the independent
variables. Group was a binary variable indicating either a given subtype on treatment
or the same subtype on placebo. To adjust for repeated measures and correlated
residual errors, we added hierarchical random effects to our model, in which visits
were nested in the subject variable. We reported the difference in percentage change
of EDSS worsening between groups, which we refer to as treatment response
throughout this manuscript. We used NLME package version 3.1 and Survival
package version 2.44 inside R version 3.6.0 for statistical analysis45,46. In all the
statistical analyses in which we reported p-values, we used two-tailed tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data from patients are controlled by pharmaceutical companies (publications with this
information are listed in references in the Table 1) and therefore are not publicly available.
Request to access data should be forwarded to data controllers via the corresponding
author. Processed data can be requested by qualified investigators from the corresponding
author. Data from healthy volunteers (UK Biobank and Human Connectome Project) are
publicly available and can be requested by application through the UK Biobank and
Human Connectome Project websites (https://www.ukbiobank.ac.uk/ and https://www.
humanconnectome.org/).

Code availability
SuStaIn code is available publicly at https://github.com/ucl-pond/pySuStaIn. We used the
code at commit 54b92b154acc9d8757751edea50d1fcfab672015.
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