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Rapid advancements in high-throughput omics technologies and experimental protocols
have led to the generation of vast amounts of scale-specific biomolecular data on cancer
that now populates several online databases and resources. Cancer systems biology
models built using this data have the potential to provide specific insights into complex
multifactorial aberrations underpinning tumor initiation, development, and metastasis.
Furthermore, the annotation of these single- and multi-scale models with patient data can
additionally assist in designing personalized therapeutic interventions as well as aid in
clinical decision-making. Here, we have systematically reviewed the emergence and
evolution of (i) repositories with scale-specific and multi-scale biomolecular cancer data,
(ii) systems biology models developed using this data, (iii) associated simulation software
for the development of personalized cancer therapeutics, and (iv) translational attempts to
pipeline multi-scale panomics data for data-driven in silico clinical oncology. The review
concludes that the absence of a generic, zero-code, panomics-based multi-scale
modeling pipeline and associated software framework, impedes the development and
seamless deployment of personalized in silico multi-scale models in clinical settings.

Keywords: multi-scale cancer modeling, personalized cancer therapeutics, cancer systems biology, data-driven
oncology, in silico cancer systems oncology, predictive systems oncology
1 INTRODUCTION

In 1971, President Richard Nixon declared his euphemistic “war on cancer” through the
promulgation of the National Cancer Act (1). Five decades later, despite ground-breaking
discoveries and advancements in the field of cancer systems biology, a definitive and affordable
cure for all types of cancer still evades humankind (2). Numerous “breakthrough” treatments have
also gone on to exhibit adverse side effects (3, 4) that lower patients’ quality of life (QoL) or have
reported degrading efficacies (5). At the heart of this problem lies our limited understanding of the
bewildering multifactorial biomolecular complexity as well as patient-centricity of cancer.
November 2021 | Volume 11 | Article 7125051

https://www.frontiersin.org/articles/10.3389/fonc.2021.712505/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.712505/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.712505/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.712505/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.712505/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:safee.ullah.chaudhary@gmail.com
https://doi.org/10.3389/fonc.2021.712505
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.712505
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.712505&domain=pdf&date_stamp=2021-11-24


Gondal and Chaudhary Model-Driven Personalized Oncology
Recent advances in biomolecular cancer research have helped
factor system-level oncological manifestations into mutations
across genetic, transcriptomic, proteomic, and metabolomic
scales (6–9) that also act in concert (10, 11). Crosstalk between
multi-scale pathways comprising of these oncogenic mutations
can further exacerbate the etiology of the disease (7, 12–14). The
combination of mutational diversity and interplay between the
constituent pathways adds genetic heterogeneity and phenotypic
plasticity in cancer cells (15, 16). Hanahan andWeinberg (17, 18)
summarized this heterogeneity and plasticity into “Hallmarks
of Cancer” – a set of progressively acquired traits during the
development of cancer.

Experimental techniques such as high-throughput next-
generation sequencing, and mass spectrometry-based
proteomics are now providing specific spatiotemporal cues on
patient-specific biomolecular aberrations involved in cancer
development and growth. The voluminous high-throughput
patient data coupled with the remarkable complexity of
the disease has given impetus to data integrative in silico
cancer modeling and therapeutic evaluation approaches (19).
Specifically, scale-specific molecular insights into key regulators
underpinning each hallmark of cancer are now helping unravel
the complex dynamics of the disease (20) besides creating
avenues for personalized therapeutics (21, 22). In this review,
we will evaluate the emergence, evolution, and integration
of multiscale cancer data towards building coherent and
biologically plausible in silico models and their integrative
analysis for employment in personalized cancer treatment in
clinical settings. The review concludes by highlighting the
need of integrating and modeling multi-omics data and
associated software pipelines for employment in developing
personalized therapeutics.
2 SCALE-SPECIFIC BIOMOLECULAR
DATA AND ITS APPLICATIONS IN
CANCER

Rapid advancements in molecular biology research, particularly
in high-throughput genomics (23), transcriptomics (24), and
proteomics (25) have resulted in the generation of big data on
spatiotemporal measurements of scale-specific biomolecules
(Figure 1A) in physiological as well as pathological contexts
(26, 27). This vast and complex spatiotemporal data is expected
to exceed 40 exabytes by 2025 (28) and is currently populating
several online databases and repositories. These databases can
be broadly categorized into seven salient database sub-types:
biomolecules (29–31), pathways (32–34), networks (35–37),
cellular environment (38, 39), cell lines (40–43), histopathological
images (44–46), and mutations, and drug (47–52) databases, which
are discussed below.

2.1 Biomolecular Databases
Biomolecular and clinical data generated from large-scale omics
approaches for cancer research can be divided into four sub-
Frontiers in Oncology | www.frontiersin.org 2
categories: (i) genome, (ii) transcriptome, (iii) proteome, and
(iv) metabolome (53).

2.1.1 Genome-Scale Databases
The foremost endeavor to collect and organize large-scale
genomics data into coherent and accessible repositories led to
the establishment of GenBank in 1986 (54) (Figure 1B, Table
S1). This open-access resource now forms one of the largest
public databases for nucleotide sequences from large-scale
sequencing projects comprising over 300,000 species (55, 56).
In a salient study employing GenBank, Diez et al. (57) screened
breast and ovarian cancer families with mutations in BRCA1 and
BRCA2 genes and its distribution in the Spanish population.
Medrek et al. (58) employed microarray profile sets from
GenBank to analyze gene levels for CD163 and CD68 in
different breast cancer patient groups. The study established
the need for localization of tumor-associated macrophages as a
prognostic marker for breast cancer patients. To date, GenBank
remains a comprehensive nucleotide database; however, its data
heterogeneity poses a significant challenge in its employment in
the development of personalized cancer therapeutics. Towards
an improved data stratification and retrieval of genome-scale
data, in 2002, Hubbard et al. (59) launched the Ensembl genome
database. Ensembl provides a comprehensive resource for
human genome sequences capable of automatic annotation
and organization of large-scale sequencing data. Amongst
various genome-wide studies utilizing Ensembl, Easton et al.
(60) used this database to extract human sequence information
to identify novel breast cancer susceptibility loci. Patient-
specificity (10, 11) and mutational diversity (19) in cancer can
manifest across spatiotemporal scales. Hence, the availability of
patient-specific data for each type of cancer can furnish valuable
insights into the biomolecular foundation of the disease. In an
attempt to provide cancer type-specific mutation data, Wellcome
Trust’s Sanger Institute developed Catalogue of Somatic
Mutations in Cancer (COSMIC) (61) database. COSMIC
comprises of 10,000 somatic mutations from 66,634 clinical
samples. Schubbert et al. (62) employed COSMIC’s mutation
data to investigate Ras activity in cancers as well as
developmental disorders. The study concluded that the
duration, as well as the strength of hyperactive Ras signaling
controls the probability of tumorigenesis. Similarly, Weir et al.
(63) utilized COSMIC data on tumor-suppressor and proto-
oncogenes in the study to characterize the genome of lung
adenocarcinomas. The systematic copy-number analysis with
SNP data indicated that several lung cancer genes remain to be
elucidated and characterized.

2.1.2 Transcriptome-Scale Databases
Gene-level information can facilitate the development of
personalized cancer models; however, gene expression may
vary from cell to cell and across cancer patients. As a result,
cancer patients have divergent genetic signatures and transcript-
level information. Hence, high-throughput transcriptomic data
has the potential to provide valuable insights into the
transcriptomic complexity in cancer cells and can be useful in
investigating cell state, physiology, and relevant biological events
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(64) (Figure 1B and Table S1). Towards developing such a
transcriptional information resource, in 2000, Edgar et al. (31)
launched the Gene Expression Omnibus (GEO) initiative. GEO
acts as a tertiary resource providing coherent high-throughput
transcriptomic and functional genomics data. The platform now
hosts over 3800 datasets and is expanding exponentially. GEO
was employed by Chakraborty et al. (65) for annotation of
chemo-resistant cell line models which helped investigate
chemoresistance and glycolysis in ovarian cancers. The study
Frontiers in Oncology | www.frontiersin.org 3
identified Mitochondrial Calcium Uptake 1 (MICU1) as an
important component for cancer metabolism that influences
aerobic glycolysis and chemoresistance and can have a
potential role in cancer therapeutics. The curation of patient-
specific gene and protein expression data led to the development
of The Cancer Genome Atlas (TCGA) (66). TCGA also captures
the copy number variations and DNA methylation profiles for
different cancer subtypes. TCGA’s potential (49, 67) is well
exhibited by Leiserson et al.’s (68) pan-cancer analysis which
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FIGURE 1 | Overview of complex biomolecular regulation in cancer and scale-specific databases. (A) The complexity between genomic, transcriptomic, proteomic,
metabolomic, cell-level, and environmental levels in a cancerous cell. Four examples of biomolecular signaling pathways are listed e.g., Hedgehog, Notch, (Wingless)
Wnt, TGFb, and AKT pathway. Stimuli from the extracellular environment signal the downstream pathway activation, in the cell, towards alternating the regulations in
the proteomic, metabolomic, transcriptomic, and genomic scales, bringing out a system-level outcome in cancers. Lists (B) biomolecule (genes, transcripts, proteins,
and metabolites) databases such as GenBank, GEO, TCGA, HPP, HMDB, etc. (C) Pathways databases such as PathDB, KEGG, STRING, etc. (D) Networks
databases such as BioGRID, DIP, BIND, etc. (E) Environment databases e.g, ExoCarta, MatrixDB, MatrisomeDB, etc. (F) Cell lines databases such as CCLE, CLDB,
Cellosaurus, etc. (G) Histopathological image database, for instance, TCIA, GTEx, TMAD, etc., and (H) Mutation and drug databases such as DrugBank, KEGG
Drug, OncoKB, etc.
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helped identify 14 significantly mutated subnetworks containing
numerous genes with rare somatic mutations across many
cancers types. Davis et al. (69) further evaluated the genomic
landscape of chromophobe renal cell carcinomas (ChRCCs) to
elicit molecular patterns as clues for determining the origin of
cancer cells. To facilitate in data management across different
cancer projects as well as to ensure data uniformity towards
developing data-driven models, the International Cancer
Genome Consortium (ICGC) was launched in 2010 (70).
ICGC adopts a federated data storage architecture that enables
it to host a collection of scale-specific data from TCGA and 24
other projects (71). Burn et al. (72) estimated the distribution of
cytosine in liver tumor data using ICGC. The study reported
APOBEC3B (A3B) catalyzed deamination as a chronic source of
DNA damage in breast cancer which also explains tumor cell
evolution and heterogeneity. Supek et al. (73) compared
mutation rates between different human cancers and reported
the influence of “silent” mutations as a frequent contributor to
cancer. Numerous databases have been established to store large-
scale genomic data, however, insights from an integrated analysis
of genomic data across databases have the potential to provide
precise biomolecular cues into complex processes and evolution
in cancer cells. This was enabled by cBio Cancer Genomics Portal
(cBioPortal) (74) in 2012, with multidimensional dataset
retrieval, and exploration from multiple databases. The
platform additionally provides data visualization tools, pathway
exploration, statistical analysis, and selective data download
features for seamless utilization of large-scale genomics data
across genes, patient samples, projects, and databases (75).
Numerous studies have effectively employed cBioPortal (76–
78); in particular, Jiao et al. (79) evaluated the prognostic value
of TP53 and its correlation with EGFR mutations in advanced
non-small-cell lung cancer (NSCLC). The study established that
TP53 coupled with EGFRmutation can lead to the more accurate
prognosis of advanced NSCLC. Hou et al. (80) also used
cBioPortal to deduce targetable genotypes which are present in
young patients with lung adenocarcinomas and revealed that
young patients with lung adenocarcinoma were more likely to
harbor targetable genotype.

2.1.3 Proteome-Scale Databases
Transcriptomic data remains limited in providing a deterministic
proteome profile (81–83). Particularly, transcripts produced in a
cell can be degraded, translated inefficiently, or modified due to
post-translational modification (84, 85) resulting in no or a very
small amount of functional protein (64). This relatively low
correlation between transcriptome and proteome data was
highlighted in 2019, by Bathke et al. (86) where it was shown
that an increase in transcript synthesis cannot be directly
associated with an increase in functional response in a cell. To
facilitate functional analysis, there is a need to utilize proteomic-
level data, which can help to capture a more accurate quantitative
assessment of complex biomolecular regulation for functional
studies (Figure 1B and Table S1). Following the successful
completion of the Human Genome Project (HGP) (1998), in
2003, a group of Swedish researchers reported the Human
Protein Atlas (HPA) (87, 88) with an aim to map the entire set
Frontiers in Oncology | www.frontiersin.org 4
of human proteins in cells, tissues, and organs for normal as well
as cancerous state (89). HPA employs large-scale omics-based
technologies to localize and quantify protein expression patterns.
The database has successfully managed to host comprehensive
information on human proteins from cells, tissues, pathology,
brain, and blood region-related studies. HPA data can be
employed for various purposes such as investigating the spatial
distribution of proteins in different tissue and comparing normal
and cancerous protein expression patterns across samples, etc
(87). In a salient study employing HPA, Gámez-Pozo et al. (90)
studied the localized expression pattern of proteins to help
profile human lung cancer subtypes. The study reported a
combination of peptide-level expressions which can distinguish
between non-small lung cancer samples and normal lung cancer
in different histological subtypes. Imberg-Kazdan et al. (91)
employed HPA to identify novel regulators of androgen
receptor (AR) function in prostate cancer towards therapy.
Another significant stride towards generation of proteome-
level information came with the establishment of the Human
Proteome Project (HPP) (92, 93) in 2008 (94) by the Human
Proteome Organization (HUPO). HPP consolidated mass
spectrometry-based proteomics data, and bioinformatics
pipelines, with the aim to organize and map the entire human
proteome. To date, numerous studies have utilized HPP towards
identifying the complex protein machinery involved in cancer
cell fate outcomes (95–100). Amongst the earliest attempts, in
2001, Sebastian et al. (101) employed the HPP platform to
deduce the complex regulatory region of the human CYP19
gene (‘armatose’), one of the contributors of breast cancer
regulation. HPP project was later segmented into “biology and
disease-oriented HPP” (B/D HPP) (102) and chromosome-
centric HPP (C-HPP) (103). Specifically, Gupta et al. (104)
carried out an extensive analysis of existing experimental and
bioinformatics databases to annotate and decipher proteins
associated with glioma on chromosome 12, while, Wang et al.
(95) performed a qualitative and quantitative assessment of
human chromosome 20 genes in cancer tissue and cells using
C-HPP resources. The study revealed that several cancer-
associated proteins on chromosome 20 were tissue or cell-
type specific.

2.1.4 Metabolome-Scale Databases
Metabolic reprogramming is one of the earliest manifestations
during tumorigenesis (105) and therefore, potentiates the
usefulness of identifying metabolic biomarkers involved in
cancer onset, its prognosis, as well as treatment. Large-scale
efforts to collect metabolomics data have led to the development
of several online databases (106–108) (Figure 1B and Table S1)
including the Golm Metabolome Database (GMD) (106), in
2004. GMD provides a comprehensive resource on metabolic
profiles, customized mass spectral libraries, along spectral
information for use in metabolite identification. GMD was
employed in 2011 by Wedge et al. (109) to identify and
compare metabolic profiles in serum and plasma samples for
small-cell lung cancer patients towards determining optimal
agent for onwards analysis. The study showed that the
discriminatory ability of both serum and plasma was
November 2021 | Volume 11 | Article 712505
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equivalent. In 2013, Pasikanti et al. (110) utilized GMD to
identify biomarker metabolites present in bladder cancer. The
study proposed a potential role of kynurenine in malignancy and
therapeutic intervention in bladder cancer. To allow for large-
scale metabolic data stratification and retrieval, in 2007, Wishart
et al. published the Human Metabolome Database (HMDB)
(107, 111). HMDB contains organism-specific information on
metabolites across various biospecimens and their accompanying
environments. It is now the world’s largest metabolomics database
with around 114,100 metabolites that have been characterized and
annotated. HMDB was employed by Sugimoto et al. (112) to
identify environmental compounds specific to oral, breast, and
pancreatic cancer profiles. The study identified 57 principal
metabolites to help predict disease susceptibility, besides being
potential markers for medical screening. Agren et al. (113)
employed metabolomic data from HMDB to construct metabolic
network models for 69 human cells and 16 cancer types. The study’s
comprehensive metabolic network analysis between disease and
normal cell types has the potential to provide avenues for the
identification of cancer-specific metabolic targets for therapeutic
interventions. The HMDB supports data deposition and
dissemination, however, integrated exploratory analysis is not
available. The Metabolomics Workbench (108), reported in 2016,
provides information on metabolomics metadata and experimental
data across species, along with an integrated set of exploratory
analysis tools. The platform also acts as a resource to integrate,
deposit, track, analyze, as well as disseminate large-scale
heterogeneous metabolomics data from a variety of studies. In a
case study built using this platform, Hattori et al. (114) studied the
aberrant BCAA (branched-chain amino acids) metabolism
activation by MSI2 (Musashi2)-BCAT1 axis which they reported
to drive myeloid leukemia progression.

2.2 Biomolecular Pathway Databases
Investigations restricted to single biomolecular scales have
limited translational potential as cancer dysregulation is driven
by tightly coupled biomolecular pathways constituted by
biomolecules from a variety of spatiotemporal scales (discussed
above). Such biomolecular pathways represent organized
cascades of interactions integrating different spatiotemporal
scales towards reaching specific phenotypic cell fate outcomes.
Numerous scale-specific and multi-omics biomolecular pathway
databases now exist to help retrieve, store and analyze existing
pathway information towards understanding cellular
communication in light of complex cancer regulation (32, 34,
115). One of the earliest attempts at integrating genomics data
for pathway construction came in 1995, with the establishment
of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (32) (Figure 1C and Table S2). Over time, KEGG has
significantly expanded to include high-throughput multi-omics
data (116). As a result, the resource is divided into fifteen sub-
groups including KEGG Genome (for genome-level pathways),
KEGG Compound (for small molecules level pathways), KEGG
Gene (for gene and protein pathways), KEGG Reaction (for
biochemical reaction and metabolic pathways), etc. Li et al. (117)
used the KEGG database to perform pathway enrichment
analysis for predicting the function of circular RNA (circRNA)
Frontiers in Oncology | www.frontiersin.org 5
dysregulation in colorectal cancer (CRC). The study highlighted
circDDX17 potential role as a tumor suppressor and biomarker
for CRC. While employing KEGG, Feng et al. (118) identified
four up-regulated differentially expressed genes associated with
poor prognosis in ovarian cancer. Further, to furnish
information on pathways for high-throughput functional
analysis studies, PANTHER (protein annotation through
evolutionary relationship) database was established in 2010
(34, 115). PANTHER hosts information on ontological gene
and protein-protein interaction pathways by leveraging
GenBank and Human Gene Mutation Database (HGMD)
(119), etc. Turcan et al. (120) employed PANTHER to perform
network pathway enrichment for biological processes in
differentially expressed genes, especially to investigate IDH1
mutations in glioma hypermethylation phenotype. The study
provided a framework for understanding gliomas and the
interplay between genomic as well as epigenomic regulation in
cancer. To store metabolic pathway information in a cell, Karp
et al. (121) developed MetaCyc, a comprehensive reference
database comprising of metabolic pathways. MetaCyc is
currently available as a web-based resource with metabolic
pathway information which can be employed to investigate
metabolic reengineering in cancers, carry out biochemistry-
based studies, and explore cancer cell metabolism, etc. Miller
et al. (122) demonstrated the utility of MetaCyc database by
evaluating plasma metabolomic profiles after limonene
intervention in breast cancer patients. The study employed
MetaCyc to perform pathway-based interpretations and
revealed that such alterations were related with tissue-level
cyclin D1 expression changes.

2.3 Biomolecular Network Databases
The regulatory complexity of cancer is compounded by the
crosstalk between numerous multi-scale biomolecular pathways
resulting in the formation of complex interaction networks
(Figure 1D and Table S3). One of the earliest biomolecular
network databases, the Biomolecular Interaction Network
Database (BIND) (123) was established in 2001, with an aim
to organize biomolecular interactions between genes, transcripts,
proteins, metabolites, as well as small molecules. Chen et al. (124)
employed BIND to construct a biological interaction network
(BIN) towards investigating tyrosine kinase regulation in breast
cancer development. The study identified SLC4A7 and TOLLIP
as novel tyrosine kinase substrates which are also linked to
tumorigenesis. BIND provides a comprehensive resource of
predefined interacting pathways; however, it does not contain
‘indirect’ interaction information. In contrast, the Molecular
INTeraction database (MINT) (37), developed in 2002, curates
existing literature to develop networks with both direct as well as
indirect interactions from large-scale projects with information
from genes, transcripts, proteins, promoter regions, etc. MINT
can store data on “functional” interaction such as enzymatic
properties and modifications present in biomolecular regulatory
networks. The database was employed by Vinayagam et al. (125)
to construct a human immunodeficiency virus (HIV) network
that helped identify novel cancer genes across genomic datasets.
The Database of Interacting Proteins (DIP) (126) was developed
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to mine existing literature and experimental studies on
biomolecules and their pathways to construct protein
interaction networks (127–129). Goh et al. (127) constructed a
protein-protein interaction network for investigating liver cancer
using DIP. The study revealed that hepatocellular carcinoma
(HCC) at moderate stage is enriched in proteins that are involved
in the immune response. Similarly, Zhao et al. (128) identified
autophagic pathways in plants lectin-treated cancer cells which
are regulated by microRNAs. The study showed that plant lectin
has the potential to block sugar-containing receptor EGFR-
mediated pathways thereby leading to autophagic cell death.
To further consolidate and integrate protein interaction data
across pathways as well as organisms, the Search Tool for the
Retrieval of Interacting Genes/Proteins – STRING database was
developed in 2005 (130). STRING provides a comprehensive
text-mining and computational prediction platform which is
accessible through an intuitive web interface (131). STRING
database also provides information on interaction weights for
edges between biomolecules to show an estimated likelihood for
each interaction in the network (131). Mlecnik et al. (132)
employed STRING database to study T-cells homing factors in
colorectal cancer and demonstrated that specific chemokines and
adhesion molecules had high densities of T-cell subsets in cancer.

2.4 Cellular Environment Databases
Each pathway within a biomolecular network requires input cues
from the extracellular environment for onward downstream signal
transduction (133–135). In the case of cancer, the biomolecular
milieu constituting the tumor microenvironment (TME) acts as a
niche for tumor development, metastasis, as well as therapy
response (136) (Figure 1E and Table S4). Efforts to curate
information from the environmental factors such as metabolites,
matrisome, and other environmental compounds led to the
development of MatrixDB (38) in 2011, which hosts matrix-
based information on interactions between extracellular proteins
and polysaccharides. MatrixDB additionally links databases with
information on genes encoding extracellular proteins such as
Human Protein Atlas (137) and UniGene (138) as well as host
transcripts information. Celik et al. (139) employed MatrixDB
data to evaluate epithelial-mesenchymal transition (EMT)
inducers in the environment using nine ovarian cancer datasets
and discovered a novel biomarker, HOPX, with the potential to
drive tumor-associated stroma. To host studies on extracellular
matrix (ECM) proteins from normal as well as disease-inflicted
tissue samples, MatrisomeDB (39) was established in 2020. The
database curates 17 studies on 15 physiologically healthy murine
and human tissue as well as 6 cancer types from different stages
(including breast, colon, ovarian, and lung cancer) along with
other diseases. Levi-Galibov et al. (140) employed MatrisomeDB
to investigate the progression of chronic intestinal inflammation
in colon cancer. The study revealed the critical role of heat shock
factor 1 (HSF1) during early changes in extracellular matrix
structure as well as its composition.

2.5 Cell Line Databases
In vitro cell lines derived from cancer patients have become an
essential tool for clinical and translational research (141). These
Frontiers in Oncology | www.frontiersin.org 6
cell lines are defined based on gene expression profiles and
morphological features which have been cataloged in various
databases such as the Cancer Cell Line Encyclopedia (CCLE)
(42) (Figure 1F and Table S5). CCLE contains mutation data on
947 different human cancer cell lines coupled with
pharmacological profiles of 24 anti-cancer drugs (42) for
evaluating therapeutic effectiveness and sensitivity. Li et al.
(142) employed CCLE data to investigate cancer cell line
metabolism. The study showed that the mutated asparagine
synthetase (ASNS) hypermethylation can cause gastric as well
as hepatic cancers to sensitized asparaginase therapy. Hanniford
et al. (143) demonstrated epigenetic silencing of RNA during
invasion and metastasis in melanoma using the CCLE database.
Other cell line databases include Cell Line Data Base (CLDB)
(43), and The COSMIC Cell Lines Project (40), and
CellMinerCDB (41). The CellMinerCDB (2018) curates data
from National Cancer Institute (NCI) (144), BROAD institute
(145), Sanger institute (146), and Massachusetts General
Hospital (MGH) (147) and provides a platform for
pharmacological and genomic analysis.

2.6 Histopathological Image Databases
Additionally, histopathological image datasets derived from the
microscopic examination of tumor biopsy samples furnish
information on cellular structure, function, chemistry,
morphology, etc. Numerous histopathological image-based
databases have been developed to store, manage, and retrieve
such information (Figure 1G and Table S6). Amongst these
databases, The Cancer Imaging Archive (TCIA) (46), reported
in 2013, provides a multi-component architecture with various
types of images including region-specific (e.g., Breast), cancer-type
specific (e.g., TCGA-GBM, TCGA-BRCA), radiology, and
anatomy images (e.g., Prostate-MRI). The cancer image
collection in TCIA has been captured using a variety of
modalities including radiation treatment, X-ray, mammography,
and computed tomography (CT), etc (148). Li et al. (149)
exploited TCIA by using radiomics data in predicting the risk
for breast cancer recurrence, while Sun et al. (150) employed
image data to perform a cohort study to validate a radiomics-based
biomarker in cancer patients. The study developed a radiomic
signature for CD8 cells using the TCGA dataset for predicting the
immune phenotype of tumors and deduce clinical outcomes. In
2013, image data from TCIA was integrated with The Cancer
Digital Slide Archive (CDSA) (44). The CDSA hosts imaging as
well as histopathological data and provides more than 20,000
whole-slide images of 22 different cancer types. The whole-slide
images of individual patients present in CDSA help in linking
tumor morphology with the patient’s genomic and clinical data.
Khosravi et al. (151) performed a deep convolution study using
CDSA, to distinguish heterogeneous digital pathology images
across different types of cancers. To associate patient’s genetic
information and histology images, Genotype-Tissue Expression
(GTEx) (45) was reported in 2014, and was curated using datasets
from non-disease tissues of 1000 individuals. Patel et al. (152)
employed GTEx to investigate intratumoral heterogeneity present
in glioblastoma and concluded that glioblastoma subtype
classifiers are variably expressed in individual cells.
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2.7 Mutation and Drug Databases
Pharmacological investigations have elucidated the mechanism
as well as efficacies of numerous cancer drugs, in clinical and
preclinical studies (153, 154). Databases with drug-target
information can be employed in precision oncology towards
designing efficacious patient-centric therapeutic strategies
(Figure 1H, Table S7). These databases include DrugBank
(155), which was established in 2006 and contains information
from over 4100 drug entries, 800 FDA-approved small
molecules, and 14,000 protein or drug target sequences.
DrugBank combines drug data with drug-target information
thus enabling applications in cancer biology including in silico
drug target discovery, drug design, drug interaction prediction,
etc. In a study employing DrugBank, Augustyn et al. (156)
evaluated potential therapeutic targets of achaete-scute
homolog 1 (ASCL1) genes in lung cancers and reported unique
molecular vulnerabilities for potential therapeutics, while Han et
al. (157) determined synergistic combinations of drug targets in
K562 chronic myeloid leukemia (CML) cells including BCL2L1
and MCL1 combination. Further to evaluate drugs in light of the
patient’s genomic signature, PanDrugs (52) database was
established in 2019 and currently hosts data from 24 sources
and 56297 drug-target pairs along with 9092 unique compounds
and 4804 genes. Using PanDrugs, Fernández-Navarro et al. (158)
prioritized personalized drug treatments using PanDrugs, for T-
cell acute lymphoblastic (T-ALL) patients.

Altogether, the availability of voluminous high-resolution
biomolecular data has enabled the development of a quantitative
understanding of aberrant mechanisms underpinning hallmarks
of cancer as well as create avenues for personalized therapeutic
insights. Recently, Karimi et al. (159) systematically evaluated the
Frontiers in Oncology | www.frontiersin.org 7
current multi-omics data generation approaches, as well as their
associated analysis pipelines for employment in cancer research.
3 DATA-DRIVEN INTEGRATIVE
MODELING IN CANCER SYSTEMS
BIOLOGY

The need to prognosticate system-level outcomes in light of
oncogenic dysregulation (160, 161) has led researchers to
develop integrative data-driven computational models (162–
168). Such models can help decode emergent mechanisms
underpinning tumorigenesis as well as aid in the development
of patient-centered therapeutic strategies (162–168). These in
silico models can be broadly grouped into four salient sub-scales
as biomolecular (169–171), tumor environment (172–174), cell
level (175, 176), and multi-scale integrative cancer models (177–
179) (Figure 2).

3.1 Biomolecular-Scale Models
In silico biomolecular models of cancer can be classified into (i)
genome-scale, (ii) transcriptome-scale, (iii) proteome-scale, (iv)
metabolome-scale models.

3.1.1 Genome-Scale Models
Amongst initial attempts at developing cancer gene regulation
models, in 1987, Leppert et al. (169) reported a computational
model to study the genetic locus of familial polyposis coli and its
involvement in colonic polyposis and colorectal cancer. The
study was also validated by Mehl et al. (170) in 1991, which
further elucidated the formation and development of familial
FIGURE 2 | Evolution timeline of in silico scale-specific and multi-scale data-drive cancer models. Timeline of salient in silico scale-specific and multi-scale cancer
models, along with PubMed yearly report (1990-2020) to display the evolutionary trends seen in the development of (A) genome-scale cancer models, (B) Transcript-level
cancer models, (C) Proteome-scale models, (D) Metabolome scale models, (E) Environment-based models, (F) Cell-level models, and (G) Multi-scale cancer models.
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polyposis coli genes in colorectal cancer patients. In 2014,
Stratmann et al. (171) developed a personalized genome-scale
3D lung cancer model to study epithelial-mesenchymal
transition (EMT) by TGFb-based stimulation, while in 2016,
Margolin et al. (180) developed a blood-based diagnostic model
to help detect DNA hypermethylation of potential pan-cancer
marker ZNF154. In 2017, Jahangiri et al. (181) employed an in
silico pipeline to evaluate Staphylococcal Enterotoxin B for
DNA-based vaccine for cancer therapy. A similar genome-scale
model of DNA damage and repair was proposed by Smith et al.
(182) to evaluate proton treatment in cancer (Figure 2A).

3.1.2 Transcriptome-Scale Models
In silico models developed using transcriptomic expression data
can assist in comparing gene expression patterns in cancer for
investigating genetic heterogeneity and cancer development as
well as towards precision therapy (Figure 2B). In 2003, Huang et
al. (183) presents a mathematical model using a large-scale
transcriptional dataset of breast cancer patients to elucidate
patterns of metagenes for nodal metastases and relapses. In
another large-scale cancer transcriptomics study, 3,000 patient
samples from nine different cancer types were used to decode the
genomic evolution of cancer by Cheng et al. (184). In 2013, Chen
et al. (185) employed an in silico pipeline which helped identify
183 new tumor-associated gene candidates with the potential to
be involved in the development of hepatocellular carcinoma
(HCC), while, in 2014, Agren et al. (186) developed a
personalized transcriptomic data-based model to identify
anticancer drugs for HCC. In 2019, Béal et al. (187) reported a
logical network modeling pipeline for personalized cancer
medicine using individual breast cancer patients’ data. The
pipeline was validated in 2021 (188), using in silico
personalized logical models for melanomas and colorectal
cancers samples in response to BRAF treatments. In a similar
study conducted in 2019, Rodriguez et al. (189) developed a
mathematical model for breast cancer using transcriptional
regulation data to predict hypervariability in a large dynamic
dataset which revealed the basis of expression heterogeneity in
breast cancer.

3.1.3 Proteome-Scale Models
To capture the quantitative aspects of biomolecular regulations
and functional studies (82, 83), data-driven proteomic-based
cancer models are essential (Figure 2C). Such models can be
particularly helpful in diagnostic as well as prognostic purposes
as well as for monitoring response to treatment (82, 83). In a
study employing proteome-level information, in 2011, Baloria et
al. (190) carried out an in silico proteome-based characterization
of the human epidermal growth factor receptor 2 (HER-2) to
evaluate its immunogenicity in an in silicoDNA vaccine. Akhoon
et al. (191) simplified this approach with the development of a
new prophylactic in silico DNA vaccine using IL-12 as an
adjuvant. In 2017, Fang et al. (192) employed proteome level
data towards predicting in silico drug-target interactions for
applications in targeted cancer therapeutics, while in 2018,
Azevedo et al. (193) designed novel glycobiomarkers in bladder
cancer. Recently, in 2020, Lee et al. (194) reported an integrated
Frontiers in Oncology | www.frontiersin.org 8
proteome model of macrophage migration in a complex tumor
microenvironment. However, proteome-level models are limited
in their ability to provide a complete analysis of the biomolecules
present in a cell since they lack information on low molecular
weight biomolecular compounds such as metabolites (105).

3.1.4 Metabolome-Scale Models
Metabolic data-driven models can be especially useful in
understanding cancer cell metabolism, mitochondrial
dysfunction, metabolic pathway alteration, etc (Figure 2D). In
2007, Ma et al. (195) developed the Edinburgh HumanMetabolic
Network (EHMN) model with more than 3000 metabolic
reactions alongside 2000 metabolic genes for employment in
metabolite-related studies and functional analysis. In 2011,
Folger et al.’s (196) employed the EHMN model to propose a
large-scale flux balance analysis (FBA) model for investigating
metabolic alterations in different cancer types and for predicting
potential drug targets. In 2014, Aurich et al. (197) reported a
workflow to characterize cellular metabolic traits using
extracellular metabolic data from lymphoblastic leukemia cell
lines (Molt-4) towards investigating cancer cell metabolism.
Yurkovich et al. (198) augmented this workflow in 2017 and
reported eight biomarkers for accurately predicting quantitative
metabolite concentration in human red blood cells. Alakwaa et
al. (199) employed a mathematical model to predict the status of
Estrogen Receptor in breast cancer metabolomics dataset, while
in 2018, Azadi et al. (200) used an integrative in silico pipeline to
evaluate the anti-cancerous effects of Syzygium aromaticum
employing data from the Human Metabolome Database (107).

3.2 Tumor Environment Models
Integrative mathematical models of environmental cues and
extracellular matrix can help researchers abstract tumor
microenvironments. Such data-driven models can be used to
study angiogenesis (201), cell adhesion (202), and vasculature
(203), etc (Figure 2E). Amongst initial attempts at developing
cancer environment-based in silicomodels, in 1972, Greenpan et
al. (172) designed a solid carcinoma in silico model to evaluate
cancer cell behavior in limited diffusion settings. In 1976, the
model was expanded (173) to investigate tumor growth in
asymmetric conditions. In 1996, Chaplain developed a
mathematical model to elucidate avascular growth,
angiogenesis, and vascular growth in solid tumors (174).
Anderson and Chaplain (204), in 1998, expanded this strategy
and reported a continuous and discrete model for tumor-
induced angiogenesis. This modeling approach was further
augmented in 2005 by Anderson (202) to a hybrid
mathematical model of a solid tumor to study cellular
adhesion in tumor cell invasion. Organ-specific metastases and
associated survival ratios in small cell lung cancer patients have
been modeled and evaluated (205) using similar models.

3.3 Cell Models
To model cell population-level behavior in cancer, researchers
are increasingly developing innovative cell lines in silico models
which can complement in vivo wet-lab experiments, while
overcoming wet-lab limitations (206) (Figure 2F). Such models
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are employed to investigate cell-to-cell interactions as well as
evaluate physical features of the synthetic extracellular matrix
(ECM) (206), etc (175, 207). Amongst initial attempts at
developing in silico cell line models, in 1989, Shackney et al.
(175) proposed an in silico cancer cell model to study tumor
evolution. Results showed an association between discrete
aneuploidy peaks with the activation of growth-promoting
genes. In 2007, Aubert et al. (207) developed an in silico
glioma cell migration model and validated cell migration
preferences for homotype and heterotypic gap junctions with
experimental results. Gerlee and Nelander (176) expanded this
work, in 2012, to investigate the effect of phenotype switching in
glioblastoma growth. In conclusion, cell-based cancer models
help provide scale-specific insights into cancer, however, they
remain limited in investigating the spatiotemporal tissue
diversity and heterogeneity in cancer patients.

3.4 Multi-Scale Models
Recently, data-driven multi-scale models are becoming
increasingly popular in cancer (208) (Figure 2G). One of the
earliest attempts at developing multi-scale cancer models was in
1985 when Balding developed a mathematical model to
demonstrate tumor-induced capillary growth (201). In 2000,
Swanson et al. (209) proposed a quantitative model to
investigate glioma cells. In a similar study, Zhang et al. (210)
generated a 3D, multi-scale agent-based model of the brain to
study the role (EGFR)-mediated activation of signaling protein
phospholipase role in a cell’s decision to either proliferate or
migrate. In 2010, Wang et al. (178) also took a multi-scale agent-
based modeling approach to identify therapeutic targets in
concurrent EGFR-TGFb signaling pathway in non-small cell
lung cancer (NSCLC). Later in 2011 (179), they employed the
approach to identify critical molecular components in NSCLC.
Similarly, Perfahl et al. (211) formulated a multi-scale vascular
tumor growth model to investigate spatiotemporal regulations in
cancer and response to therapy. In 2007, Anderson et al. (212)
proposed a mathematical model for studying cancer growth,
evolution, and invasion. This model was later built upon by
Chaudhary et al. (165, 213) with a multi-scale modeling strategy
to investigate tumorigenesis induced by mitochondrial
incapacitation in cell death, in 2011. In 2017, Vavourakis et al.
(214) developed a multi-scale model to investigate tumor
angiogenesis and growth. In 2017, Norton et al. (215) used an
agent-based computational model of triple-negative breast
cancer to study the effects of migration in CCR5+ cancer cells,
stem cell proliferation, and hypoxia on the system. They later
(216) reported an agent-based and hybrid model to investigate
tumor immune microenvironment, in 2019. In the same year,
Karolak et al. (217) modeled in silico breast cancer organoid
morphologies (218) to help elucidate efficacies amongst drug
treatment based on the morphophenotypic classification.
Similarly, Berrouet et al. (219) employed a multi-scale
mathematical model to evaluate the effect of drug
concentration on monolayers and spheroid cultures.

Summarily, data-integrative computational models have now
assumed the forefront in decoding the complex biomolecular
regulations involved in cancer and are increasingly been
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employed for the development of personalized preclinical
models as well as therapeutics design (220).
4 SOFTWARE PLATFORMS FOR
MODELING IN CANCER
SYSTEMS BIOLOGY

Over the past decade, in silico modeling of cancer has gained
significant popularity in systems biology research (162–168). In
particular, data-drive computational models are now acting as an
enabling technology for precision medicine and personalized
treatment of cancer. To date, several single and multi-scale
software platforms have been reported to model biomolecules
(171, 221–228), cellular environments (229), as well as cell-level
(230), and multi-scale (231) information into coherent in silico
cancer models (Figure 3).

4.1 Biomolecular Modeling Platforms
Software platforms aimed at modeling biomolecular entities,
abstract information from published literature as well as high-
throughput technologies, and model them using a Boolean
modeling approach or a differential equations modeling strategy.

4.1.1 Boolean Modeling Software
Boolean network modeling technique was first introduced by
Kauffman (232, 233), in 1969. This approach has been widely
adopted as a tool to model gene, transcript, protein, and
metabolite regulatory networks. Numerous mathematical and
computational cancer models have been developed using this
representation (171, 221–225). To facilitate the Boolean model
development and analysis process, several platforms have been
devised (234–236) (Table S8). The applicability of these
platforms can be further categorized into qualitative or
quantitative Boolean network modeling.

4.1.1.1 Qualitative Boolean Modeling
Biomolecular qualitative Boolean models are a widely employed
approach in cancer systems biology research to cater for cases
where there is insufficient quantitative information, and/or lack
of mechanistic understanding. Thus far, numerous platforms
have been reported to help researchers develop qualitative
Boolean network models. Amongst them, FluxAnalyzer (237),
reported by Klamt et al. in 2003, was developed to undertake
metabolic pathway construction, flux optimization, topological
feature detection, flux analysis, etc. To expand the scope of the
platform and include cell signaling, gene as well as protein
regulatory networks, in 2007, Klamt et al. expanded
FluxAnalyzer and reported CellNetAnalyzer (226). Tian et al.
(238) employed CellNetAnalyzer to develop a p53 network model
for evaluating DNA damage in cancer, while Hetmanski et al.
(239) designed a MAPK-driven feedback loop in Rho-A-driven
cancer cell invasion. Although CellNetAnalyzer remains a widely
used logical modeling software, its programmability and
MATLAB dependency hinders its clinical employment for
developing personalized cancer models. Towards addressing this
challenge, in 2008, Albert et al. published BooleanNet (235),
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an open-source, freely available Boolean modeling software for
large-scale simulations of dynamic biological systems.
Saadatpoort et al. (240) employed BooleanNet’s general
asynchronous (GA) method to deduce therapeutic targets for
granular lymphocyte leukemia. Similarly, in 2008, Kachalo et al.
presented NET-SYNTHESIS (227); a platform for undertaking
network synthesis, inference, and simplification. Steinway et al.
(241) employed both BooleanNet and NET-SYNTHESIS
platforms to model epithelial-to-mesenchymal transition
(EMT) in light of TFGb cell signaling, in hepatocellular
carcinoma patients towards elucidating potential therapeutic
targets. BooleanNet was used to undertake model simulation
and NET-SYNTHESIS for carrying out network interference and
simplification. Another logical modeling platform, GIMsim
(242), published by Naldi et al., in 2009, also employed
asynchronous state transition graphs to perform qualitative
logical modeling which is especially useful for networks with
large state space. This platform was employed by Flobak et al.
(243) to map cell fate decisions in gastric adenocarcinoma cell-
line towards evaluating drug synergies for treatment purposes,
while Remy et al. (244) studied mutually exclusive and co-
occurring genetic alterations in bladder cancer. GIMsim also
employed multi-valued logical functions, useful in simulating
qualitative dynamical behavior in cancer research. However, the
platform was unable to program automatic theoretical
predictions, moreover, it only employed qualitative analysis
approaches and could not be used to accurately map cell fates
based on quantitative biomolecular expression data. Taken
together, classical qualitative Boolean modeling approaches
remain limited in developing predictive cancer models that
could leverage quantitative biomolecular expression data
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generated from next-generation proteomics and related-
sequencing projects.

4.1.1.2 Quantitative Boolean Modeling
Platforms aimed to integrate quantitative expression data from
existing literature and databases towards carrying out network
annotation and onwards analysis can be particularly useful in
developing personalized cancer models. One such platform, the
Markovian Boolean Stochastic Simulator (MaBoss), was
established by Stoll et al. (245) in 2017, for stochastic and
semi-quantitative Boolean network model development,
mutations, and drug evaluation, sensitivity analysis based on
experimental data, and eliciting model predictions. In 2019, Béal
et al. (187) employed MaBoss to develop a logical model to
evaluate breast cancer in light of individual patients’ genomic
signature for personalized cancer medicine. This model was later
expanded, in 2021, to investigate BRAF treatments in
melanomas and colorectal cancer patients (188). Similarly,
Kondratova et al. (246) used MaBoss to model an immune
checkpoint network to evaluate the synergistic effects of
combined checkpoint inhibitors in different types of cancers.
In a similar attempt at developing quantitative Boolean
networks, BoolNet (247) was developed in 2010 by Müssel and
Kestler. BoolNet allows its users to reconstruct networks from
time-series data, perform robustness and perturbation analysis
and visualize the resultant cell fates attractor. BoolNet was
employed by Steinway et al. (248) to construct a metabolic
network model towards evaluating gut microbiome in normal
and disease conditions, whereas, Cohen et al. (249) studied
tumor cell invasion and migration. BoolNet, however, lacks a
graphical user interface, and results from the analysis cannot be
FIGURE 3 | Feature-by-feature comparison of networks, environments, cell lines, and multi-scale modeling software in chronological order.
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visualized interactively, which hindered its employment. To
address this issue, Shah et al. (250), in 2018, developed an
Attractor Landscape Analysis Toolbox for Cell Fate Discovery
and Reprogramming (ATLANTIS). ATLANTIS has an intuitive
graphical user interface and interactive result visualization
feature, for ease in utilization. The platform can be employed
to perform deterministic as well as probabilistic analysis and was
validated through literature-based case studies on the yeast cell
cycle (251), breast cancer (252), and colorectal cancer (253).

4.1.2 Differential Equations Modeling Software
Boolean models have proven to be a powerful tool in modeling
complex biomolecular signaling networks, however, these
models are unable to describe continuous concentration, and
cannot be used to quantify the time-dependent behavior of
biological systems, necessitating the need to switch to
quantitative differential equations (254). As a result, numerous
stand-alone and web-based tools have been developed to build
continuous network models to help describe the temporal
evolution of biomolecules towards elucidating more accurate
cell fate outcomes from quantitative expression data (Table S8).
Amongst initial attempts at developing such software, GEPASI
(GEneral PAthway Simulator) was designed by Pedro Mendes et
al. (228), in 1993. GEPASI is a stand-alone simulator that
facilitates formulating mathematical models of biochemical
reaction networks. GEPASI can also be used to perform
parametric sensitivity analysis using an automatic pipeline that
evaluates networks in light of exhaustive combinatorial input
parameters. Ricci et al. (255) employed GEPASI to investigate
the mechanism of action of anticancer drugs, while Marıń-
Hernández et al. (256) constructed kinetic models of glycolysis
in cancer. In 2006, Hoops et al. reported a successor of GEPASI;
COPASI (COmplex PAthway SImulator) (257), a user-friendly
independent biochemical simulator that can handles larger
networks for faster simulation results, through parallel
computing. Orton et al. (258) employed COPASI to model
cancerous mutations in EGFR/ERK pathway, while cellular
senescence was evaluated by Pezze et al. (259) for targeted
therapeutic interventions. Towards establishing a user-friendly
software with an intuitive graphical user interface (GUI), another
desktop application, CellDesigner was published by Funahashi et
al. (260). CellDesigner application can be extended to include
various simulation and analysis packages through integration
with systems biology workbench (SBW) (261). In a case study
using CellDesigner, Calzone et al. (262) developed a network of
retinoblastoma protein (RB/RB1) and evaluated its influence in
cell cycle, while Grieco et al. (263) investigated the impact of
Mitogen-Activated Protein Kinase (MAPK) network on cancer
cell fate outcomes.

4.2 Cell Environment Modeling Software
To facilitate the development of environmental models that can
help investigate inter-, intra-, and extracellular interactions
between cellular network models and their dynamic
environment, several software and platforms have been
reported (229, 264). These platforms employ discrete,
continuous, and hybrid approaches to develop models of
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cellular microenvironments towards setting up specific
biological contexts such as normoxia, hypoxia, Warburg effect,
etc (Table S9). In 2014, Starruß et al. (229) published Morpheus,
a platform for modeling complex tumor microenvironment.
Morpheus leverages a cellular potts modeling approach to
integrate and stimulate cell-based biomolecular systems for
modeling intra- and extra cellular dynamics. In a case study
using Morpheus, Felix et al. (265) evaluated pancreatic ductal
adenocarcinoma’s adaptive and innate immune response levels,
while Meyer et al. (266) investigated the dynamics of biliary fluid
in the liver lobule. Morpheus is a widely employed modeling
software, however, its diffusion solver is limited in its capacity to
model large 3D domains. Towards modeling fast simulations for
larger cellular systems, the Finite Volume Method for biological
problems (BioFVM) software (264) was reported by
Ghaffarizadeh et al., in 2016. BioFVM is an efficient transport
solver for single as well as multi-cell biological problems such as
excretion, decomposition, diffusion, and consumption of
substrates, etc (267). In a case study using BioFVM, Ozik et al.
(268) evaluated tumor-immune interactions, while Wang et al.
(269) elucidated the impact of tumor-parenchyma on the
progression of liver metastasis. BioFVM, however, relies on its
users to have programming-based knowledge to develop their
models, which limits its translational potential. Towards
minimizing programming requirements, SALSA (ScAffoLd
SimulAtor) was developed by Cortesi et al. (206) in 2020.
SALSA is general-purpose software that employs a minimum
programming requirement, a significant advantage over its
predecessors. The platform has been useful in studying cellular
diffusion in 3D cultures. This recent tool was validated in 2021,
with a case study that evaluated and predicted therapeutic agents
in 3D cell cultures (270).

4.3 Cell-Level Modeling Software
Towards modeling cancer cell-specific behaviors such as cellular
adhesion, membrane transport, loss of cell polarity, etc several
software have been reported which can help develop in silico
cancer cell models (Table S10). The foremost endeavor to
develop software for cell-level modeling and simulation, led to
the establishment of E-Cell (230), in 1999. E-Cell can be
employed to model biochemical regulations and genetic
processes using biomolecular regulatory networks in cells.
Edwards et al. (271) employed E-cell to predict the metabolic
capabilities of Escherichia coli and validated the results using
existing literature, while Orton et al. (272) modeled the receptor-
tyrosine-kinase-activated MAPK pathway. This software was
expanded in 2001, with the development of Virtual Cell (V-
Cell) (273), a web-based general-purpose modeling platform. V-
Cell has an intuitive graphical and mathematical interface that
allows ease in the design and simulation of whole cells, along
with sub-cellular biomolecular networks and the external
environment. Neves et al. (274) employed V-Cell to investigate
the flow of spatial information in cAMP/PKA/B-Raf/MAPK1,2
networks, while Calebiro et al. (275) modeled cell signaling by
internalized G-protein–coupled receptors. Similarly, to increase
the efficiency in the design and modeling of synthetic regulatory
networks in cells, in 2009, Chandran et al. reported TinkerCell
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(276) with computer-aided design (CAD) functionality which
enabled faster simulation and associated analysis. The platform
employed a modular approach for constructing networks and
provides built-in features for ease in network construction,
robustness analysis, and evaluating networks using existing
databases. The evolutionary trend for TinkerCell’s platform
adaptability and flexibility is highlighted in Figure 4, which
shows a gradual shift from being a model-specific platform to a
domain modeling one. In a study employing TinkerCell, Renicke
et al. (277) constructed a generic photosensitive degron (psd)
model to investigate protein degradation and cellular function,
while Chandran et al. (278) reported computer-aided
biological circuits.

4.4 Multi-Scale Modeling Software
Multi-scale cancer modeling approaches bring together scale-
specific information towards undertaking an integrative analysis
of heterogeneous experimental data by building coherent and
biologically plausible models (279–281). Several multi-scale
modeling platforms have been reported to help develop multi-
level cancer models (231) (Table S11). Amongst these, the
REcursive Porous Agent Simulation Toolkit (Repast) (282)
published in 2003, provides a free and open-source tool for
modeling and simulating agent-based models, with high-
performance computing (HPC) capability. Repast toolkit was
employed in 2007, by Folcik et al. (283) to develop an agent-
based model which was then used to study interactions between
cells and the immune system. Similarly, Mehdizadeh et al. (284)
used Repast to model angiogenesis in porous biomaterial
scaffolds. Although Repast can be used for simulating several
types of evolutionary trends between agents, there is no
established guideline for selecting a mechanism to model such
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trends, hindering its use by naïve users. Moreover, Repast does
not have a GUI or a software development kit (SDK) interface for
implementing subcellular mechanisms e.g., gene, protein, and
metabolic networks. In contrast, CompuCell (279), published in
2004 by Izaguirre et al., provides an elaborative GUI to model
cell-scale or tissue-scale simulations by integrating biomolecular
networks, intra- and extracellular environment, and cell to
environment interactions. Mahoney et al. (285) employed
CompuCell to develop an angiogenesis-based model in cancer
for investigating novel cancer therapies. Although CompuCell
provides an intuitive framework modeling paradigm, the
platform core is not conducive to multi-scale cancer modeling.
The focus of the software is primarily multi-agent simulations
rather than multi-scale cancer modeling. This poses a significant
challenge in the utilization of the software. In 2013, CHASTE
(280) (Cancer Heart and Soft Tissue Environment) was
launched, which provides a computational simulation pipeline
for the mathematical modeling of complex multi-scale models.
Users can employ CHASTE for a wide range of problems
involving on and off-lattice modeling workflows. CHASTE has
also previously been employed to model colorectal cancer crypts.
Nonetheless, CHASTE does not have a GUI and can only be
executed by command line text commands. Furthermore, it
requires recompilation on part of the modeler to use the code
updates performed by the group. To further improve the
multi-scale modeling approach for investigating cancer, in
2013, Chaudhary et al. (281) published ELECANS (Electronic
Cancer System). ELECANS had an intuitive but rigid GUI along
with a programmable SDK besides the lack of a high-
performance simulation engine (286, 287). ELECANS was
employed to model the mitochondrial processes in cancer
towards elucidating the hidden mechanisms involved in cell
FIGURE 4 | Evolution of scale-specific and multi-scale software. Evolution of multi-scale modeling software for abstracting and simulating the spatiotemporal
biomolecular complexity. Highlighting the need for a generic, data-driven, zero-code software requirement.
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death (165). ELECANS provided a feature-rich environment for
constructing multi-scale models, however, the platform lacked a
biomolecular network integration pipeline, and also placed a
heavy programming requirement on its users. In contrast, in
2018, PhysiCell (288) was reported for 2D and 3D multi-cell off-
lattice agent-based simulations. PhysiCell is coupled with
BioFVM (264)’s finite volume method to model multi-scale
cancer systems (268). In a salient example, Wang et al. (269)
employed PhysiCell to model liver metastatic progression. In
2019, PhysiCell’s agent-based modeling features and MaBoss’s
Boolean cell signaling network feature were coupled together to
develop an integrated platform, PhysiBoss (289). As a result,
PhysiBoss provided an agent-based modeling environment to
study physical dimension and cell signaling networks in a cancer
model. In 2020, Colin et al. (290) employed PhysiBoss’s source
code to model diffusion in oocytes during prophase 1 and
meiosis 1, while Getz et al. (291) proposed a framework using
PhysiBoss to develop a multi-scale model of SARS-CoV-2
dynamics in lung tissue. Recently, in 2021, Gondal et al. (292)
reported Theatre for in silico Systems Oncology (TISON), a web-
based multi-scale “zero-code”modeling and simulation platform
for in silico oncology. TISON aims to develop single or multi-
scale models for designing personalized cancer therapeutics. To
exemplify the use case for TISON, Gondal et al. employed
TISON to model colorectal tumorigenesis in Drosophila
melanogaster ’s midgut towards evaluating efficacious
combinatorial therapies for individual colorectal cancer
patients (225).

Summarily, multi-scale modeling software has enabled the
development of biologically plausible cancer models to varying
degrees. These platforms, however, fall short of providing a
generic and high-throughput environment that could be
conveniently translated into clinical settings.
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5 PIPELINING PANOMICS DATA
TOWARDS IN SILICO CLINICAL
SYSTEMS ONCOLOGY
In silico multi-scale cancer models, annotated with patient-
specific biomolecular and clinical data, can help decode
complex mechanisms underpinning tumorigenesis and assist in
clinical decision-making. Clinically driven in silico multi-scale
cancer models simulate in vivo tumor growth and response to
therapies across biocomplexity scales, within a clinical
environment, towards evaluating efficacious treatment
combinations. To facilitate the development of multi-scale
cancer models, several large-scale program projects have been
launched (Table S12) such as Advancing Clinico-Genomic
Trials on Cancer (ACGT) (293), Clinically Oriented
Translational Cancer Multilevel Modeling (ContraCancrum)
(294), Personalized Medicine (p-medicine) (295), Transatlantic
Tumor Model Repositories (TUMOR) (296), and Computational
Horizons In Cancer (CHIC) (297), amongst others (Figure 5).
Here, we review and evaluate five salient projects for multi-scale
cancer modeling towards their clinical deployment.

5.1 ACGT Project
The ACGT project (293), launched in 2007, proposed to develop
Clinico-Genomic infrastructure for organizing clinical and
genomic data towards investigating personalized therapeutics
regimens for an individual cancer patient. The ACGT platform
provides an open-source and open-access infrastructure
designed to support the development of “oncosimulators” to
help clinicians accurately compare results from different clinical
trials and enhance their efficiency towards optimizing cancer
treatment. The ACGT framework employs molecular and
clinical data generated from different sources including whole
FIGURE 5 | Salient projects pipelining multi-scale panomics data into clinical settings – a timeline. Timeline highlighting salient project platforms for developing realistic
and clinically-driven multi-scale cancer models, along with their associated leading case studies.
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genome sequencing, histopathological, imaging, molecular, and
clinical data, etc. to develop simulators for mimicking clinical
trials. Personalized panomics data employed to develop
oncosimulators in ACGT is extracted from real patients which
enables the oncosimulators to be clinically relevant for predictive
purposes. Additionally, ACGT provides data retrieval, storage,
integrative, anonymization, and analysis as well as results
presentation capabilities. Using the platform, in 2004, a
personalized, spatiotemporal oncosimulator model of breast
cancer was developed to mimic a clinical trial based on
protocols outlined in the Trial of Principle (TOP), towards
evaluating the model response to chemotherapeutic treatment
in neoadjuvant settings (298). Similarly, in 2009, Graf et al. (299)
modeled nephroblastoma oncosimulator, a childhood cancer of
the kidney, based on a clinical trial run by the International
Society of Paediatric Oncology (SIOP) for simulating tumor
response to therapeutic regimens in clinical trials. The results
generated from the TOP and SIOP trials enabled the ACGT
oncosimulators to adapt in light of real clinical conditions and
the software to be validated against multi-scale patient data. The
focus of ACGT oncosimulators, however, is limited to existing
clinical trials for predicting efficacious treatment combinations.

5.2 The ContraCancrum Project
Towards establishing a platform for the development of
composite multi-scale models for simulating malignant tumor
models, in 2008, ContraCancrum project (294) was initiated.
ContraCancrum aimed to construct a multi-scale computational
framework for translating personalized cancer models into clinical
settings towards simulating malignant tumor development and
response to therapeutic regimens. For that, the Individualized
MediciNe Simulation Environment (IMENSE) platform (300,
301) was established, to undertake the oncosimulator
development process. The platform was employed for molecular
and clinical data storage, retrieval, integration, and analysis.
Oncosimulators, developed under the ContraCancrum project,
employ patient data across biologically and clinically relevant
scales including molecular, environmental, cell, and tissues level.
These oncosimulators can be used to optimize personalized cancer
therapeutics for assisting clinician decision-making process. To
date, several oncosimulators have been reported, under the
ContraCancrum project (27, 294, 299, 301–305). In particular,
the initial validation of the ContraCancrum workflow was
performed using two case studies; glioblastoma multiforme
(GBM) (294, 305) and non-small cell lung cancer (NSCLC)
(294, 304). In 2010, Folarin and Stamatakos (306) designed a
glioblastoma oncosimulator using personalized molecular patient
data to evaluate treatment response under the effect of a
chemotherapeutic drug (temozolomide) (300). Similarly,
Roniotis et al. (305) developed a multi-scale finite elements
workflow to model glioblastoma growth, while Giatili et al.
(307) outlined explicit boundary condition treatment in
glioblastoma using an in silico tumor growth model. The results
from the case studies were validated by comparing in silico
prediction with pre- and post-operative imaging and clinical
data (294, 302). Moreover, The ContraCancrum project hosts
more than 100 lung patients’ tumor and blood samples (294). This
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data is employed to develop clinically validated in silicomultilevel
cancer models for NSCLC using patient-specific data (304). In
2010, using a biochemical oncosimulator, Wan et al. (304)
investigated the binding affinities for AEE788 and Gefitinib
tyrosine kinase inhibitor against mutated epidermal growth
factor receptor (EGFR) for NSCLC treatment. Similarly, Wang
et al. (308) developed a 2D agent-based NSCLC model to
investigate proliferation markers and evaluated ERK as a
suitable target for targeted therapy. Although ContraCancrum’s
project has created numerous avenues for multilevel cancer model
development, the platform is limited to only specific types of
cancer for which data is internally available on the platform.

5.3 p-Medicine Project
Towards improving clinical deployment capabilities of
oncosimulators, another pilot project: the personalized
medicine (p-medicine) project was launched in 2011 (295).
The main aim of p-medicine was to create biomedical tools
facilitating translation of current medicine to P5 medicine
(predictive, personalized, preventive, participatory, and psycho-
cognitive) (309). For that, the p-medicine portal provides a web-
based environment that hosts specifically-purpose tools for
personalized panomics data integration, management, and
model development. The portal has an intuitive graphical user
interface (GUI) with an integrated workbench application for
integrating information from clinical practices, histopathological
imaging, treatment, and omics data, etc. Computational models
developed under p-medicine workflow, are quantitatively
adapted to clinical settings since they are derived using real
multi-scale data. Several multi-scale cancer simulation models
(oncosimulators) (295, 309) have been devised, using the p-
medicine workflow. Amongst these, in 2012, Georgiadi et al.
(310) developed a four-dimensional nephroblastoma treatment
model and evaluated its employment in clinical decisions
making. Towards evaluating personalized therapeutic
combinations, in 2014, Blazewicz et al. (311) reported a p-
medicine parallelized oncosimulator which evaluated
nephroblastoma tumor response to therapy. The parallelization
enhanced model usability and accuracy for eventual translation
into clinical settings for supporting clinical decisions. In 2016,
Argyri et al. (312) developed a breast cancer oncosimulator to
evaluate vascular tumor growth in light of single-agent
bevacizumab therapy (anti-angiogenic treatment), while in
2014, Stamatakos et al. (313) evaluated breast cancer treatment
under an anthracycline drug for chemotherapy (epirubicin). In
2012, Ouzounoglou et al. (314) designed a personalized acute
lymphoblastic leukemia (ALL) oncosimulator for evaluating the
efficacy of prednisolone (a steroid medication). This study was
further augmented, in 2015, by Kolokotroni et al. (315) to
investigate the potential cytotoxic side effects of prednisolone.
Later in 2017, Ouzounoglou et al. (316) expanded the ALL
oncosimulator model to a hybrid oncosimulator for predicting
pre-phase treatments for ALL patients. The validation of these
models was undertaken using clinical trial data in pre and post-
treatment (317). Although p-medicine presents a state-of-the-art
in silico multi-scale cancer modeling environment, the project is
limited in its application for determining individual biomarkers
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for potential novel therapy identification. Moreover, the project
is limited to its niche set of tools and models that cannot be
integrated with other similar model repositories and platforms.

5.4 TUMOR Project
In 2012, a transatlantic USA-EU partnership was initiated with the
launch of Transatlantic Tumor Model Repositories (TUMOR)
(296). TUMOR provides an integrated, interoperable transatlantic
research environment for developing a clinically driven cancer
model repository. The repository aimed to integrate
computational cancer models developed by different research
groups. TUMOR’s transatlantic aim was to couple models from
ACGT and ContraCancrum projects with those at the Center for
the Development of a Virtual Tumor (CViT) (318) as well as other
relevant centers. TUMOR is predicted to serve as an international
clinical translation, interoperable and validation platform for in
silico oncology hosting multi-scale cancer models from different
cancer model repositories and platforms such as E-Cell (230),
CellML (319), FieldML (320), and BioModels (35, 321). To
support model data interoperability between platforms,
TumorML (Tumor model repositories Markup Language) (321)
was developed towards facilitating inter-data operability in the
TUMOR project. The TUMOR environment also offers a wide
range of additional services supporting predictive oncology and
individualized optimization of cancer treatment. For example, the
platform allows remote access of predictive cancer models in
hospitals and to clinicians for the development of quantitative
cancer research and personalized cancer therapy model. TUMOR
environment also incorporates deterministic as well as stochastic
models through COPASI simulator (257). An automatic
validation pipeline is also embedded for the execution and
deployment of these models in clinical settings (296). TUMOR’s
ability to couple and integrate models from different scales,
approaches, and repositories towards increasing model accuracy
in predictive oncology was exemplified with Wang et al.’s (322)
NSCLC model. In 2007, Wang et al. developed a 2D multi-scale
NSCLC model for evaluating tumor expansion dynamics in
NSCLC patients, in CViT. This model was exported in
TumorML and made available in the TUMOR repository to
help evaluate growth factor influence in aggressive cancer (321).
Similarly, in 2014 Sakkalis et al. (323) employed the TUMOR
platform to interlink and couple three independent glioblastoma-
specific cancer models (EGFR signaling (324), cancer metabolism
(325), Oncosimulator (323), reported by different research groups.
The resultant model was used to investigate the impact of
radiation and temozolomide (chemotherapy) on glioblastoma
multiforme to evaluate treatment effectiveness.

5.5 CHIC Project
Another transatlantic project Computational Horizons In Cancer
(CHIC) (297) launched in 2013, aimed to provide an
oncosimulator modeling platform for in silico oncology. CHIC
was initiated to develop and implement predictive oncology and
individualized multi-scale cancer modeling tools towards assisting
quantitative cancer research and personalized cancer therapy. The
workflow and tools established under the ambient of the CHIC
project allowed the development of robust, interoperable, and
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collaborative in silico models in cancer and normal conditions.
The CHIC project also proposed a pipeline to translate the model
towards supporting clinicians to make optimal personalized
treatment plans for individual patients. To this end, several
models are created using CHIC such as non-small cell
lung cancer (326), glioblastoma (327), leukemia model (328),
etc. These models furnish a quantitative understanding of
tumorigenesis towards providing avenues for promoting
individual cancer patient treatment combinations. One such
model reported by Kolokotroni et al. (326) evaluated the efficacy
of cisplatin-based therapy for NSCLC patients using in silicomulti-
scale cancer model. While, in 2015, Antonopoulos and Stamatakos
(327) modeled the infiltration of glioblastoma cells in normal brain
regions using a novel treatment. In 2017, Stamatakos and Giatili
(329) extended glioblastoma oncosimulator for modeling tumor
growth using reaction-diffusion numerical handling based on
multi-scale panomics data. They further proposed a clinical
pipeline to translate the model into clinical settings towards
supporting clinicians to make optimal personalized treatment
plans for individual patients. Ouzounoglou et al. (328) developed
an in silico multi-scale leukemia oncosimulator model towards
modeling deregulations in the G1/S pathway to investigate the
altered function of retinoblastoma in ALL patients. However, a
clinical translation of these models is currently in the works (297).
6 DISCUSSION

In this work, we have evaluated the use of data-driven multi-scale
cancer models in deciphering complex biomolecular
underpinnings in cancer research towards developing
personalized therapeutics interventions for clinical decision-
making. Specifically, we have discussed the chronological
evolution of online cancer data repositories that host high-
resolution datasets from multiple spatiotemporal scales. Next,
we evaluate how this data drives single- and multi-scale systems
biology models towards decoding complex cancer regulation in
patients. We then track the development of various modeling
software and associated applications in enhancing the
translational role of cancer systems biology models in clinics.

We conclude that the contemporary multi-scale modeling
software line-up remains limited in their clinical employment due
to the lack of a generic, zero-code, panomic-based framework for
translating research models into clinical settings. Such a framework
would help annotate in silico cancer models developed using single
and multi-scale databases (45, 61, 330–334). The framework should
also provide an environment for developing the extra-cellular
matrix of a cancer cell which can then be integrated into cellular
models. Existing environment (38, 39) and cell line databases (41–
43) need to be integrated to design environmental models along
with biologically plausible cell line structures. These cell lines could
then be assembled into three-dimensional geometries to create
multi-scale in silico organoids. The pipeline should also furnish
capabilities such as a convenient import workflow for clinical data
integration through histopathological image data repositories (44–
46) for designing biologically accurate organoid structures based on
each cancer patient’s underlying cellular morphology. Once the
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personalized multi-scale model has been constructed, the pipeline
would allow investigation into the temporal evolution of the multi-
scale organoid under personalized inputs and user-designed
biomolecular entities. Data generated from the multi-scale model
simulation can be analyzed to elicit biomolecular cues for each
cancer patient as well as determine its role. Due to the heterogeneity
and complexity of biomolecular data a coherent panomics-based
pipeline can be challenging to develop and will require a
collaborative effort by various research groups, through close
collaborations and data standardization.

Taken together, a translational in silico systems oncology
pipeline is the need of the hour and will help develop and deliver
personalized treatments of cancer as well as substantively inform
clinical decision-making processes.
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