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Abstract

Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental
risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1,
CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single
nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue
from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1
expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more
advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was
associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where
elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak
tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We
failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of
rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was
associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely
ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.
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Introduction

Late onset Alzheimer’s disease (LOAD) is the most common

form of dementia. AD is pathologically defined by extensive

neuronal loss and the accumulation of extracellular amyloid

plaques and intracellular neurofibrillary tangles in the brain. While

the familial form of AD is associated with heritable mutations in

the APP, PSEN1, and PSEN2 genes, LOAD onset and progression

appears to be influenced by complex interactions between genetic

and environmental risk factors. Apolipoprotein e4 (APOE4) is the

strongest genetic risk factor for LOAD [1–4] but only accounts for

10–20% of LOAD risk suggesting that susceptibility to LOAD

involves additional genetic and environmental risk factors.

In recent efforts to identify additional genetic risk factors for

LOAD, large-scale genome-wide association studies (GWAS) have

identified single nucleotide polymorphisms (SNP) in 10 genes:

ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A,

MS4A4E, and PICALM [5–10]. These genes fall into several

functional pathways that are affected in AD: immune response

(CLU, CR1, ABCA7, MS4A family, CD33, and EPHA1), cholesterol

metabolism (CLU and ABCA7), and synaptic function (PICALM,

BIN1, CD33, CD2AP, and EPHA1).

Despite the identification of numerous SNPs that occur in genes

that function in pathways relevant to AD, we still know little of the

specific functional impact of the LOAD GWAS SNPs and the

specific role of these genes in AD. Thus, we sought to measure the

influence of GWAS SNPs on gene expression in a cohort of AD

cases and age-matched, cognitively normal control brains. We

found that ABCA7, BIN1, CD33, CLU, CR1, and MS4A6A

expression are associated with clinical and neuropathological

measures of AD. The GWAS SNPs, however, were not associated

with gene expression. Thus, we found that the expression patterns

of some GWAS genes are altered in AD brains.

Materials and Methods

Subjects
Parietal lobes from European American, autopsy-confirmed AD

(N = 73) and age-matched, cognitively normal control (N = 39)

brains were obtained from the Charles F. and Joanne Knight

Alzheimer’s Disease Research Center (Table 1). AD pathology was

measured using Braak and Braak staging [11,12]. Clinical

dementia rating (CDR) is a clinical measure of dementia, which

incorporates six domains of cognitive and functional abilities:

memory, orientation, problem solving, community involvement,

home, and personal care [13].

The Washington University IRB reviewed the Knight ADRC

Neuropathology Core (from whom the brains were obtained)

operating protocol as well as this specific study and determined it

was exempt from approval. In the state of Missouri, individuals

can give prospective consent for autopsy. Our participants provide

this consent by signing the hospital’s autopsy form. If the
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participant does not provide future consent before death the

DPOA or next of kin provide it after death. All data were analyzed

anonymously.

RNA Extraction
RNA was extracted from brain tissue with an RNeasy kit

(Qiagen) according to the manufacture’s protocol. Extracted RNA

(10ug) was converted to cDNA by PCR using the High-Capacity

cDNA Reverse Transcriptase kit (ABI). RNA integrity (RIN) was

measured in an Agilent Bioanalyzer with an Agilent RNA Pico Kit

(Table S1).

Real Time Reactions
Gene expression was analyzed by real-time PCR using an ABI-

7900 real-time PCR system. Taqman real-time PCR assays were

utilized to quantify expression for the following genes: ABCA7

(ABI: Hs01105094_m1), AIF1 (ABI: Hs00610419_g1), BIN1 (ABI:

Hs00184913_m1), BIN1n (ABI : Hs01120896_m1), CD2AP (ABI:

Hs00961451_m1), CD33 (ABI: Hs00233544_m1), CLU1 (ABI:

Hs00156548_m1), CLU2 (ABI: Hs00971653_m1), CR1 (ABI:

Hs00559342_m1), EPHA1 (ABI: Hs00178313_m1), GAPDH

(ABI: Hs02758991_g1 (VIC) and Hs99999905_m1 (FAM)), GFAP

(ABI: Hs00909233_m1), MAP2 (ABI: Hs00258900_m1), MS4A6A

(ABI: Hs00223521_m1), PICALM (ABI: Hs00200318_m1). BIN1n

is a probe specific to a neuronal isoform of BIN1. CLU1 is a probe

specific to exons 3–4 in CLU, and CLU2 is a probe specific to exons

4–5 in CLU. Samples were run in triplicate with replicate samples

analyzed in each plate to control for plate-to-plate variability. To

avoid amplification interference, expression assays were run in

separate wells from the housekeeping gene GAPDH.

Real-time data were analyzed by the comparative CT method

[14]. Average CT values for each sample were normalized to the

average CT values for the housekeeping gene GAPDH (Figure S1).

The resulting value was then corrected for assay efficiency.

Samples with a standard error of 20% or less were subsequently

analyzed. GAPDH expression was highly correlated with PPIA

expression, an additional endogenous housekeeping gene (Figure

S2); thus, all subsequent analyses used GAPDH expression as a

control.

Genotyping
Genomic DNA was extracted from the parietal lobe of AD and

cognitively normal control brains using the DNeasy Blood and

Tissue kit (Qiagen). SNPs were genotyped using Kaspar and

Taqman genotyping assays. Kaspar assays were used for the

following SNPs: rs11767557 (EPHA1), rs59335482 (BIN1)

rs9349407 (CD2AP), rs38654444 (CD33), rs670173 (CR1). Taqman

assays were used for the following SNPs: rs3764650 (ABCA7),

rs744373 (BIN1), rs7982 (CLU), rs3818361 (CR1), rs610932

(MS4A6A), rs670139 (MS4A4E), rs3851179 (PICALM). SNPs were

analyzed with a call rate of 95% or higher.

Statistical Analysis
Relative gene expression values were log transformed to achieve

a normal distribution (Figure S3). To identify covariates that

influence the expression of each gene, a stepwise discriminant

analysis was performed using CDR, age, gender, disease status,

PMI (post mortem interval), RIN (RNA integrity number), and

APOE genotype (Table S2). After applying the appropriate

covariates to the model, analysis of covariance (ANCOVA) was

used to test for association between genotypes and gene

expression. SNPs were tested using an additive model. All analyses

were performed using statistical analysis software (SAS).

Replication Dataset
The replication dataset was obtained from Myers et al [15].

Brains were obtained from National Institute on Aging Alzhei-

mer’s Centers and the Miami Brain Bank. The 193 brains came

from 18 sites and were composed of 20% frontal lobe, 70%

temporal lobe, and 1% parietal lobe. The sample was 46% female

with a mean age of 81 (range 65–100) and an average post-

mortem interval of 10 hours. Expression levels were measured on

an Illumina Human Refseq-8 Expression Bead Chip System. To

analyze expression levels, residual values were used that were log

transformed and incorporate site, brain region, post-mortem

interval, age, APOE genotype, and hybridization date as covari-

ates.

Results

Recent large-scale LOAD GWAS have identified SNPs in

ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A,

MS4A4E, and PICALM [5–10]. To determine if gene expression is

altered in AD, mRNA levels for each gene were measured by real-

time PCR in the parietal lobe of AD case and age-matched,

cognitively normal, control brains. All gene expression values were

normalized to GAPDH, a housekeeping gene that accounts for total

cell number. Because AD brains are characterized by neuronal

loss, reactive gliosis, and microglial activation, we also corrected

gene expression levels for specific subpopulations of cells (neurons

[MAP2], microglia [AIF1], and astrocytes [GFAP]) to determine if

there were cell specific effects on gene expression. ABCA7

expression was associated with CDR (p = 0.0304), where higher

expression levels are correlated with elevated CDR (Table 2).

CDR scores increase with cognitive and functional decline [13].

This association remained significant after correcting for subpop-

ulations of cells (Table 2). After correcting expression for neuronal

number, BIN1 expression was associated with age at onset

(p = 0.0407) and disease duration (p = 0.0407), where higher

expression levels are correlated with later age at onset and shorter

disease duration (Table 2). The expression of the neuronal isoform

of BIN1 (BIN1n) was also associated with disease duration after

correcting for total, neuronal, and microglial cell populations

(Table 2). Correcting expression levels for neuronal and microglial

cell populations produced significant associations between disease

Table 1. Summary of brain samples.

Sample N Age (yrs)* Male (%) ApoE4+ (%) Braak Tangle Score* Braak Amyloid Score*

Case 73 8767 42 41 4.661.6 2.760.8

Control 39 8669 44 23 2.661.3 1.661.2

*Mean 6 SD.
doi:10.1371/journal.pone.0050976.t001
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status and CDR with CD33 and CR1 expression (Table 2).

Correcting CLU expression levels for neuronal number resulted in

the association of CLU expression with disease status after

correcting for neuronal cell populations (p = 0.0159) (Table 2).

CLU is alternatively spliced into two isoforms [16]. CLU isoforms

containing exon 5 (CLU1) produced similar association patterns

after correcting for neuronal and microglia cell populations

(Table 2). Additionally, MS4A6A expression levels were weakly

associated with Braak tangle and Braak plaque scores (p = 0.0564

and p = 0.0559, respectively), where higher expression levels are

correlated with higher Braak scores (Table 2). Higher Braak scores

are indicative of more extensive tau and amyloid pathology in the

brain [11,12]. The association between MS4A6A expression and

Braak tangle and Braak plaque scores was slightly stronger after

correcting for neuronal expression (p = 0.0437 and 0.0215,

respectively; Table 2). Accounting for microglia number revealed

an association between MS4A6A expression and CDR (p = 0.0311)

and Braak tangle score (p = 0.0453). BIN1, CD2AP, EPHA1, and

PICALM expression levels, however, were not associated with AD

status or AD pathology (Table 2). Together, we demonstrate that

in the absence of strong statistical associations between gene

expression and clinical/neuropathological AD outcomes, account-

ing for subpopulations of cells reveals additional gene expression

effects that are likely related to gene function and/or AD-specific

cell loss.

The top LOAD risk genes fall into three functional categories:

immune response (CLU, CR1, ABCA7, MS4A, CD33, and EPHA1),

cholesterol metabolism (CLU and ABCA7), and synaptic function

(PICALM, BIN1, CD33, CD2AP, and EPHA1). We used the

expression data for these genes to test whether expression levels of

genes in a similar functional class are correlated. Expression of

CD33 and MS4A6A, both of which function in immune response,

were highly correlated (Figure 1A). Furthermore, expression of

CD33 and MS4A6A were highly correlated with AIF1 expression, a

marker for microglia, the immune cell of the brain (Figure 1B–C).

Expression of genes related to synaptic function, BIN1, BIN1n,

CD2AP, and PICALM, were highly correlated (Figure 1D–G). BIN1

and PICALM expression were also highly correlated with GFAP

expression, an astrocytic marker (Figure 1H–I). ABCA7 expression,

involved in immune response and cholesterol metabolism, was

highly correlated with BIN1 and CD2AP expression, which are

involved in synaptic function (Figure 1J–K). Together, these results

demonstrate that genes that fall into the same functional category

are related at the RNA level. Thus, their dysfunction may be

linked in AD.

To determine if the LOAD GWAS SNPs influence gene

expression, we analyzed the association of SNP genotype with

gene expression using an ANCOVA and testing for association

with an additive model, the model utilized when originally

reporting association between these SNPs and risk for AD [5–10].

We failed to detect an association between GWAS SNPs and cis-

acting expression quantitative trait loci (eQTL) after correcting for

the total cell population (Table 3) or specific cell types (Table S3).

LOAD GWAS SNPs were identified based on their association

with disease status. To determine if these SNPs contribute to AD

pathology, independent of gene expression, we analyzed the

association of each SNP with clinical (disease status, age at onset,

disease duration, and CDR) and neuropathological (Braak tangle

and Braak plaque score) measures of AD. The minor allele of

rs3764650 in ABCA7 was associated with a later age at onset and

shorter disease course (p = 0.0040, p = 0.0040, respectively;

Table 4; Figure 2). The minor allele of rs670139 in MS4A6E

was associated with Braak tangle and Braak plaque score

(p = 0.0411, p = 0.0581, respectively; Table 4). We failed to detect

an association between the remaining GWAS SNPs and the

clinical/neuropathological measures of AD (Table 4).

To replicate our findings, we analyzed a publically available AD

dataset [15], in which RNA was measured by the Illumina Human

Refseq-8 Expression Bead Chip System. Of the nine genes

analyzed in our cohort, only five survived quality control measures

in the replication dataset: ABCA7, BIN1, CLU, MS4A6A, and

PICALM. We analyzed residual expression levels for association

with disease status. MS4A6A and CLU expression levels were

significantly associated with disease status (p = 0.0346 and

p = 0.0334, respectively), where MS4A6A and CLU expression

was up regulated in the AD brains compared with controls

(Table 5). BIN1 expression levels were marginally associated with

disease status (p = 0.0540), where expression was also up regulated

in AD brains compared with controls (Table 5).

Discussion

AD is the most common form of dementia. AD etiology is

influenced by complex interactions between genetic and environ-

mental risk factors. APOE4 is the strongest risk factor for LOAD;

however, variation in APOE accounts for only 10–20% of LOAD

risk, suggesting that additional risk genes exist for LOAD. Recent

LOAD GWAS genes have been identified that are involved in

cholesterol metabolism, synaptic function, and immune response.

Yet, the functional impact of these genes in LOAD remains to be

determined. In this study, we measured the influence of LOAD

GWAS SNPs and gene expression levels on clinical and

neuropathological measures of AD in parietal brain tissue from

AD cases and cognitively normal individuals. ABCA7, BIN1, CD33,

CLU, and CR1 expression levels were associated with clinical

measures of AD (disease status, age at onset, disease duration,

and/or CDR), and MS4A6A expression levels were associated with

neuropathological measures of AD (Braak tangle and Braak

plaque score). We failed to detect an association between GWAS

SNPs and gene expression levels. We found that the minor allele of

rs3764650 in ABCA7 was associated with clinical measures of AD

(age at onset and disease duration), and the minor allele of

rs670139 in MS4A6E is associated with neuropathological (Braak

tangle and Braak plaque score) measures of AD. Together, these

findings demonstrate that ABCA7, BIN1, CD33, CLU, CR1, and the

MS4A gene family are affected at the mRNA level in AD brains.

ABCA7, BIN1, CD33, CLU Gene Family Expression are
Marginally Associated with AD Phenotypes, CR1, and
MS4A

In this study, we found that ABCA7 expression levels are

significantly associated with CDR, with higher expression levels of

this gene being correlated with more extensive cognitive decline.

We also demonstrated that the minor allele of rs3764650 in

ABCA7 was associated with age at onset and disease duration,

where the minor allele was associated with later age at onset and

shorter disease duration. ABCA7 is an ATP-binding cassette

transporter protein [17–19]. ABCA7 transports xenobiotics,

metals, inorganic ions, carbohydrates, vitamins, amino acids,

peptides, and lipids [20–23]. ABCA7 is highly expressed in the CA

region of the hippocampus [24], where microglia express the

protein at levels ten times greater than is observed in neurons [25].

ABCA7 has been predicted to stimulate the cellular cholesterol

efflux to a lipid-free acceptor. ABCA7 may also play a role in

phagocytosis [26].

BIN1 and the neuron specific BIN1 isoform (BIN1n) expression

levels were associated with clinical measures of AD, where

elevated expression was associated with later age at onset and

Expression of Novel AD Risk Genes in Brain Tissue
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Table 2. Gene expression is associated with AD pathology.

Gene Cell Type Status Age at Onset Disease Duration CDR Braak Tangle Score Braak Plaque Score

P value Beta P value Beta P value Beta P value Beta P value Beta P value Beta

ABCA7 GAPDH 0.2154 0.19 0.5824 0.01 0.5824 20.01 0.0304 0.12 0.2052 0.06 0.3044 0.09

MAP2 0.1820 0.41 0.4067 20.01 0.5236 20.01 0.0483 0.12 0.0247 0.11 0.0583 0.21

AIF1 0.1207 0.38 0.7996 0.01 0.7996 20.01 0.0260 0.19 0.2371 0.07 0.7743 0.04

GFAP 0.8641 0.03 0.7867 20.01 0.5577 0.02 0.0324 0.15 0.2957 0.05 0.9937 0.01

BIN1 GAPDH 0.3490 0.15 0.1006 0.04 0.1006 20.04 0.3620 20.05 0.3505 20.04 0.5084 0.06

MAP2 0.1146 0.35 0.0407 0.06 0.0407 20.06 0.3587 20.07 0.9638 0.01 0.2273 0.17

AIF1 0.2104 0.3 0.1638 0.05 0.1638 20.05 0.9481 20.01 0.5857 20.04 0.9815 0.01

GFAP 0.7398 20.05 0.4874 0.01 0.7305 20.01 0.4793 20.04 0.3235 20.04 0.9436 20.01

BIN1n GAPDH 0.3886 20.19 0.4042 0.01 0.0111 20.08 0.2006 20.10 0.4142 0.05 0.1287 0.16

MAP2 0.8622 0.04 0.2208 0.02 0.0061 20.09 0.2474 20.1 0.1524 0.09 0.0194 0.28

AIF1 0.9806 20.01 0.0368 0.08 0.0368 20.08 0.7200 20.04 0.5563 0.04 0.4315 0.11

GFAP 0.0915 20.38 0.1047 0.03 0.0861 20.05 0.2004 20.11 0.6392 0.03 0.5061 0.08

CD2AP GAPDH 0.8737 0.02 0.9658 20.01 0.9658 0.01 0.5370 20.03 0.2564 20.04 0.9958 0.01

MAP2 0.2703 0.2 0.9181 20.01 0.3334 20.02 0.4715 20.05 0.9073 20.01 0.3219 0.12

AIF1 0.4028 0.17 0.8332 0.01 0.8332 20.01 0.7965 0.02 0.4525 20.04 0.6573 20.05

GFAP 0.2235 20.18 0.5119 20.01 0.1542 0.03 0.7290 20.02 0.1924 20.05 0.4547 20.07

CD33 GAPDH 0.6291 0.06 0.5261 0.01 0.4950 0.01 0.4612 0.04 0.7889 20.01 0.7049 0.02

MAP2 0.0431 0.4 0.3260 0.01 0.9951 0.01 0.1730 0.1 0.2093 0.07 0.0753 0.21

AIF1 0.0174 0.27 0.9665 20.01 0.9665 0.01 0.0002 0.15 0.3337 0.03 0.9328 20.01

GFAP 0.3917 20.14 0.0889 20.04 0.0889 0.04 0.4222 0.05 0.8155 20.01 0.6516 20.04

CLU1 GAPDH 0.3105 0.09 0.7466 20.01 0.6191 20.01 0.3882 0.03 0.8932 20.01 0.8379 0.01

MAP2 0.0159 0.35 0.5680 0.01 0.2185 20.02 0.4023 0.05 0.2740 0.04 0.0766 0.16

AIF1 0.1051 0.27 0.8649 0.01 0.8649 20.01 0.1269 0.09 0.9266 0.01 0.6945 20.04

GFAP 0.4559 20.09 0.9527 0.01 0.1758 0.02 0.6251 0.02 0.4575 20.03 0.3505 20.07

CLU2 GAPDH 0.0664 0.15 0.7600 20.01 0.6676 20.01 0.1229 0.05 0.3793 0.02 0.5189 0.03

MAP2 0.0036 0.42 0.4485 0.01 0.2147 20.02 0.2129 0.07 0.1224 0.06 0.0290 0.19

AIF1 0.0500 0.33 0.9039 0.01 0.9039 20.01 0.0689 0.11 0.5898 0.02 0.9498 20.01

GFAP 0.8104 20.03 0.8314 0.01 0.1798 0.03 0.3934 0.04 0.8464 20.01 0.5848 20.04

CR1 GAPDH 0.2452 0.25 0.9715 20.01 0.8680 0.01 0.6467 0.03 0.2183 0.07 0.1598 0.17

MAP2 0.0252 0.59 0.9118 0.01 0.9420 20.01 0.2813 0.11 0.0551 0.14 0.0553 0.33

AIF1 0.0303 0.51 0.4042 20.02 0.4042 0.02 0.0444 0.17 0.0608 0.11 0.3737 0.13

GFAP 0.7829 0.05 0.8507 0.01 0.2024 0.04 0.5759 0.04 0.2764 0.05 0.3066 0.11

EPHA1 GAPDH 0.0782 20.28 0.2299 20.01 0.9897 0.01 0.2992 20.06 0.3080 20.04 0.1947 20.11

MAP2 0.8657 0.03 0.4988 20.01 0.6580 20.01 0.7552 20.02 0.6829 0.02 0.8267 0.02

AIF1 0.9763 0.01 0.8337 20.01 0.8337 0.01 0.5315 0.05 0.9332 20.01 0.2446 20.15

GFAP 0.0596 0.45 0.8758 20.01 0.2716 0.03 0.5927 20.05 0.5900 20.03 0.1937 20.18

MS4A6A GAPDH 0.7251 0.06 0.5184 0.01 0.7308 0.01 0.5719 0.04 0.0564 0.09 0.0559 0.19

MAP2 0.1844 0.29 0.2252 0.02 0.8651 20.01 0.5779 0.04 0.0437 0.12 0.0215 0.29

AIF1 0.1332 0.25 0.7390 0.01 0.7390 20.01 0.0311 0.13 0.0453 0.09 0.1969 0.13

GFAP 0.4191 20.15 0.2453 20.03 0.2453 0.03 0.5131 0.05 0.1440 0.07 0.1891 0.12

PICALM GAPDH 0.4682 0.10 0.1283 0.03 0.1283 20.03 0.9328 20.01 0.7067 20.01 0.4494 0.06

MAP2 0.1351 0.29 0.4987 0.01 0.0614 20.05 0.8770 20.01 0.5206 0.04 0.1720 0.17

AIF1 0.2380 0.26 0.2692 0.04 0.2692 20.04 0.5084 0.05 0.9453 20.01 0.9737 0.01

GFAP 0.4669 20.11 0.9864 0.01 0.9252 20.01 0.8801 0.01 0.6861 20.01 0.9317 20.01

MAP2 GAPDH 0.0224 20.27 0.2440 20.01 0.3640 0.01 0.5628 20.03 0.1170 20.06 0.0773 20.14

AIF1 GAPDH 0.2354 20.19 0.0203 0.03 0.8856 20.03 0.1964 20.07 0.6619 20.02 0.4672 0.06

GFAP GAPDH 0.2658 0.19 0.7913 20.01 0.1785 20.03 0.9257 20.01 0.7754 0.01 0.5411 0.06

Covariates included in analyses are reported in Table S2. CLU1, probe spans exons 3–4. CLU2, probe spans exons 4–5.
doi:10.1371/journal.pone.0050976.t002
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shorter disease duration. Bin1 is implicated in receptor-mediated

endocytosis and recycling of endosomes in the cell. Bin1 knockout

mice do not exhibit deficiency in synaptic vesicle recycling [27,28]

but have less age-associated inflammation [29].

CD33 and CR1 expression levels were associated with clinical

measures of AD, where elevated expression levels were associated

with AD after correcting for neuron and microglia number in the

brain. CD33 and CR1 function in immune response pathways.

CD33 is a transmembrane receptor expressed on cells from the

myeloid lineage. CD33 functions in the innate and adaptive

immune response [30], and it may play a role in receptor-

mediated endocytosis independent of clathrin [31]. CR1 plays an

essential role in the adaptive immune response. CR1 is highly

expressed in red blood cells [32], where it mediates cell binding to

particles and immune complexes. CR1 is a negative regulator of

the complement cascade; mediates immune adherence and

phagocytosis; and inhibits the classical and alternative complement

pathways [33].

CLU expression levels are associated with clinical measures of

AD, where elevated CLU levels occur in individuals with AD.

Clusterin (ApoJ) exists as two isoforms and is highly expressed in

astrocytes [16]. Clusterin is secreted from cells where it is reported

to have several roles in the cell: chaperone function [34,35], lipid

trafficking [36,37], and inhibition of the complement cascade [38].

Clusterin inhibits complement activation and the membrane

attack complex [38], which is relevant to AD in that neuroin-

Figure 1. Expression of genes involved in immune response and synaptic function are highly correlated in brain tissue. Relative
expression (RE) was plotted for the indicated genes. Genes involved in immune response (A-C). Genes involved in synaptic function (D-I). Genes
involved in cholesterol metabolism and synaptic function (J-K).
doi:10.1371/journal.pone.0050976.g001
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flammation is a key feature of the disease. Clusterin has been

implicated in AD in its ability to assist in refolding of misfolded

proteins [35], bind to fibrillar proteins [39,40], clearance of Ab
[41], and interact with ApoE [41]. Neuritic dystrophy and fibrillar

amyloid deposits are markedly reduced when CLU is knocked out

in PDAPP mice [42], suggesting that CLU may have deleterious

effects when upregulated in AD brains. However, in the absence of

APOE and CLU, PDAPP mice have accelerated disease onset,

elevated CSF and ISF beta-amyloid levels, and more extensive

amyloid deposition in the brain [41]. Thus, the role of clusterin in

the brain is complex and influenced by other genes.

In our cohort, genes in the MS4A gene cluster showed

association with clinical and neuropathological measures of AD.

MS4A6A expression levels were found to be associated with

elevated Braak tangle and Braak plaque scores. Additionally, the

minor allele of rs670139 in MS4A6E was associated with CDR,

Braak tangle score, and Braak plaque score. The MS4A family of

genes is reported to play a role in the immune response via

expression on high affinity IgE receptors [43]; however, little is

known about the function of each family member. While several

genes in the MS4A gene cluster have been identified in recent

LOAD GWAS [9,10], we only measured expression levels of the

MS4A6A gene. Due to extensive sequence conservation between

the MS4A genes, we were unable to identify Taqman probes in

other MS4A genes that would specifically detect a single gene; thus,

we are limited in our interpretation of the role of each of the MS4A

genes in AD brains. While our replication data set only contained

the MS4A6A gene, we were able to replicate the association with

disease status.

Factors Contributing to the Absence of Robust Findings
The associations we describe in this study are only marginal and

would not survive multiple test correction. We interpret these

findings to point to subtle effects in gene expression. However,

type 1 errors are also a possible explanation. Our observations that

the association of gene expression with clinical and neuropatho-

logical measures of AD can change after correction for neuronal,

astrocytic, and microglial subpopulations indicates that cell specific

gene expression plays an important role in disease.

We chose to examine measures of AD (disease status, CDR,

Braak plaque score and Braak tangle score) because each trait

represents a different, not completely overlapping, aspect of

Alzheimer’s disease. AD status, a dichotomous trait, is assigned at

autopsy based on several criteria, including clinical dementia,

neuronal death and Braak plaque and Braak tangle scores. CDR,

Table 3. AD GWAS SNPs do not modify gene expression in
the parietal lobe of human brains.

SNP Gene MAF P value Beta

rs3764650 ABCA7 0.13 0.6471 0.07

rs744373 BIN1 0.34 0.7720 0.03

rs59335482 BIN1 0.31 0.2879 0.12

rs744373 BIN1n 0.34 0.2666 0.17

rs59335482 BIN1n 0.31 0.1217 0.24

rs9349407 CD2AP 0.26 0.0610 20.18

rs3865444 CD33 0.29 0.3071 0.10

rs7982 CLU1 0.38 0.1324 20.09

rs7982 CLU2 0.38 0.1452 20.08

rs670173 CR1 0.01 0.9630 20.02

rs3818361 CR1 0.22 0.1753 20.20

rs11767557 EPHA1 0.16 0.1989 0.17

rs610932 MS4A6A 0.43 0.5130 20.13

rs3851179 PICALM 0.38 0.2791 20.09

Covariates included in analyses are reported in Table S2.
doi:10.1371/journal.pone.0050976.t003

Figure 2. Rs3764650 in ABCA7 is associated with age at onset. Kaplan-Meier curve. AAO, age at onset in years. SNPs were analyzed using an
additive model. G, minor allele. Blue line, TT (11). Red line, TG (12). Green line, GG (22).
doi:10.1371/journal.pone.0050976.g002
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however, represents a clinical diagnosis that measures six domains

of cognitive and functional abilities including memory, orientation,

problem solving, community involvement, home and personal

care. The CDR trait differs from AD status in that it is an ordinal

trait that describes disease severity. Similarly, Braak plaque and

tangle scores are also ordinal traits, each representing an aspect of

AD pathology. Because disease status is a dichotomous trait, while

the other phenotypes are ordinal, it remains possible that the

absence of association across phenotypes is an issue of statistical

power.

We failed to detect expression differences in the clinical and

neuropathological measurements of AD in some of the genes

tested in this study. These findings do not eliminate the possibility

that changes are occurring in these genes during disease that we

are unable to capture in our cohort. With a sample size of 112, this

study may be underpowered to observe more subtle changes in

gene expression that could contribute to LOAD. Furthermore, our

study was limited to the parietal lobe, where AD pathology occurs

late in the disease. It is possible that testing other brain regions that

are susceptible to AD pathology at earlier time points in the

disease course could produce additional associations. Environ-

mental factors may also contribute to or obscure gene expression

levels; however, at this time, we do not possess adequate

phenotypic data to analyze this properly.

The Complexities of Defining the Functional Impact of
LOAD GWAS SNPs

In this study, we analyzed genotype association with gene

expression level to determine if the LOAD GWAS SNPs were

functionally relevant. We failed to identify any SNPs that influence

gene expression levels independent of disease status. Thus, it is

possible that the functional polymorphisms that exist within these

genes are rare, alter gene splicing, or impact inducible expression

rather than constitutive expression. These findings fit with our

previous study: we were unable to identify statistically significant

associations of GWAS SNPs and SNPs in linkage disequilibrium

with GWAS SNPs with CSF tau and Ab levels [44]. Thus, it is

essential to exploit deep sequencing techniques to identify

functional variants in these genes.

LOAD GWAS Genes are Functionally Linked
The genes identified in recent LOAD GWAS fall into three

functional categories: immune response (CLU, CR1, ABCA7, MS4A

family, CD33, and EPHA1), cholesterol metabolism (CLU and

ABCA7), and synaptic function (PICALM, BIN1, CD33, CD2AP,

and EPHA1). The genes with the most significant association with

clinical and neuropathological measures of AD function in

immune response and cholesterol metabolism. Despite an absence

of association with the remaining GWAS genes, it is possible that

these genes are affected at the protein level in AD brains.

Changes in genes that influence immune response may be

difficult to identify in autopsied brain tissue, as the immune

response can be transient. Additionally, alterations of the immune

response in AD may primarily occur in organs other than the

brain. CD2AP is localized in the cytoplasm where it has several

functions: cytoskeletal remodeling [45]; cell survival [46,47];

endocytosis [48–50]. CD2AP functions in the immune response

by interacting with CD2, a T-cell and natural killer cell membrane

protein, and facilitates T-cell adhesion to antigen-presenting cells

[45].

The influence of GWAS SNPs and their corresponding genes in

AD that are associated with synaptic function may be more

apparent at the protein level. Picalm functions in receptor-

mediated endocytosis where it is essential in clathrin assembly,

Table 4. Gene SNPs do not significantly influence AD brain pathology.

Status* CDR61 Age at Onset*‘

Disease
Duration*‘

Braak Tangle
Score*‘

Braak Plaque
Score*‘

SNP Gene P value Beta P value Beta P value Beta P value Beta P value Beta P value Beta

rs3764650 ABCA7 0.1524 20.13 0.2966 1.87 0.0040 2.58 0.0040 22.58 0.5875 20.18 0.7356 20.11

rs744373 BIN1 0.8570 20.01 0.2245 1.85 0.5234 0.49 0.5234 20.49 0.4395 20.21 0.4194 0.21

rs59335482 BIN1 0.7857 0.02 0.3509 1.38 0.9192 0.08 0.9192 20.08 0.1477 20.38 0.5852 0.14

rs9349407 CD2AP 0.8372 0.02 0.1217 22.52 0.0507 21.56 0.0507 1.56 0.5909 0.16 0.4127 0.20

rs3865444 CD33 0.4485 0.06 0.8427 20.34 0.4515 20.64 0.4515 0.64 0.6188 20.15 0.9381 0.02

rs7982 CLU 0.8533 20.01 0.9251 20.14 0.4431 0.57 0.4431 20.57 0.8560 0.05 0.1357 20.34

rs670173 CR1 0.3697 20.18 0.3205 3.62 0.7683 20.52 0.7683 0.52 N/A N/A N/A N/A

rs3818361 CR1 0.3315 20.08 0.9699 20.07 0.2829 20.95 0.2829 0.95 0.2082 20.35 0.6167 0.13

rs11767557 EPHA1 0.3221 20.08 0.4902 21.19 0.7123 0.31 0.7123 20.32 0.1470 20.45 0.8202 0.07

rs610932 MS4A6A 0.2860 0.07 0.9290 20.12 0.1532 0.97 0.1532 20.97 0.1520 0.34 0.0998 0.43

rs670139 MS4A6E 0.1624 20.09 0.5966 0.82 0.9753 20.02 0.9753 0.02 0.0411 20.53 0.0581 20.47

rs3851179 PICALM 0.6162 0.03 0.6355 20.73 0.3357 20.74 0.3357 0.74 0.8133 0.06 0.1133 0.41

Covariates included in the analysis are marked: *Age, uAPOE, 1PMI, ‘CDR.
doi:10.1371/journal.pone.0050976.t004

Table 5. CLU and MS4A6A expression are associated with AD
status in a replication dataset.

Status

Gene P value Beta

ABCA7 0.3471 0.07

BIN1 0.0540 0.09

CLU 0.0334 0.11

MS4A6A 0.0346 0.19

PICALM 0.1405 0.09

doi:10.1371/journal.pone.0050976.t005
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axogenesis, and dendritic outgrowth in neurons [51]. EphA1 is

highly expressed in the adult brain, where it participates in

forward signaling in receptor-bearing cells and reverse signaling in

ligand-bearing cells by binding to GPI-linked A ephrins, which

together facilitates axon guidance and communication between

neighboring cell populations [52–57]. CD2AP knockout also mice

exhibit deficiencies in receptor trafficking to the lysosome.

Conclusions
This study provides evidence for the involvement of ABCA7,

BIN1, CD33, CLU, CR1, and MS4A gene family in AD brain

pathology. As AD is a complex disorder, it is likely that many

genes are affected at the RNA and protein levels and that an

understanding of the complex interactions that may occur between

these genes is essential to understanding and treating AD.
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