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Fasting induces remodeling of the orexigenic
projections from the arcuate nucleus to the
hypothalamic paraventricular nucleus, in a
growth hormone secretagogue
receptoredependent manner
Agustina Cabral 1,3, Gimena Fernandez 1,3, María J. Tolosa 1, Ángeles Rey Moggia 1, Gastón Calfa 2,
Pablo N. De Francesco 1, Mario Perello 1,*
ABSTRACT

Objective: Arcuate nucleus (ARC) neurons producing Agouti-related peptide (AgRP) and neuropeptide Y (NPY; ARCAgRP/NPY neurons) are activated
under energy-deficit states. ARCAgRP/NPY neurons innervate the hypothalamic paraventricular nucleus (PVH), and ARC/PVH projections are
recognized as key regulators of food intake. Plasma ghrelin levels increase under energy-deficit states and activate ARCAgRP/NPY neurons by acting
on the growth hormone secretagogue receptor (GHSR). Here, we hypothesized that activation of ARCAgRP/NPY neurons in fasted mice would
promote morphological remodeling of the ARCAgRP/NPY/PVH projections in a GHSR-dependent manner.
Methods: We performed 1) fluorescent immunohistochemistry, 2) imaging of green fluorescent protein (GFP) signal in NPY-GFP mice, and 3) DiI
axonal labeling in brains of ad libitum fed or fasted mice with pharmacological or genetic blockage of the GHSR signaling and then estimated the
density and strength of ARCAgRP/NPY/PVH fibers by assessing the mean fluorescence intensity, the absolute area with fluorescent signal, and the
intensity of the fluorescent signal in the fluorescent area of the PVH.
Results: We found that 1) the density and strength of ARCAgRP/NPY fibers increase in the PVH of fasted mice, 2) the morphological remodeling of
the ARCAgRP/NPY/PVH projections correlates with the activation of PVH neurons, and 3) PVH neurons are not activated in ARC-ablated mice. We
also found that fasting-induced remodeling of ARCAgRP/NPY/PVH fibers and PVH activation are impaired in mice with pharmacological or genetic
blockage of GHSR signaling.
Conclusion: This evidence shows that the connectivity between hypothalamic circuits controlling food intake can be remodeled in the adult
brain, depending on the energy balance conditions, and that GHSR activity is a key regulator of this phenomenon.

� 2019 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Based on his observations, Ramón y Cajal proposed early on that
neurons in the adult brain are highly plastic cells and that their den-
dritic arbors and axonal collaterals can grow and retract under normal
conditions [1]. Further studies not only confirmed this notion but also
showed that morphological changes of neurons are functionally rele-
vant [1]. Indeed, hypothalamic neurons are known to undergo a dra-
matic morphological remodeling that is critical to ensure the control of
the body homeostasis [1]. For instance, morphological remodeling of
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specific hypothalamic neurons occurs during dehydration, lactation,
and through the ovarian cycle [2e4]. Some evidence also indicates
that hypothalamic circuits controlling food intake show morphological
and functional remodeling under energy-deficit conditions [5].
Neuronal populations of the hypothalamic arcuate nucleus (ARC) are
key regulators of food intake. These populations include neurons that
synthesize either Agouti-related peptide (AgRP) and neuropeptide Y
(NPY) or pro-opiomelanocortin (POMC; hereafter named ARCAgRP/NPY

and ARCPOMC neurons, respectively), which play opposing roles in
energy balance: the activation of ARCAgRP/NPY neurons increases food
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intake, while the activation of ARCPOMC neurons inhibits it [6]. ARC
neurons strongly innervate the hypothalamic paraventricular nucleus
(PVH), and ARC/PVH projections are recognized as key regulators
of food intake [7e10]. Under energy-deficit states, ARCAgRP/NPY

neurons are activated [11]. The number of dendritic spines and the
density of stimulatory synapses onto ARCAgRP/NPY neurons increase
during fasting, and such an increase of the stimulatory transmission
favors, in turn, ARCAgRP/NPY neuron activation [12]. This evidence
suggests that ARCAgRP/NPY neurons can undergo morphological and
functional remodeling that helps animals to cope with energy-deficit
conditions. Here, we hypothesized that activation of ARCAgRP/NPY

neurons in food-deprived mice would promote a morphological
remodeling that would affect the density of their axonal fibers in
the PVH.
Peripheral signaling systems control the activity of ARCAgRP/NPY

neurons to adapt hypothalamic function to energy balance needs.
The stomach-derived orexigenic hormone ghrelin plays a key reg-
ulatory role under energy-deficit states (i.e., fasting, calorie re-
striction), when plasma ghrelin levels increase [13,14]. Ghrelin
promotes food-seeking behaviors and contributes to maintain gly-
cemia [15,16]. The observation that mice lacking ghrelin display
severe hypoglycemia and become moribund under food restriction
strongly indicates that ghrelin plays essential functions to allow
animal survival under energy-deficit states [15,17]. Ghrelin acts via
the growth hormone secretagogue receptor (GHSR), which is
particularly enriched in ARCAgRP/NPY neurons [18e24]. Ghrelin-
induced food intake requires the presence of ARCAgRP/NPY neurons
[21,25], and the expression of GHSR selectively in ARCAgRP/NPY

neurons restores the gluco-regulatory effects of ghrelin observed
upon caloric restriction [18]. Under fasting, GHSR gene expression
also increases in ARCAgRP/NPY neurons, and ARC neurons become
more sensitive to GHSR activation [11,26,27]. Notably, plasma
ghrelin levels are similar in mice fasted for 12, 24, or 48 h, but
hypothalamic GHSR mRNA levels as well as the sensitivity to ghrelin
are higher in mice fasted for longer periods of time [28,29]. Thus,
GHSR signaling in the brain seems to be more relevant when the
energy deficit is more severe. Interestingly, GHSR protein remains
elevated even several days after refeeding in mice previously fasted
for 48 h, and such increment of GHSR level promotes the activation
of ARCAgRP/NPY neurons and hyperphagia [30]. Thus, the upregula-
tion of the GHSR activity in the hypothalamus is important not only
during the fasting period to regulate metabolic adaptations to the
energy deficit but also during the refeeding period to drive the
behavioral changes required to reestablish the energy balance.
Pharmacological blockage of ghrelin action reverses fasting-induced
upregulation of excitatory synaptic inputs to ARCAgRP/NPY, indicating
that GHSR signaling under fasting also affects synaptic plasticity
[31]. Because GHSR activity regulates long-term compensatory
hyperphagia after a 48-h fasting event [30], we hypothesized that
GHSR activity promotes a morphological remodeling of the
ARC/PVH projections under severe fasting conditions.
Here, we compared ARC fibers in the PVH of adult mice fed ad libitum
versus mice fasted for 48 h using complementary strategies: 1)
fluorescent immunostaining against either AgRP or NPY, 2) imaging of
the green fluorescent protein (GFP) signal in NPY-GFP mice, and 3) DiI
axonal labeling. We found that the density and strength of ARC/PVH
fibers are increased under fasting. To test whether these adaptations
depended on GHSR signaling, we compared ARC/PVH fibers and the
induction of the marker of neuronal activation c-Fos in the PVH of
fasted mice either lacking GHSR expression or with pharmacological
blockage of GHSR signaling.
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2. MATERIALS AND METHODS

2.1. Animals
All studies were performed using 3- to 5-month-old male mice
generated in the animal facility of the Multidisciplinary Institute of Cell
Biology (IMBICE). Experimental mice included 1) wild-type (WT) mice,
on a pure C57BL/6 background; 2) NPY-Renilla GFP (NPY-GFP) mice, in
which the GFP is under the control of the NPY promoter (Jackson
Laboratory, Stock #006417) [32]; 3) GHSR-deficient mice, which fail to
express the GHSR [33] and were derived from crosses between het-
erozygous animals backcrossed 10 generations onto a C57BL/6 ge-
netic background; 4) NPY-GFP/GHSRedeficient mice, which fail to
express the GHSR and express the GFP under the control of the NPY
promoter; and 5) ARC-ablated mice. To generate the ARC-ablated
mice, 4-day-old pups were injected subcutaneously with either
monosodium glutamate (2 mg/g body weight, Sigma-Aldrich, Cat#
G1626) or 10% saline (ARC-intact mice), as described in a previous
study [20]. Mice were housed under a controlled room temperature
(22 � 1 �C) and photoperiod (12-h light/dark cycle from 6:00 h to
18:00 h) with regular chow and water available ad libitum, except
when indicated. Experiments were carried out in strict accordance with
the recommendations in the Guide for the Care and Use of Laboratory
Animals of the US National Research Council [34], and all efforts were
made to minimize suffering. All protocols received approval from the
Institutional Animal Care and Use Committee of the IMBICE (ID no. 10-
0112).

2.2. Fasting protocol
Mice were single housed 3 days before starting the experiments, and
fed ad libitum with regular chow. Individually housed mice were either
fed ad libitum or fasted for 2 days, by removing the chow diet from the
home cages at 10:00 h. In all cases, their body weight and food intake
were manually monitored during the 2 days. Importantly, 2-day fasting
is a manipulation fully tolerated by WT mice that display a normal
overall health status and locomotor activity [29,30]. Experimental mice
included 1) WT mice fed ad libitum (n ¼ 4) or fasted (n ¼ 4), NPY-GFP
mice fed ad libitum (n ¼ 5) or fasted (n ¼ 5), GHSR-deficient mice fed
ad libitum (n ¼ 10) or fasted (n ¼ 11) and their WT littermates fed ad
libitum (n ¼ 7) or fasted (n ¼ 11), NPY-GFP/GHSRedeficient mice fed
ad libitum (n ¼ 6) or fasted (n ¼ 5) and their NPY-GFP/WT littermates
fed ad libitum (n ¼ 5) or fasted (n ¼ 5), and ARC-ablated mice fed ad
libitum (n ¼ 4) or fasted (n ¼ 5) and ARC-intact mice fed ad libitum
(n ¼ 5) or fasted (n ¼ 7). On the morning of the experimental day
(between 9:00 h and 11:00 h), fed and fasted mice were anesthetized
and perfused with formalin to obtain their brains.

2.3. DiI axonal labeling of ARC/PVH fibers
Individually housed mice were fed ad libitum (n ¼ 4) or fasted for 2
days (n ¼ 4) by removing their food at 10:00 h. On the morning of the
experimental day, fed and fasted mice were deeply anesthetized with
an intraperitoneal injection of chloral hydrate (500 mg/kg) and first
transcardially perfused with ice-cold heparinized phosphate-buffered
saline (PBS; 0.1 M, pH 7.4) and then fixed using ice-cold 4% para-
formaldehyde (PFA; in 0.1 M PBS, pH 7.4). Brains were removed and
post-fixed in the same fixative at 4 �C until further processing. For
labeling, brains were sectioned from caudal to rostral to expose the
ARC without disturbing the rostral regions. Next, brains were trans-
ferred and caudally glued to a chamber. Under a stereo-zoom mi-
croscope, each ARC was microinjected with a saturated solution of the
dye 1,10-dioctadecyl-3,3,30,30-tetramethyl indocarbocyanine
perchlorate (DiI, Invitrogen; Carlsbad, CA) in fish oil [35] using a patch
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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pipette and positive-pressure application [36,37]. Then, brains were
stored in 4% PFA, and DiI was allowed to diffuse for 4 weeks in the
dark at 37 �C. After DiI diffusion, brains were coronally cut in 40-mm-
thick sections using a vibratome. Finally, brain sections containing the
PVH were mounted onto glass slides and coverslipped with mounting
media for posterior imaging analysis.

2.4. Fasting response in mice with pharmacological manipulations
of the GHSR signaling
For intracerebroventricular (ICV) infusion, WT mice were first stereo-
taxically implanted with a single indwelling sterile guide cannula
(Plastics One) into the lateral ventricle, with the following placement
coordinates: anteroposterior, �0.34 mm; mediolateral, þ1.00 mm;
and dorsoventral, �2.30 mm, as previously described [38]. After
surgery, mice were individually housed and allowed to recover for at
least 5 days. During these days, mice were made accustomed to
handling by removal of the dummy cannula and connection to an
empty cannula connector. To block the GHSR signaling, WT mice were
treated ICV with K-(D-1-Nal)-FwLL-NH2 during the fasting period. K-(D-
1-Nal)-FwLL-NH2 was synthesized by automated solid-phase peptide
synthesis as described elsewhere [39]. K-(D-1-Nal)-FwLL-NH2 re-
duces ad libitum food intake in the early dark-phase period (from
18:00 h to 23:00 h), reduces ghrelin-induced 2-h food intake, and
reduces fasting-induced hyperphagia exclusively in WT mice [30].
Here, fed and fasted mice were injected ICV with 2 mL of vehicle alone
(artificial cerebrospinal fluid, n ¼ 5 and n ¼ 7, respectively) or con-
taining K-(D-1-Nal)-FwLL-NH2 (1 nmol/mouse, n ¼ 4 and n ¼ 7,
respectively) every 8 h starting at 16:00 h of the first day of fasting and
finishing at 8:00 h on the second day of fasting. Thus, each
mouse received 6 ICV injections. The dose of K-(D-1-Nal)-FwLL-NH2
was chosen based on our previous study [30]. Mice were
perfused around 10.00 h. In all cases, the correct placement of the
cannula was confirmed by histological observation at the end of the
experiment.

2.5. Immunohistochemistry
As previously described [40], brains of perfused mice were removed,
post-fixed 2 h in fixative, immersed overnight in 20% sucrose, frozen,
and coronally cut at 40 mm into four equal series on a sliding cryostat.
One series of coronal sections was used for immunostaining. For
fluorescent immunohistochemistry, brain sections were treated with
blocking solution (3% normal donkey serum and 0.25% Triton X-100 in
PBS) and incubated with the following antibodies: rabbit anti-NPY (1/
7000; Abcam Cat# ab30914, RRID: AB_1566510), rabbit anti-AgRP (1/
1000; Phoenix Pharmaceuticals Cat# H-003-57, RRID: AB_2313909),
or rabbit anti-POMC (1/3000; Phoenix Pharmaceuticals Cat# H-029-
30, RRID: AB_2307442) for 48 h at 4 �C. Then, sections were incu-
bated with a donkey anti-rabbit Alexa Fluor 594 antibody (1/1000;
Thermo Fisher Cat# A-21207, RRID: AB_141637) for 2 h. For chro-
mogenic immunohistochemistry against c-Fos, sections were pre-
treated with 0.5% H2O2, treated with blocking solution (3% normal
donkey serum and 0.25% Triton-X), and incubated with a rabbit antie
c-Fos antibody (1/3000; Santa Cruz Biotechnology Cat# sc7202, RRID:
AB_2106765) for 48 h at 4 �C. Next, all sections were incubated with a
biotinylated goat anti-rabbit antibody (1/3000; Vector Laboratories
Cat# BA-1000, RRID: AB_2313606) for 1 h and then with the Vec-
tastain Elite ABC (Vector Laboratories Cat# PK-6200) for 1 h, according
to the manufacturer’s protocols. Finally, a visible signal was developed
with diaminobenzidine/nickel solution, resulting in a black/purple
precipitate. Negative controls for immunostaining were also performed
using the same procedure but omitting either the primary or secondary
MOLECULAR METABOLISM 32 (2020) 69e84 � 2019 The Author(s). Published by Elsevier GmbH. This is an open a
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antibody. Sections were sequentially mounted on glass slides and
coverslipped with mounting medium.

2.6. Validation of ARC-ablated mouse model
The ARC lesion was confirmed by ARC cell nuclei counting after thionin
staining and AgRP immunostaining, described above. To visualize cell
nuclei, brain sections were sequentially mounted on glass slides,
washed with distilled H2O, incubated with 0.025% thionin solution
(Sigma-Aldrich, Cat# T7029), dehydrated in an ascending alcohol
series, cleared in xylene, and coverslipped.

2.7. Quantitative neuroanatomical analysis
Bright-field color images were acquired with a Nikon Eclipse 50i and a
DS-Ri1 Nikon digital camera with a 0.45 � adapter using a 10 � /0.3
objective. All images were taken in comparable areas and under the
same optical and light conditions. Fluorescence images were acquired
with 10 � /0.45, 20 � /0.80, and a 63 � /1.4 (oil) objectives using a
Zeiss AxioObserver D1 equipped with an Apotome.2 structured illu-
mination module and an AxioCam 506 monochrome camera. All image
processing and analysis were performed in the ImageJ-based open-
source image-processing package Fiji [41]. Fluorescent signal corre-
sponding to AgRPþ, NPYþ, POMCþ, and GFPþ was blindly and
bilaterally quantified in the ARC and the PVH. For the ARC, the average
fluorescence intensity within the nucleus was quantified in low-
magnification (10 � ) images of one complete series of coronal sec-
tions per brain between bregma �0.70 and �0.94 mm [42]. For the
PVH, fluorescent signal was quantified in high-magnification (63 � )
images centered in the compact part of the PVH, which was recognized
beforehand by the distribution of cell nuclei labeled with Hoechst using
low magnification, in one complete series of coronal sections per brain
between bregma �1.58 and �1.94 mm [42]. For each image, the
histogram of signal intensity was obtained, and the tissue background
level was estimated by fitting a Gaussian curve, which coincided with
the dominant peak. With these parameters, a specific signal detection
threshold was calculated, which was defined as the mean of the
distribution plus five standard deviations. A region of interest was
created according to this threshold. In each image, three parameters
were quantified: 1) the mean fluorescence intensity within this
thresholded region, representing the average fluorescent signal per
pixel; 2) the absolute area corresponding to this region, which repre-
sents the total number of pixels with significant levels of fluorescent
signal in each image; and 3) the integrated density over this region,
which represents the total the amount of significant fluorescent signal
in the image. For quantification of the DiIþ fluorescent area in each
PVH, a series of 18 adjacent optical sections were collected using a
20 � /0.80 objective with a 0.95-mm z-axis interval in comparable
areas under the same conditions. Then, the original z-stack was
processed with the “Tubeness” Fiji plugin to enhance tubular features
corresponding to the fibers. Maximum intensity projections for each
series of processed images were prepared, log transformed, and then
binarized according to histogram-based Gaussian-fit threshold pa-
rameters, as described above. For each binarized image, the fraction of
area with fluorescent tubular structures within the PVH region
(DiIþ area/PVH area) was obtained. The Fiji macros used for quanti-
fication are accessible at the Zenodo Repository (https://doi.org/10.
5281/zenodo.3541615).
The number of c-Fosepositive (c-Fosþ) cells in each brain region was
quantified in one out of four complete series of coronal sections
through the whole nuclei and was estimated per section. Blind
quantitative analyses were performed independently by two observers.
Neuroanatomical limits of the ARC and PVH were identified using a
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mouse brain atlas [42]. All data were corrected for double counting,
according to the method of Abercrombie [43], in which the ratio of the
actual number of neurons or cell nuclei to the observed number is
represented by T/(T þ h), where T ¼ section thickness and h ¼ the
mean diameter of the cell nuclei along the z-axis. The mean diameter
was determined using Fiji. To quantify c-Fos induction in ARC
GFPþ cells, all GFPþ cells positive or negative for c-Fos were counted,
and results were expressed as percentages representing
GFPþ neurons positive for c-Fos compared with the total number of
GFPþ cells observed.

2.8. Statistical analyses
Data were expressed as mean � standard error of the mean (SEM).
Equality of variance was analyzed using Bartlett’s test. Unpaired t test
with Welch correction was performed to compare fed and fasted data
of WT and NPY-GFP mice. Two-way analysis of variance (ANOVA),
followed by Tukey’s post test, was used to compare data from fed and
fasted conditions of WT- and GHSR-deficient, ARC-intact, and ARC-
ablated, NPY-GFP/WT-deficient, and NPY-GFP/GHSR-deficient or
vehicle and K-(D-1-Nal)-FwLL-NH2 ICV-treated mice. Differences were
considered significant when p< 0.05. Analyses were performed using
GraphPad Prism, version 6.0 (GraphPad Software).

3. RESULTS

3.1. ARCAgRP/NPY/PVH fibers increase in fasted mice
The PVH is strongly regulated by the ARC, which senses peripheral
signals and controls adaptations to the energy balance. Initially, we
used fluorescent immunostaining to investigate whether ARC/PVH
fibers are altered in fasted mice. We confirmed that NPYþ and
AgRPþ fluorescence intensity increases 2.5� 0.1- and 2.7� 0.2-fold
in the ARC of fasted mice, as compared with values found in fed mice
(p < 0.01 in both cases; Figure 1A,F). To estimate the density and
strength of ARCAgRP/NPY/PVH fibers, we quantified three parameters:
1) the mean fluorescence intensity in the area corresponding to the
PVH, which estimates the total amount of the neuropeptide in the PVH;
2) the absolute area with fluorescent signal, which estimates the
density of fluorescent fibers in the PVH; and 3) the integrated density
containing, which estimates the amount of fluorescent signal per fiber.
In the PVH, NPYþ fluorescence intensity, NPYþ fluorescent area, and
NPYþ integrated density increased in fasted mice (Figure 1BeE).
Similarly, AgRPþ fluorescence intensity, AgRPþ fluorescent area, and
AgRPþ integrated density increased in the PVH of fasted mice
(Figure 1GeJ). Notably, POMC þ signal was 0.7 � 0.1-fold smaller in
the ARC of fasted mice compared with values found in fed mice
(p < 0.05, Figure 1K), while POMCþ fluorescence intensity,
POMCþ fluorescent area, and POMCþ integrated density in the PVH
were unaffected in fasted mice (Figure 1LeO). Thus, the density and
strength of the ARCAgRP/NPY/PVH fibers increased in fasted mice. To
assess whether such enhancement of ARCAgRP/NPY/PVH fibers was
associated with effects on neuronal activity, we assessed the number
of c-Fosþ cells in the ARC and PVH and found that it increased in both
hypothalamic regions (3 � 2 vs. 110 � 8 and 3 � 1 vs. 179 � 15 c-
Fosþ cells/side/section in the ARC and PVH of fed and fasted mice, for
both cases; see below). Thus, the increase in ARCAgRP/NPY/PVH fibers
correlates with an increase of c-Fos in the PVH.
A higher area with NPYþ and AgRPþ signal in the PVH of fasted mice
could indicate either the presence of new fibers or the visualization of
preexisting fibers that were not visualized in the fed condition because
they lacked detectable levels of neuropeptides. To discriminate be-
tween these possibilities, we imaged the GFPþ fluorescent signal in
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the ARC and the PVH of NPY-GFP mice, in which GFP expression is
under the control of the NPY promoter. The number of ARC
GFPþ neurons did not differ between the fed and fasted NPY-GFP
mice, suggesting that all ARCAgRP/NPY neurons are visualized in this
mouse model, independently of the feeding condition (55 � 8 vs.
63 � 8 ARC GFPþ neurons/side/section in fed and fasted NPY-GFP
mice, respectively; Figure 2A). Notably, the fluorescence intensity of
ARC GFPþ cells increased 3.5 � 0.3-fold in fasted mice as compared
with that in fed mice (p < 0.01), suggesting that these neurons
increased their transcriptional activity. In the PVH of NPY-GFP mice, not
only GFP þ fluorescence intensity and GFPþ integrated density signal
but also the GFPþ fluorescent area increased in fasted mice
(Figure 2BeE). In the ARC, the fraction of GFPþ neurons positive for c-
Fos was significantly increased in fasted mice as compared with that in
fed mice (2.3 � 1.2 vs. 57.3 � 6.5% for fed and fasted mice,
respectively; Figure 2FeG).
As a complementary strategy to estimate if the density of ARC/PVH
fibers changes in fasted mice, we performed an axonal labeling study
in which we microinjected the lipophilic tracer DiI in the ARC of brains
obtained from fed and fasted mice and then quantified the area cor-
responding to Dilþ fibers in the PVH (Figure 3AeB). In the PVH, the
area of DiIþ fibers was significantly increased in fasted mice
(Figure 3C). Of note, Dilþ fluorescence intensity and Dilþ integrated
density were not estimated in this study because they have no bio-
logical meaning.

3.2. Fasting-induced activation of PVH neurons requires the ARC
Then, we tested whether the ARC is required for a fasting-induced
activation of PVH neurons. Specifically, we assessed ARCAgRP/
NPY/PVH fibers and PVH activation in fasted ARC-ablated mice. ARC
ablation was estimated using Nissl staining (Figure 4AeB), which
confirmed that the number of cell bodies was reduced in the ARC of
ARC-ablated mice as compared with ARC-intact mice (32 � 6
vs.168� 6, p ˂ 0.001), while it was not affected in the PVH (336� 16
vs. 319 � 31). In terms of AgRPþ signal in the ARC, two-way ANOVA
revealed no interaction but a main effect of both group, F (1,
17)¼ 79.28, p< 0.001, and condition, F (1, 17)¼ 19.13, p< 0.001,
being increased in fasted ARC-intact mice but unaffected in ARC-
ablated mice (Figure 4C,E). In terms of the AgRPþ signal in the
PVH, two-way ANOVA revealed a significant interaction between group
and condition for fluorescence intensity, F (1, 17) ¼ 5.75, p < 0.05,
fluorescent area, F (1, 17) ¼ 8.49, p < 0.01, and integrated density, F
(1, 17) ¼ 9.03, p < 0.01. In particular, all these parameters were
increased in fasted ARC-intact mice, while they were unaffected in
ARC-ablated mice (Figure 4D,FeH). In terms of PVH activation, two-
way ANOVA for the number of c-Fosþ cells revealed a significant
interaction between group and condition in the ARC, F (1, 12)¼ 91.12,
p < 0.001, and the PVH, F (1, 12) ¼ 93.54, p < 0.001. In particular,
the number of c-Fosþ cells increased in both the ARC and the PVH of
fasted ARC-intact mice, while it was unaffected in ARC-ablated mice
(Figure 5AeD).

3.3. Fasting-induced increase of ARCAgRP/NPY/PVH fibers and
activation of PVH neurons requires GHSR signaling
Because ARCAgRP/NPY neurons are a key target of circulating ghrelin,
whose concentration is increased in 48-h fasted mice [28,30], we
hypothesized that GHSR signaling mediates these fasting-induced
adaptations. Specifically, we investigated the ARCAgRP/NPY/PVH fi-
bers and the activation of PVH neurons in GHSR-deficient mice
exposed, or not, to fasting. In terms of AgRPþ signal in the ARC, two-
way ANOVA revealed a significant interaction between group and
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Figure 1: ARCAgRP/NPY/ PVH projections increase in fasted WT mice. (A, B) Representative photomicrographs of the ARC and PVH coronal sections of mice in each experimental
group, respectively, subjected to immunofluorescence against NPY (Pseudo-colored to green), (F, G) AgRP (red), and (K, L) POMC (pseudo-colored to magenta). Insets in each
image show high magnification of areas marked in low magnification images. Arrows point at positive cells. Scale bars: 100 mm (low magnification) and 10 mm (high
magnification). Cell nuclei labeled with Hoechst (blue). (CeE) Bar graphs displaying the quantitative analysis of the mean fluorescence intensity, fluorescent area and integrated
density of the NPY- (n ¼ 4 per group), (HeJ) AgRP- (n ¼ 4 per group), and (MeO) POMC-positive signal (n ¼ 4 per group) in the PVH of each experimental group. Data represent
the mean � SEM and were compared by unpaired t-test with Welch’s correction. *p < 0.05, **p < 0.01 and ***p < 0.001 vs. fed condition.
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Figure 2: ARCNPY/PVH projections increase in fasted NPY-GFP mice. (A, B) Representative photomicrographs showing the ARC and PVH coronal sections of NPY-GFP mice in
each experimental group, respectively. Insets in each image show high magnification of areas marked in low magnification images. Arrows point at GFP-positive cells. Scale bars:
100 mm (low magnification) and 10 mm (high magnification). (CeE) Bar graphs displaying the quantitative analysis of the mean fluorescence intensity, fluorescent area and
integrated density of the GFP-positive signal in the PVH of each experimental group (n ¼ 5 per group). (F) Representative photomicrographs of the ARC coronal sections of NPY-GFP
mice in each experimental group subjected to chromogenic immunostaining against c-Fos (Pseudo-colored to magenta). Insets in each image show high magnification of areas
marked in low magnification images. Arrows point at dual-labeled cells. Scale bars: 100 mm (low magnification) and 10 mm (high magnification). Cell nuclei labeled with Hoechst
(blue). (G) Bar graph displaying the percentage of GFPþ cells positive for c-Fos in the ARC in each experimental condition (n ¼ 4 and n ¼ 6 for fed and fasted group, respectively).
Data represent the mean � SEM and were compared by unpaired t-test with Welch’s correction. **p < 0.01 and ***p < 0.001 vs. fed condition.
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condition, F (1, 13) ¼ 13.36, p < 0.01, being increased in fasted WT
mice but unaffected in GHSR-deficient mice (Figure 6A,C). In terms of
AgRPþ signal in the PVH, two-way ANOVA for the AgRPþ signal
revealed a significant interaction between group and condition for
fluorescence intensity, F (1, 13) ¼ 4.67, p < 0.05; fluorescent area, F
(1, 13) ¼ 10.52, p < 0.01; and integrated density, F (1, 13) ¼ 17.12,
p < 0.01. In particular, all these parameters were increased in fed
GHSR-deficient mice as compared with fed WT mice and were not
affected by fasting (Figure 6B, D�F). In terms of the number of c-
Fosþ cells, two-way ANOVA revealed a significant interaction between
group and condition in the ARC, F (1, 35)¼ 27.78, p< 0.001, and the
PVH, F (1, 35) ¼ 59.63, p < 0.001. In the ARC, the number of c-
Fosþ cells increased in both fasted experimental groups, but the
increment was significantly smaller in GHSR-deficient mice as
compared with WT mice (Figure 6G and Supplementary Fig. 1). In the
PVH, the number of c-Fos þ cells increased in fasted WT mice as
compared to that in fed WT mice and remained unchanged in fasted
GHSR-deficient mice as compared with fed GHSR-deficient mice
(Figure 6H, and Supplementary Fig. 1).
We also assessed the GFPþ signal in the ARC and the PVH of NPY-
GFP/GHSRedeficient mice. In terms of the GFPþ signal in the ARC, the
number of ARC GFPþ neurons did not differ between fed and fasted
NPY-GFP/GHSRedeficient mice, as seen in NPY-GFP/WT mice (not
74 MOLECULAR METABOLISM 32 (2020) 69e84 � 2019 The Author(s). Published by Elsevier GmbH. T
shown, Figure 7A). However, two-way ANOVA revealed a significant
interaction between group and condition for GFPþ intensity, F (1,
17) ¼ 11.30, p < 0.01, being increased in fasted NPY-GFP/WT mice
but unaffected in NPY-GFP/GHSRedeficient mice (Figure 7A,C). In
terms of GFP þ signal in the PVH, two-way ANOVA revealed a sig-
nificant interaction between group and condition for fluorescence in-
tensity, F (1, 17) ¼ 15.23, p < 0.01; fluorescent area, F (1,
17) ¼ 5.94, p < 0.05; and integrated density, F (1, 17) ¼ 8.62,
p < 0.01. In particular, all these parameters were increased in fed
NPY-GFP/GHSRedeficient mice as compared with fed NPY-GFP/WT
mice and were not affected by fasting (Figure 7B, DeF).
Because GHSR-deficient mice displayed higher ARCAgRP/NPY/PVH
fibers in the fed condition, it is unclear if the lack of fasting-induced
effects on these fibers was due to the absence of the GHSR
signaling or an inability of the ARCAgRP/NPY/PVH fibers to be upre-
gulated above their basal levels. Thus, we used a pharmacological
approach to test if GHSR signaling is required for the fasting-induced
increase of the density of ARCAgRP/NPY/PVH fibers and activation of
PVH. Specifically, we investigated the ARCAgRP/NPY/PVH fibers and
the level of PVH activation in fasted WT mice injected ICV with the
GHSR blocker K-(D-1-Nal)-FwLL-NH2. In a similar fashion, as we
already showed for NPYþ signal in the ARC [30], two-way ANOVA for
AgRPþ signal in the ARC revealed a significant interaction between
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 3: ARC/PVH projections increase in fasted mice. (A) Representative photomicrographs showing the localization of the DiI labeling in the ARC of mice in each experimental
group. Scale bar: 100 mm. (B) Low magnification photomicrographs showing the ARC DiI-labeled fibers in the PVH of mice in each experimental group. Insets in each image depict
high magnification images of the areas marked in low magnification images. Scale bars: 100 mm (low magnification) and 50 mm (high magnification). Cell nuclei labeled with
Hoechst (blue). (C) Bar graph displaying the quantitative analysis of the area of DiI-labeled fibers in the PVH of mice in each experimental group (n ¼ 8 per group). Data represent
the mean � SEM and were compared by unpaired t-test with Welch’s correction. *p < 0.05 vs. fed condition.
group and condition, F (1, 12) ¼ 12.00, p < 0.01, with the
AgRPþ signal being increased in fasted mice treated ICV with vehicle,
while it was unaffected in fasted mice treated ICV with K-(D-1-Nal)-
FwLL-NH2 (Figure 8A,C). In terms of AgRPþ signal in the PVH, two-
way ANOVA for AgRP þ signal revealed a significant interaction be-
tween group and condition for fluorescence intensity, F (1,
12)¼ 17.17, p< 0.01; fluorescent area, F (1, 12)¼ 15.93, p< 0.01;
and integrated density, F (1, 12) ¼ 33.01, p < 0.001. In particular, all
these parameters were increased in fasted mice treated ICV with
vehicle, while they were unaffected in fasted mice treated ICV with K-
(D-1-Nal)-FwLL-NH2 (Figure 8B, DeF). In line with these observations,
two-way ANOVA for the number of c-Fosþ cells revealed a significant
interaction between group and condition in the ARC, F (1, 19)¼ 11.62,
p< 0.01, and the PVH, F (1, 19)¼ 29.22, p< 0.001. In particular, the
number of c-Fosþ cells increased in both the ARC and the PVH of both
fasted experimental groups, but the increment was significantly
smaller in fasted mice treated ICV with K-(D-1-Nal)-FwLL-NH2 as
compared to that in fasted mice treated ICV with vehicle (Figure 8GeH;
Supplementary Fig. 2).

4. DISCUSSION

There are two main findings in this study. First, ARCAgRP/NPY/PVH
fibers undergo to dramatic morphological remodeling under fasting. In
particular, we found that the density and strength of ARCAgRP/
NPY/PVH fibers increase in fasted mice. We also found that the
morphological remodeling of the ARCAgRP/NPY/PVH fibers correlates
with the activation of PVH neurons and that PVH neurons are not
activated in ARC-ablated mice. Thus, the fasting-induced remodeling
of the ARCAgRP/NPY/PVH fibers seems to affect the activity of the PVH.
Second, we found that the remodeling and PVH activation of fasting-
induced ARCAgRP/NPY/PVH fibers is impaired in mice either lacking
GHSR expression or with pharmacological blockage of GHSR signaling.
MOLECULAR METABOLISM 32 (2020) 69e84 � 2019 The Author(s). Published by Elsevier GmbH. This is an open a
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To our knowledge, this is the first evidence that the ARC/PVH fibers
can be remodeled in the adult brain, depending on the energy balance
conditions, and that GHSR activity is a key regulator of this
phenomenon.
Under fasting conditions, ARCAgRP/NPY neurons are activated and
ARCPOMC neurons are inhibited [7,31,44e46]. The mechanism con-
trolling the activation of ARCAgRP/NPY neurons in fasting is controversial
because initial studies showed that it depends on intrinsic changes of
neuronal electrical activity, independently of synaptic inputs [45,47],
while further studies reported that it requires an increase in the
number of dendritic spines and the density of stimulatory synapses
onto ARCAgRP/NPY neurons [12]. Fasting-induced inhibition of ARCPOMC

neurons is partially mediated by activation of ARCAgRP/NPY neurons
[48,49]. ARC neurons strongly innervate the PVH, which coordinates a
variety of neuroendocrine, autonomic, and behavioral responses
[21,50e52]. To estimate whether ARC/PVH projections change
under fasting, we used three complementary strategies. First, we
performed immunostaining against AgRP and NPY. AgRP is exclusively
produced in the ARC [53,54], while NPY is also produced in other brain
areas, but NPYþ fibers in the PVH are mainly derived from the ARC
[55]. Imaging of the AgRPþ and NPYþ signals in the PVH indicated
that the density of ARCAgRP/NPY/PVH fibers and the amount of
orexigenic neuropeptides per fiber increase under fasting. Immuno-
staining against POMC confirmed that biosynthesis of anorexigenic
POMC-derived peptides in the ARC is reduced under fasting
[30,46,56]; however, we found that the POMCþ signal in the PVH is
unaltered under this condition. The lack of decrease of POMCþ signal
in the PVH under fasting may result from the accumulation of POMC-
derived peptides in ARCPOMC/PVH projections, since the secretion of
these neuropeptides is reduced under fasting [57,58]. Imaging anal-
ysis of the GFPþ signal in the PVH of NPY-GFP mice also showed that
the density and strength of ARCNPY/PVH fibers increase under
fasting. In addition, axonal labeling studies confirmed that the density
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Figure 4: Fasting-induced increase in ARCAgRP/NPY/ PVH projections is impaired in ARC-ablated mice. (A, B) Representative photomicrographs of Nissl staining of the ARC and
PVH, respectively, of ARC-intact and ARC-ablated mice. Scale bar: 100 mm. (C, D) Representative photomicrographs of the ARC and PVH coronal sections, respectively, of ARC-
intact and ARC-ablated mice in each experimental group, subjected to immunofluorescence against AgRP (red). Insets in each image depict high magnification images of the areas
marked in low magnification images. Arrows point at AgRP-positive cells. Scale bars: 100 mm (low magnification) and 10 mm (high magnification). Cell nuclei labeled with Hoechst
(blue). (E) Bar graph displaying the quantitative analysis of the mean fluorescence intensity of the AgRP-positive signal in the ARC of each experimental group (n ¼ 4e7). (FeH)
Bar graphs displaying the quantitative analysis of the mean fluorescence intensity, fluorescent area and integrated density of the AgRP-positive signal in the PVH of each
experimental group (n ¼ 4e7). Data represent the mean � SEM and were compared by two-way ANOVA. **p < 0.01 and ***p < 0.001 vs. different condition, same group;
#p < 0.05 and ###p < 0.001 vs. same condition, different group.
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Figure 5: Fasting-induced increase of c-Fos levels in the PVH is impaired in ARC-ablated mice.(A, B) Representative photomicrographs of the ARC and PVH coronal sections,
respectively, of ARC-intact and ARC-ablated mice in each experimental group, subjected to chromogenic immunostaining against c-Fos. (C, D) Bar graphs displaying the
quantitative analysis of the number of c-Fos-positive cells in the ARC and PVH, respectively, of each experimental group (n ¼ 4). Data represent the mean � SEM and were
compared by two-way ANOVA. ***p < 0.001 vs. different condition, same group; ###p < 0.001 vs. same condition, different group.
of ARC/PVH fibers increases under fasting. In this case, the
DiI þ signal does not allow for the discrimination of the identity of the
ARC/PVH fibers; however, immunostaining analysis and imaging
analysis in the NPY-GFP mice strongly support the notion that ARCAgRP/
NPY/PVH fibers are one of the main contributors to this observation.
Notably, the increment of the density and strength of ARCAgRP/
NPY/PVH fibers correlates with an activation of the PVH neurons, and
fasting-induced activation of PVH neurons is impaired in ARC-ablated
mice, in which ARCAgRP/NPY/PVH fibers are not affected under fast-
ing. Thus, the density and strength of ARCAgRP/NPY/PVH projections
are enhanced under fasting, and such remodeling seems to play a key
role in the activation of the PVH. In line with the possibility that
ARC/PVH projections remain plastic in the adult brain, a recent study
showed that the reactivation of the leptin receptor expression in adult
mice increases the density of ARC/PVH fibers as compared with
leptin receptoredeficient mice, in which ARC/PVH fibers are
reduced [59,60].
The method used to study the fibers in the PVH is based on the
quantification of the fluorescent signal, and it allows assessing the
density of the fibers (estimated as the total area with specific fluo-
rescent signal in the PVH) and their strength (estimated as the amount
of fluorescent signal per area unit). As described in the Materials and
Methods section, the method was simple to use, quantitative, and
highly sensitive. The fact that similar results were obtained using
MOLECULAR METABOLISM 32 (2020) 69e84 � 2019 The Author(s). Published by Elsevier GmbH. This is an open a
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different experimental strategies reinforces the validity of the
approach. The observation that the strength of the ARCAgRP/NPY/PVH
fibers increases in fasted mice is presumably due to an increase in the
biosynthesis of the orexigenic peptides. The neurobiological bases
underlying the fasting-induced increase of the density of the ARCAgRP/
NPY/PVH fibers are uncertain but may be due to an increase in the
axonal arborization of these projections. Further studies are required to
gain insights about the structural changes that determine the
remodeling of the ARCAgRP/NPY/PVH projections under fasting.
Activation of ARCAgRP/NPY neurons potently increases food intake and is
essential for animals to cope with energy-deficit conditions [61e64].
Notably, the selective activation of ARCAgRP/NPY/PVH projections
evokes feeding, and the pharmacological blockade of ARCAgRP/
NPY/PVH projections reduces food intake induced by activation of
ARCAgRP/NPY neurons [7,8,65,66]. In contrast, the activation of ARCAgRP/
NPY neurons can acutely evoke feeding independently on the inhibition
of ARCPOMC neurons [61]. Thus, the ARCAgRP/NPY/PVH projections
play a major role in the mediation of orexigenic effects of ARCAgRP/NPY

neurons. Importantly, the activation of ARCAgRP/NPY/PVH projections
inhibits PVH neurons that control food intake, which in turn are known
to inhibit food intake [7]. Indeed, acute chemogenetic inhibition of
Single-minded1-expressing PVH neurons increases food intake [7,67],
while its activation reduces food intake [68]. Strikingly, we found that
the number c-Fosþ cells increases in the PVH of fasted mice, as has
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Figure 6: Fasting-induced increase in ARCAgRP/NPY/ PVH projections is impaired in GHSR-deficient mice. (A, B) Representative photomicrographs of the ARC and PVH coronal
sections, respectively, of WT and GHSR-deficient mice in each experimental group, subjected to immunofluorescence against AgRP (red). Insets in each image depict high
magnification images of the areas marked in low magnification images. Arrows point at AgRP-positive cells. Scale bars: 100 mm (low magnification) and 10 mm (high
magnification). Cell nuclei labeled with Hoechst (blue). (C) Bar graph displaying the quantitative analysis of the mean fluorescence intensity of the AgRP-positive signal in the ARC of
each experimental group (n ¼ 4e5). (DeF) Bar graphs displaying the quantitative analysis of the mean fluorescence intensity, fluorescent area and integrated density of the AgRP-
positive signal in the PVH of each experimental group (n ¼ 4e5). (G, H) Bar graphs displaying the quantitative analysis of the number of c-Fos-positive cells in the ARC and PVH,
respectively, of each experimental group (n ¼ 7e11). Data represent the mean � SEM and were compared by two-way ANOVA. *p < 0.05, **p < 0.01 and ***p < 0.001 vs.
different condition, same genotype; ##p < 0.01 and ###p < 0.001 vs. same condition, different genotype.
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Figure 7: Fasting-induced increase in ARCNPY/ PVH projections is impaired in NPY-GFP/GHSR-deficient mice. (A, B) Representative photomicrographs of the ARC and PVH
coronal sections, respectively, of NPY-GFP/WT and NPY-GFP/GHSR-deficient mice in each experimental group. Insets in each image depict high magnification images of the areas
marked in low magnification images. Arrows point at GFP-positive cells. Scale bars: 100 mm (low magnification) and 10 mm (high magnification). Cell nuclei labeled with Hoechst
(blue). (C) Bar graph displaying the quantitative analysis of the mean fluorescence intensity of the GFP-positive signal in the ARC of each experimental group (n ¼ 5e6). (DeF) Bar
graphs displaying the quantitative analysis of the mean fluorescence intensity, fluorescent area and integrated density of the GFP-positive signal in the PVH of each experimental
group (n ¼ 5e6). Data represent the mean � SEM and were compared by two-way ANOVA. **p < 0.01 and ***p < 0.001 vs. different condition, same genotype; #p < 0.05 vs.
same condition, different genotype.
been previously reported [69e71]. Fasting-induced PVH activation is
not observed in ARC-ablated mice. Thus, ARCAgRP/NPY/PVH pro-
jections seem to activate PVH neurons that are presumably not
involved in food intake regulation. Establishing the identity of the PVH
neurons activated by the ARCAgRP/NPY/PVH projections in fasting
conditions is essential to clarify the metabolic consequences of current
observations. ARCAgRP/NPY/PVH projections also target PVH neurons
involved in the regulation of autonomic or neuroendocrine functions.
MOLECULAR METABOLISM 32 (2020) 69e84 � 2019 The Author(s). Published by Elsevier GmbH. This is an open a
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For instance, ARCAgRP/NPY neurons activate the corticotrophin-releasing
factor (CRF)eproducing neurons of the PVH that regulate the activity of
the hypothalamic-pituitary-adrenal axis, which in turn is upregulated
under fasting in order to increase glycemia [72e74]. Thus, it can be
hypothesized that the fasting-induced remodeling of the ARCAgRP/
NPY/PVH projections promotes activation of CRF neurons and further
increases glucocorticoid levels, which would protect fasted mice from
severe hypoglycemia.
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Figure 8: Fasting-induced increase of ARCAgRP/NPY/ PVH projections is impaired in WT mice centrally treated with the GHSR blocker K-(D-1-Nal)-FwLL-NH2. (A, B) Repre-
sentative photomicrographs of the ARC and PVH coronal sections, respectively, of WT mice ICV-treated with vehicle or with the GHSR blocker K-(D-1-Nal)-FwLL-NH2 in each
experimental group, subjected to immunofluorescence against AgRP (red). Insets in each image depict high magnification images of the areas marked in low magnification images.
Arrows point at AgRP-positive cells. Scale bars: 100 mm (low magnification) and 10 mm (high magnification). Cell nuclei labeled with Hoechst (blue). (C) Bar graph displaying the
quantitative analysis of the mean fluorescence intensity of the AgRP-positive signal in the ARC of each experimental group (n ¼ 4). (DeF) Bar graphs displaying the quantitative
analysis of the mean fluorescence intensity, fluorescent area and integrated density of the AgRP-positive signal in the PVH of each experimental group (n ¼ 4). (G, H) Bar graphs
displaying the quantitative analysis of the number of c-Fos-positive cells in the ARC and PVH, respectively, of each experimental group (n ¼ 4e7). Data represent the mean � SEM
and were compared by two-way ANOVA. **p < 0.01 and ***p < 0.001 vs. different condition, same treatment; ##p < 0.01 and ###p < 0.001 vs. same condition, different
treatment.
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ARCAgRP/NPY neurons express the highest levels of GHSR within the
brain [18,22,75], and they are located in the ventromedial region of the
ARC, near fenestrated capillaries, to sense plasma ghrelin [20,76e78].
ARCAgRP/NPY neurons are strongly activated by ghrelin, and they
mediate the orexigenic effects of the circulating hormone [18,79e81].
Previous evidence has shown that ghrelin stimulates neuronal plas-
ticity [82]. In particular, ghrelin treatment in mice increases excitatory
inputs onto ARCAgRP/NPY neurons [31,44]. Also, ghrelin stimulates spine
reorganization in hippocampal slice cultures [83], promotes the for-
mation of hippocampal dendritic spine synapses, and facilitates long-
term potentiation in vivo [84]. In vitro, ghrelin stimulates synapse
formation of hippocampal neurons [85] and neurite outgrowth in
dopamine neurons of the ARC [86]. We show here that fasting-induced
morphological remodeling of the ARCAgRP/NPY/PVH projections and
PVH activation require GHSR signaling. Of note, GHSR signals via
ghrelin-dependent and ghrelin-independent (or constitutive) modes,
and both modalities of GHSR signaling are upregulated in fasting
states, when plasma ghrelin and hypothalamic GHSR levels increase
[30,87]. Here, both modes of GHSR activity were abrogated in GHSR-
deficient mice as well as in K-(D-1-Nal)-FwLL-NH2etreated mice
because this compound blocks ghrelin-evoked and constitutive GHSR
activities [30,39]. Thus, current results do not allow us to discriminate
whether the different modalities of GHSR activity play a distinctive role
on the remodeling of the ARCAgRP/NPY/PVH projections.
The early nutritional and endocrine environment causes effects on the
ARC projections that remain during adulthood [88e90]. In this regard,
a previous study showed that the pharmacological blockage of ghrelin
during the preweaning period increases the density of the ARCAgRP/
NPY/PVH fibers in the adult mouse brain and that ghrelin knockout
mice show a higher density of ARCAgRP/NPY/PVH fibers in the pre-
weaning period, which then normalizes during adulthood [91]. The
referenced study also showed that ghrelin does not affect the density
of ARCAgRP/NPY/PVH fibers in the adult brain, suggesting that ghrelin-
evoked GHSR signaling alone is not sufficient to mediate such effects
[91]. In line with the notion that ghrelin inhibits the development of
ARCAgRP/NPY/PVH projections during early postnatal life, we found
that adult GHSR-deficient mice displayed a higher density of ARCAgRP/
NPY/PVH fibers in the ad libitum fed condition. Thus, it seems that
GHSR signaling inhibits the development of ARC/PVH neuronal
projections in the preweaning stages and then is required for the
fasting-induced increase of the density of ARCAgRP/NPY/PVH fibers in
adulthood. The neurobiology underlying these apparently divergent
effects remains uncertain. Notably, ARCAgRP/NPY neurons are stimulated
by leptin during the preweaning period and inhibited in the adulthood
stages, and this developmental switch has been attributed to the
parallel acquisition of the functional KATP channels [92]. In addition,
chemotrophic factors regulating axonal growth are developmentally
regulated, and recent evidence has highlighted their role as early
regulators of the connectivity of the hypothalamic circuits controlling
food intake [90,93]. The potential role of these chemotrophic factors in
controlling the remodeling of hypothalamic projections during adult-
hood remains unknown.
Finally, it is important to stress that we investigated the remodeling of
the ARC/PVH projections and the implications of GHSR activity in 48-h
fasted mice because previous studies have highlighted the fact that
severe energy-deficit conditions are required to uncover some essential
roles of ghrelin [15]. Such experimental conditions may have favored our
ability to detect remodeling of the ARCAgRP/NPY/PVH projections, since
changes of axon structure require some time to take place [94]. Inter-
estingly, a recent study using diffusion-tensor imaging combined with a
probabilistic tractography algorithm suggested that the connectivity is
MOLECULAR METABOLISM 32 (2020) 69e84 � 2019 The Author(s). Published by Elsevier GmbH. This is an open a
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altered in the hypothalamus of patients with anorexia nervosa [95].
Thus, current observations may help to model the hypothalamic adap-
tations that occur in response to chronic conditions with extreme energy
deficit, such as cachexia, anorexia, and malnutrition.

5. CONCLUSIONS

Overall, we provide neuroanatomical and functional evidence indi-
cating that the ARCAgRP/NPY/PVH projections undergo major
morphological remodeling under fasting and that GHSR signaling is
required for these effects. These findings highlight the fact
that connectivity between hypothalamic circuits regulating food
intake is highly plastic in the adult brain and reveal a novel role for
ghrelin.
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