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Visual processing refers to the process of perceiving, analyzing, synthesizing,

manipulating, transforming, and thinking of visual objects. It is modulated by both

stimulus-driven and goal-directed factors and manifested in neural activities that extend

from visual cortex to high-level cognitive areas. Extensive body of studies have

investigated the neural mechanisms of visual object processing using synthetic or curated

visual stimuli. However, synthetic or curated images generally do not accurately reflect

the semantic links between objects and their backgrounds, and previous studies have

not provided answers to the question of how the native background affects visual target

detection. The current study bridged this gap by constructing a stimulus set of natural

scenes with two levels of complexity and modulating participants’ attention to actively

or passively attend to the background contents. Behaviorally, the decision time was

elongated when the background was complex or when the participants’ attention was

distracted from the detection task, and the object detection accuracy was decreased

when the background was complex. The results of event-related potentials (ERP) analysis

explicated the effects of scene complexity and attentional state on the brain responses in

occipital and centro-parietal areas, which were suggested to be associated with varied

attentional cueing and sensory evidence accumulation effects in different experimental

conditions. Our results implied that efficient visual processing of real-world objects may

involve a competition process between context and distractors that co-exist in the native

background, and extensive attentional cues and fine-grained but semantically irrelevant

scene information were perhaps detrimental to real-world object detection.

Keywords: visual processing, object detection, native background, scene complexity, attentional state, event-

related potential

1. INTRODUCTION

Natural scenes are highly complex and diverse, containing a massive variety of visual information
that would require an unrealistic amount of cognitive resources to be effectively processed (Zhang
et al., 2016). We humans benefit from sophisticated attention mechanisms that are modulated by
bottom-up stimulus-driven and top-down goal-directed factors (Yantis, 2000) and help us select
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and process vital information to ensure the functioning of
higher-level mental processes (Wolfe, 2003). Top-down and
bottom-up attentions, including working memory, competitive
selection, top-down sensitivity control, and bottom-up salience
filters (Knudsen, 2007), jointly create a biased representation of
the external visual world according to both visual salience (i.e.,
target-background contrast) and task relevance (i.e., attended or
unattended) (Spragure et al., 2018). As task difficulty increases,
such as to distinguish between objects with similar features
(Boudreau et al., 2006) or with task-irrelevant disturbances
(Desimone and Duncan, 1995), higher quality of encoded
information is required, and a corresponding enhancement of
partial neural responses may be produced (Painter et al., 2014).

Visual objects processing relies on the neural encoding of
visual information from both target and background (Luo
and Ding, 2020). The background surrounding a visual object
has a significant impact on target detection and identification
performance (Naber et al., 2012), even more so than the semantic
category of the object itself (Hagen and Laeng, 2016). The
background seems to be a double-edged sword for visual object
processing. On the one side, background context can promote the
effective processing of visual objects (Sun et al., 2011; Barenholtz,
2014) and speed up the behavioral responses by guiding human
attention oriented voluntarily to spatial position or visual features
(Treue and Trujillo, 1999). On the flip side, the visual background
may be accompanied by task-irrelevant interferences, which
often inevitably reduces the task performance (Theeuwes,
2004). Specifically, in visual target detection, the presence of
a salient task-irrelevant background increased the false alarm
rate and slowed down the speed for decision-making (Luo and
Ding, 2020). In visual target classification, the performance for
classify objects embedded in complex backgrounds (especially in
semantically inconsistent backgrounds) was significantly lower
than that for isolated objects (Davenport and Potter, 2004), which
may be attributed to the increased difficulty of target-background
splitting in complex scenes (Torralbo and Beck, 2008; Prass et al.,
2013).

Most previous studies have used synthetic or curated visual
stimuli to investigate the top-down and bottom-up attentions in
visual processing, such as embedding natural (Sun et al., 2011;
Prass et al., 2013; Hagen and Laeng, 2016) or artificial (Smout
et al., 2019; Luo and Ding, 2020) objects into different natural
or artificial scenes, or adjusting images to various resolutions
(Torralba, 2009; Barenholtz, 2014). Although these synthetic
and curated stimuli can introduce a controlled amount of
variation or difficulty to the task and allow the investigation
of neural coding in relation to these factors (Cadieu et al.,
2014), they are difficult to expose or maintain the contextual
effects in real world, thus inevitably strips away the effects of
some unknown but crucial factors in the native background.
For example, the “animate monitoring” hypothesis (New et al.,
2007) could be reversed due to the adjustment of the surrounding
scenes (Hagen and Laeng, 2016). We argue that the coherent
contextual information is essential for studying the real-world
object processing problems.

The current study investigated the effects of native
background on visual object detection through a vehicle

detection task under different scene complexity and background
task-relevance conditions. In our experiments, visual stimuli
with various background contents such as woods, buildings,
roads, parking lots, construction sites, or fields were collected
from the VEDAI dataset (Razakarivony and Jurie, 2016). The
scene complexity was defined by a combination of qualitative
and quantitative measures. The presentation condition of simple
scene was compared with that of complex scene. Moreover,
the task-relevance of visual background was controlled by an
attention-guiding strategy. The condition in which participants
fully focused on the vehicle detection task (single-task) was
compared with condition in which participants should also
actively observe the background details while performing the
vehicle detection task (dual-task). Brain responses were recorded
using electroencephalogram (EEG) while the participants
undertook the tasks.

In visual object detection, all content within the visual
field competes for processing resources, with distractors in
the background inevitably attracting bottom-up attention and
competing with objects for neural representations (Cave and
Chen, 2016), and top-down attention provides a bias signal to
resolve competing interactions between object and distractors
in the visual cortex according to task requirements (Scalf et al.,
2013). We speculate that object detection in native background
may also involve competition between different attributes in
the background, and this competition can be biased by both
bottom-up and top-down attentional mechanisms. We expect
to see distinct brain response dynamics in scenes with varied
scene complexity or with different attention states (attend or
unattended) to the background.

2. MATERIALS AND METHODS

2.1. Participants
Fifty healthy individuals (26 males and 24 females) from Xidian
University [age range: 21–31 years, mean = 23.98, standard
deviation (SD)= 1.82] participated in this study. All participants
were right-handed, had normal or corrected-to-normal vision,
and had no history of psychiatric or neurological disorders.
Two participants (one male and one female) were discarded
in the ERP analysis because of excessive noise in EEG data.
Consequently, the EEG data from a total of 48 participants were
analyzed. All participants provided written informed consent
prior to the start of the experiment and received monetary
payment. The experimental procedures were conducted in
accordance with the Helsinki Declaration of 1975, as revised
in 2000.

2.2. Stimuli
In the experiment, stimuli were presented on a 23-inch liquid
crystal display monitor with a resolution of 1960 × 1080 pixel2

and a refresh rate of 60 Hz, using the Psychophysics Toolbox
(version 3) presentation software (http://www.psychtoolbox.org)
under MATLAB (version 18a). Participants were seated in
a comfortable armchair in an electrically shielded laboratory
with a viewing distance of approximately 70 cm. The pipeline
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FIGURE 1 | Pipeline of stimulus set generation and EEG data analysis.

of stimulus set generation and data analysis in this study is
illustrated in Figure 1.

Stimuli for vehicle detection were collected from the VEDAI
dataset (Razakarivony and Jurie, 2016) in the publicly available
Utah AGRC database (http://gis.utah.gov/). Only the large-size
(1,024× 1,024 pixel2) aerial ortho-normalized color images were
used in this study. We manually cropped 2,416 patches from
the color images (1,208 target patches, each containing only
one vehicle and of similar size across patches, and 1,208 non-
target patches) and then resampled the patch size to 240 ×

240 pixel2. Considering that these patches were designed to be
viewed by human subjects, a visual check of scene complexity
was first performed based on the type, number, distribution, and
similarity of background items. Patches with high confidence
were directly assigned to the simple or complex group, and other
indistinguishable patches were assigned to the moderate group.
Although the moderate patches could be included in either

the simple or complex group using the subsequent quantitative
measures, they may reduce the intergroup differences in
brain response signals associated with scene complexity and
make subsequent analysis challenging. Therefore, the moderate
group (29.5% of the total patches) was excluded from the
experiment. Thereafter, the remaining patches were further
evaluated quantitatively in terms of scene complexity, brightness,
and vehicle size. The scene complexity was assessed by the
information entropy and gray-scale uniformity indices (Peters
and Strickland, 1990), the brightness was characterized by the
mean value of the intensity channel in HSI space, and the size of
each vehicle was calculated based on the four-point coordinates
of its manually-labeled location marker. Outliers exceeding 1.5
times the interquartile range of information entropy, gray-scale
uniformity, brightness, or vehicle size measures were sequentially
removed from the stimulus set. Since the removal of outliers
based on one measure may result in new outliers for other
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measures, the outliers’ removal process was iterated many times.
Finally, 17.5% of the total candidate patches were removed, and
an equal number of patches of four types were retained.

The above screening procedure eventually yielded 1,280
patches, including 320 patches of each of the four types: simple
scene with vehicle (simple-scene target), simple scene without
vehicle (simple-scene non-target), complex scene with vehicle
(complex-scene target), and complex scene without vehicle
(complex-scene non-target). The simple-scene and complex-
scene stimulus groups showed significant difference in scene
complexity, as measured by the indices of information entropy
(p < 0.001, two-sample t-test) and gray-level uniformity (p <

0.001, two-sample t-test). There was no significant difference
in brightness (p = 0.553, two-sample t-test) or vehicle size (p
= 0.478, two-sample t-test) between the two groups (Table 1).
Moreover, there was no significant difference in information
entropy (target vs. non-target: 6.87 ± 0.38 vs. 6.85 ± 0.37, mean
± SD, p= 0.253, two-sample t-test), gray-level uniformity (target

TABLE 1 | Quantitative indicators of stimulus patches.

Simple scene Complex scene p-value

InfoEntropy 6.55 ± 0.26 7.16 ± 0.18 <0.001

Uniform 31.09 ± 13.34 45.98 ± 18.25 <0.001

Luminance 0.44 ± 0.07 0.44 ± 0.07 0.553

Vehicle size 642.31 ± 45.10 639.83 ± 43.30 0.478

InfoEntropy, information entropy; Uniform, gray-scale uniformity. Values in the table are

expressed as mean ± SD. The p-values were obtained with two-tailed two-sample t-test.

vs. non-target: 39.09 ± 17.53 vs. 38.18 ± 17.76, mean ± SD,
p = 0.356, two-sample t-test), and brightness (target vs. non-
target: 0.443 ± 0.067 vs. 0.440 ± 0.065, mean ± SD, p = 0.383,
two-sample t-test) between target and non-target patches.

Some examples of stimuli are shown in Figure 2. The stimulus
set for practicing was constructed by randomly selecting 20
patches from each type and randomly rotating each patch by
0, 90, 180, or 270 degrees once. In the testing phase, we
employed the oddball paradigm commonly used in previous
target detection studies (O’Connell et al., 2012; Luo and Ding,
2020) and constructed the stimulus set for testing using one
random rotation of the remaining target patches and three
random rotations of the remaining non-target patches, so
the ratio of the number of target to non-target patches was
1:3 (600:1800).

2.3. Experimental Design
The experiment consisted two tasks: (1) the single-task, in
which the participants were fully focused on vehicle detection
and made keystroke judgments about whether the stimulus
contained a vehicle or not, and (2) the dual-task, in which the
participants should actively observe the background scenes while
performing the vehicle detection task. In the dual-task, in order
for participants to actively attend to the background details, all
practicing stimuli and one-third of the testing stimuli (50 for
each type, for the sake of experiment time) were followed by a
two-choice question on scene similarity. For each question, two
candidate patches with the same resolution as the stimuli were
presented side-by-side as illustrated in Figure 3. Participants
were informed that the presence or absence of a vehicle should

FIGURE 2 | Stimuli for vehicle detection. From top to bottom each row: complex-scene target, complex-scene non-target, simple-scene target and simple-scene

non-target. Vehicles are marked with yellow boxes.
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FIGURE 3 | Examples of the two-alternative forced-choice scene similarity judgment questions. Red markers under the candidates indicate that their scenes were

more similar to that of their corresponding stimuli due to the presence of the same building (A), similar building layouts (B), similar building color (C), similar road

direction (D), similar pavement lines (E), or similar scene contents (F).

not be taken into account in judging the similarity of the
scenes. All candidate patches were also manually cropped from
the VEDAI color images. One of the candidate patches has a
scene more similar to that of the previous stimulus, such as
with the same buildings (Figure 3A), similar building layouts
(Figure 3B) or building color (Figure 3C), similar road direction
(Figure 3D) or pavement lines (Figure 3E), or similar scene
contents (Figure 3F). Candidate patches with similar scenes
appeared randomly at the left or right position, and participants
were asked to press a key to answer which candidate patch was
more similar to the previous stimulus.

For both single and dual tasks, prior to the testing phases,
participants were cued to perform a practicing block to adapt
to the experimental environment and key pressing operations.
During the single-task practicing, a black crosshair was firstly
displayed in the center of screen for 2 s to remind participants
that the experiment was about to begin. Then, a stimulus for
vehicle detection was presented centrally until the participants
pressed a judgement key, and a feedback image would appear
on the screen for 1 s. If the stimulus contained a vehicle, the
vehicle would bemarked with a yellow box in the feedback image;
otherwise, the feedback image was the same as the stimulus.
During the dual-task practicing, the presentation of stimuli and
feedback images was the same as that in the single-task, then
a black crosshair inter-stimulus interval (ISI) was presented
for 1.25–1.5 s followed by a 1-s red crosshair informing that
the scene similarity judgment question was about to appear.
More importantly, since participants needed to make lateral eye

movements when observing candidates for the scene similarity
questions, the red crosshair before the question could guide
participants’ attention to focus on the center of the screen, thus
avoided the unnecessary eye movements that would affect the
quality of brain response signals. After the participants finished
the scene similarity judgment, a feedback would appear on the
screen for 1 s with the incorrect option being obscured and
the basis for judgement being presented in text form below the
correct option.

The temporal structure of testing blocks were similar with
that of practicing blocks, except that the testing blocks no
longer provided feedbacks. The temporal structures of stimuli
presentation in testing blocks are shown in Figure 4. Each single-
task trial contained a stimulus for vehicle detection and an ISI
varying between 1.25 and 1.5 s. Each dual-task trial contained a
stimulus for vehicle detection followed by a dual-task module.
In the dual-task, one-third trials randomly entered the dual-task
module from entrance-1 and went through a black crosshair ISI
(1.25–1.5 s), a red crosshair (1 s), a scene similarity judgment
question, and another black crosshair ISI (1.25–1.5 s). The other
two-third trials entered the dual-task module from entrance-2,
which just contained a black crosshair ISI (1.25–1.5 s).

The whole experiment was divided into two sessions, each
with one 40-trials single-task practicing block, three 200-trials
single-task testing blocks, one 40-trials dual-task practicing
block, and five 120-trials dual-task testing blocks. A single-task
or dual-task practicing block consisted of all four stimulus types,
each with 10 trials, and all trials were presented randomly. The
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FIGURE 4 | Temporal structures of stimulus presentation. (A) Paradigm of the single-task. Each trial consisted of a vehicle detection stimulus and an inter-stimulus

interval. (B) Paradigm of the dual-task. Each trial consisted of a vehicle detection stimulus and a dual-task module. One-third trials entered the dual-task module from

entrance-1 and the remaining trials from entrance-2.

mean duration of a single-task block was 418.0 s, and the mean
duration of a dual-task block was 392.8 s. The stimuli in the
testing set were first equally split to the two tasks by type, and
then equally split to the two sessions by type. Thereafter, the
testing stimuli were randomly distributed to three blocks (single-
task) or five blocks (dual-task), respectively. The order of all
the randomizations was different for each participant. The two
experimental sessions for the same participant were performed
over 2 days in order to keep the participants in good spirits during
the experiment. In the first session, participants performed the
single-task first, and in the second session they performed the
dual-task first.

2.4. Behavioral Data Recording and
Analysis
In the experiment, the participants used two keys (F and J)
for behavioral feedback on both vehicle detection and scene
similarity judgment tasks, with key F pressed with the left hand
and key J pressed with the right hand. In the vehicle detection
task, 25 participants (13 males, 12 females, named Group A) were
asked to press F when a vehicle was detected and J when no
vehicle was detected, while the other 25 participants (13 males,
12 females, namedGroup B) were asked to press the opposite key.
In the scene similarity judgment task, participants were asked to
press the key on the same side of the candidate image that they
perceived as more similar to the previous stimulus.

During the experiment, the participants were required to
stay focused and perform the task quickly and accurately, and
were asked to take a brief break (about 3 min) after each block
to keep them alert for the tasks. Participants’ keystrokes for
vehicle detection, keystrokes for scene similarity judgment, and
the reaction time (RT) were recorded, and their vehicle detection
and scene similarity judgment accuracies were calculated. The
difference between participants’ behavioral data under each
experimental condition (i.e., simple-scene vs. complex-scene,

and single-task vs. dual-task) were examined using two-sample
t-test (two-tailed).

2.5. EEG Recording and Preprocessing
Participants were fitted with an ActiCHamp EEG system supplied
by the Brain Products Company. Sixty-four channels, including
one reference channel (channel Iz) and sixty-three EEG channels,
were positioned on the head according to the international
standard 10-10 system. The EEG sampling rate was 1,000 Hz and
the impedance of each channel was kept below 10 k� prior to the
beginning of recording.

Preprocessing of the EEG recording of each participant was
conducted offline using the EEGlab toolbox (Delorme and
Makeig, 2004) withMATLAB (version 18a). First, the continuous
EEG data were down sampled to 250 Hz and applied 0.5–100
Hz band-pass and 50 Hz notch filters. Second, the data were
re-referenced to the average of all scalp electrodes. Third, the
data were segmented into 1,200 ms epochs (200 ms before and
1,000 ms after trial onset). Improbable epochs were discarded
using the probability test (parameters: 6 SD for individual
electrode channels, 2 SD for all electrode channels; Smout
et al., 2019), and about 5.0% of the epochs were removed.
We then conducted independent components analysis (ICA) on
the remaining epochs and identified components representing
blinks, saccades, andmuscle artifacts with the help of the SASICA
plugin (Chaumon et al., 2015) for EEGlab. On an individual
average, about 25.0% of the independent components were
removed as artifacts. Data from two participants in Group A
with too many artifacts were discarded completely, so the total
number of participants for the follow-up EEG analysis was 48.
Finally, the artifact-free epochs were aligned to the stimulus onset
and baseline corrected based on the mean response from 0 to 200
ms prior to each stimulus onset.

The subsequent ERP analysis was conducted based on
epochs with correct behavioral feedbacks. The EEG epochs were
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FIGURE 5 | Topography of the grand-averaged EEG response at different time points. (A) Brain response topographies of all participants. (B) Brain response

topographies among participants in group A and B.

sorted into the following experimental bins depending on the
presence or absence of target, scene complexity, and task type:
2 target conditions (target and non-target) × 2 scene conditions
(simple-scene and complex scene) × 2 task types (single-task
and dual-task).

2.6. ERP Analysis
The ERP analysis was carried out in the occipital and centro-
parietal brain regions that showed strong EEG responses during
the experiment, as shown in Figure 5A. Specifically, two clusters
of electrodes were selected: six occipital EEG electrodes (O1,
O2, PO3, PO4, PO7, PO8) and five central centro-parietal EEG
electrodes (Cz, CPz, Pz, CP1, CP2). Epochs in each bin were
averaged within individual participant to produce the ERPs of
the two clusters of electrodes. It is worth noting that we have
examined the ERPs from bilateral centro-parietal and parietal
electrodes (CP3, CP4, CP5, CP6, P1, P2, P3, P4, P5, P6) that
also showed strong EEG responses. The ERP waveforms in the
bilateral centro-parietal and parietal electrodes were somewhat
similar to those of the central centro-parietal electrodes but
with less significant differences between experimental conditions.
Therefore, the subsequent ERP analysis were conducted using the
central centro-parietal electrodes (Cz, CPz, Pz, CP1, CP2). The
choice of the central centro-parietal EEG electrodes in this study
was consistent with that of previous ERP study on visual target
detection (Luo and Ding, 2020).

For inter-condition ERP comparison, two-tailed two-sample
t-test was performed between experimental bins, with a

controlled false discovery rate (FDR) p < 0.05. We confirmed
that the data came from the normal distributions with equal
variance before conducting the two-sample t-test. In order to
examine the difference between the latencies of brain response,
the Jackknife approach (Miller et al., 1998) was adopted
that iteratively removed one participant and computed the
peak latency averaged over the remaining participants. The
significance level was then computed on the basis of the
mean peak latency across all participants and the standard
deviation of the latencies obtained using the Jackknife approach
(Luo and Ding, 2020).

2.7. ERP Analysis on Participants With
High and Low Performance
To investigate the relationship between ERP and participants’
behavioral performance, we divided the participants into high
and low performance groups based on their reaction time in
vehicle detection or accuracy in scene similarity judgment. For
the grouping of participants based on reaction time, between-
group differences were analyzed using single-task and dual-task
ERPs, and for the grouping of participants based on accuracy
in scene similarity judgment, between-group differences were
analyzed using dual-task ERPs. For each condition, sixteen
high/low performers were selected for comparison because the
remaining participants showed relatively small differences. We
also tested the choice of 12 high/low performers and found no
significant change in the results of the ERP analysis.
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TABLE 2 | Results of behavioral test.

Simple scene Complex scene p-value

RT(s) Single-task 0.599 ± 0.092 0.811 ± 0.190 <0.001

Dual task 0.998 ± 0.344 1.267 ± 0.446 <0.001

p-value <0.001 <0.001

Acc-VD Single-task 0.992 ± 0.009 0.970 ± 0.014 <0.001

Dual task 0.990 ± 0.010 0.978 ± 0.012 <0.001

p-value 0.279 0.004

Acc-SJ 0.857 ± 0.067 0.853 ± 0.077 0.748

RT, reaction time; Acc-VD, vehicle detection accuracy; Acc-SJ, scene similarity judgment

correction rate. Values in the table are expressed as mean ± SD. The p-values were

obtained with two-tailed two-sample t-test.

When reaction time in vehicle detection was used as the
performance indicator, the short RT group (RT= 0.729± 0.080 s,
mean ± SD) and long RT group (RT = 1.147 ± 0.133 s, mean
± SD) were significantly differed in RT (p < 0.001, two-sample
t-test) and had no significant difference in vehicle detection
accuracy (short RT group vs. long RT group = 0.983 ± 0.008 vs.
0.986± 0.008, mean± SD, p= 0.146, two-sample t-test).

When accuracy in scene similarity judgment was used as the
performance indicator, the high accuracy group (accuracy =

0.925 ± 0.022, mean ± SD) and low accuracy group (accuracy
= 0.774± 0.041, mean± SD) were significantly differed in scene
similarity judgment accuracy (p < 0.001, two-sample t-test) and
had no significant difference in time spend on judgements (high
accuracy group vs. low accuracy group= 1.587± 0.535 s vs. 1.433
± 0.252 s, mean± SD, p= 0.320, two-sample t-test).

3. RESULTS

3.1. Results of Behavioral Test
Participants’ vehicle detection accuracy, vehicle detection RT, and
scene similarity judgment accuracy are shown in Table 2. In
both single-task and dual-task, participants’ RT was significantly
longer (p < 0.001, two-sample t-test) and vehicle detection
accuracy was significantly lower (p < 0.001, two-sample t-test)
in complex-scene than that in simple-scene, which suggested
that the high complexity of visual scene interferes with object
detection. Furthermore, for simple-scene stimuli, when the dual-
task was engaged, participants’ vehicle detection accuracy was
not significantly changed (p = 0.279, two-sample t-test), but
their RT was significantly longer (p < 0.001, two-sample t-
test) than that in the single-task, which indicated that attention
to the background details of simple-scene reduced the speed
but didn’t influenced the accuracy for target detection. For
complex-scene stimuli in the dual-task, participants’ vehicle
detection accuracy was higher (p = 0.004, two-sample t-test)
and RT was significantly longer (p < 0.001, two-sample t-
test) than that in the single-task, which demonstrated that
attention to the background details slowed down the speed but
improved the accuracy of target detection in complex scenes.
The accuracy of scene similarity judgments for simple-scene

and complex-scene didn’t have significant difference (p = 0.748,
two-sample t-test), which indicated that the difficulty of scene
similarity judgments was well-balanced between the two groups
of scene complexity and would not introduce a biased factor
into participants’ vehicle detection. It is worth noting that only
one-third of the testing stimuli in the dual-task were followed
by scene similarity judgement questions, which inevitably led
participants to selectively observe the background of a portion
of the stimuli. Although this issue was inevitable, it did not
have a significant impact on the current study because the
questions arose randomly, as evidenced by a significantly higher
correction rate of participants’ scene similarity judgment (85.5%)
than random (i.e., 50%). In addition, there was no group-wise
differences in RT or vehicle detection accuracy between genders
or keystroke hands (p > 0.05, two-sample t-test).

Taking above behavioral results together, both the scene
complexity and task-relevance of background had significant
effects on participants’ target detection performance at
group level.

3.2. Results of ERP Analysis
As shown in the topography of the grand-averaged responses
in Figure 5A, the strongest brain response initially concentrated
in the occipital regions and then shift to the centro-parietal
regions over time. As the participants were asked to respond
with a keystroke to report their detection results, the late ERP
components may also reflect other neural processes such as the
movement-related potentials (Kok, 1986). However, we believe
that our results were not dominated by motor-related responses
because we have eliminated the effects of lateralized signals on
the holistic results by experimental design. In our experiments,
participants in the same group responded less to target with
one hand and more to non-target with the other hand, so that
the motion-related potentials within one participant group were
lateralized approximately 700 ms after stimulus onset, as shown
in Figure 5B. Nevertheless, since we divided the subjects into
two groups using opposite hands for the keystroke response, the
topography of the grand-averaged responses at different time
points (Figure 5A) showed no obvious laterality holistically.

The ERP from occipital EEG electrodes were compared
between the experimental conditions (Figure 6). Significant
ERP differences between experimental conditions occurred in
amplitude rather than latency. Specifically, the target-evoked
ERPs had significant stronger amplitude than non-target-evoked
ones in simple-scene (Figure 6A, 304–372ms in single-task,
320–420 ms in dual-task, p < 0.05, two-sample t-test, FDR
corrected), which indicated that targets and non-targets evoked
occipital responses of varying strength when scene complexity
was simple. When there was no target in the stimuli, the
ERPs corresponding to complex-scene showed overall higher
amplitude than that corresponding to simple-scene (Figure 6B),
which was significant in single-task (328–424 ms, p < 0.05, two-
sample t-test, FDR corrected). This result indicated that higher
background complexity elicited stronger occipital response
especially when participants’ attention was focused. The ERPs
in the single-task had an overall stronger peak amplitude than
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FIGURE 6 | Comparison of ERPs in the occipital EEG electrodes. (A) ERPs evoked by target (red) and non-target (blue), (B) ERPs in simple-scene (red) and

complex-scene (blue), (C) ERPs in single-task (red) and dual-task (blue). The shaded area indicates 95% confidence interval. Shaded gray regions denote the time

intervals where there are significant differences between the two conditions (p < 0.05, two-sample t-test, FDR corrected).

those in the dual-task (Figure 6C), which was significant for non-
target stimuli in complex-scenes (344–396 ms, p < 0.05, two-
sample t-test, FDR corrected). This result implied that attention
distraction may weaken the occipital response in target detection
especially when distractors were complex.

The ERPs from centro-parietal EEG electrodes were compared
between experimental conditions (Figure 7). Target-evoked
ERPs had overall significant stronger amplitudes than non-
target-evoked ones (Figure 7A, p < 0.05, two-sample t-test,
FDR corrected), which may be due to an imbalanced effect of
the samples that made targets and non-targets evoked brain

responses of varying strength in the centro-parietal regions,
especially when participants’ attention was focused (i.e., in the
single-task). The ERPs in simple-scene had significantly stronger
peak amplitude for target in the time interval of 356–436 ms
(Figure 7B, p < 0.05, two-sample t-test, FDR corrected) than
that in complex-scene, and had similar amplitudes under other
experimental conditions (p > 0.05, two-sample t-test, FDR
corrected). Moreover, the ERPs in simple-scene showed overall
shorter peak latency than that in complex-scene (simple scene
vs. complex scene = 520.0 ± 26.6 ms vs. 608.0 ± 19.5 ms,
Mean ± SD, p < 0.001, two-sample jackknife procedure), which
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FIGURE 7 | Comparison of ERPs in the centro-parietal EEG electrodes. (A) ERPs evoked by target (red) and non-target (blue), (B) ERPs in simple-scene (red) and

complex-scene (blue), (C) ERPs in single-task (red) and dual-task (blue). The shaded area indicates 95% confidence interval. Shaded gray regions denote the time

intervals when there are significant differences between the two conditions (p < 0.05, two-sample t-test, FDR corrected).

implied that an increase in background complexity may elongate
the peak latency of centro-parietal response. The peak latency
of ERPs in the dual-task was significant longer than that in
the single-task (p < 0.001, two-sample Jackknife test), and the
amplitude evoked by targets was similar between tasks (p >

0.05, two-sample t-test, FDR corrected) while that evoked by
non-targets was significant stronger in the dual-task (p < 0.05,
two-sample t-test, FDR corrected) (Figure 7C). These results
indicated that attention distraction could cause a significant time
delay in the centro-parietal responses, and active observation for

background details could increase the amplitude of the centro-
parietal responses to non-target stimuli.

3.3. Results of ERP Analysis on
Participants With High and Low
Performance
For the short and long RT groups, the ERP in the occipital
electrodes differed in a time interval of 340–388 ms (Figure 8A,
left). The two groups had comparable peak latency (p = 0.159,
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FIGURE 8 | ERP differences between participants with high and low performance. (A) The occipital (left) and centro-parietal (right) ERPs of short (red) and long (blue)

RT groups, the ERPs were from both the single-task and the dual-task. (B) The occipital (left) and centro-parietal (right) ERPs of high (red) and low (blue) accuracy

groups, the ERPs were from the dual-task. The shaded area indicates 95% confidence interval. Shaded gray regions denote the time intervals when there were

significant differences between the two groups (p < 0.05, two-sample t-test, FDR corrected).

two-sample jackknife procedure), while the short RT group
showed significant stronger peak amplitude than that of the long
RT group (p < 0.05, two-sample t-test, FDR corrected). For the
ERPs in the centro-parietal electrodes (Figure 8A, right), the two
groups had comparable peak amplitude (p= 0.960, two-sample t-
test), while the short RT group showed significant shorter latency
(short RT group vs. long RT group= 500.0± 13.1 ms vs. 620.0±
15.9ms, mean± SD, p< 0.001, two-sample jackknife procedure).
These results indicated that the amplitude of occipital response
was positively related with participants’ reaction speed in target
detection, while the latency of centro-parietal response was
positively related with participants’ reaction time.

For the high and low accuracy groups, significant ERP
differences between experimental conditions occurred in

amplitude rather than latency. The ERPs in the occipital
electrodes differed in a time interval of about 100–400
ms (Figure 8B, left), and the ERPs in the centro-parietal
electrodes differed after 300 ms post stimulus onset (Figure 8B,
right). The high accuracy group had higher amplitude in
both occipital and centro-parietal ERPs. Specifically, the
high accuracy group had significant stronger occipital
response amplitude in the time interval of 132–164 ms
(p < 0.05, two-sample t-test, FDR corrected), and had
significant stronger centro-parietal response amplitude in
the time interval of 296–396 ms (p < 0.05, two-sample t-test,
FDR corrected), which implied that the amplitude of EEG
response was positively related with participants’ background
observation performance.
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4. DISCUSSION

How the human brain processes natural scenes is a fundamental
question (Vinje and Gallant, 2000). Previous studies investigated
the neural mechanisms of visual processing using synthetic or
curated stimuli (Davenport and Potter, 2004; Torralba, 2009;
Sun et al., 2011; Prass et al., 2013; Barenholtz, 2014; Hagen and
Laeng, 2016; Smout et al., 2019; Luo and Ding, 2020). We suggest
that studying the mechanism of visual processing with objects
in their native backgrounds would better capture the essence of
the real-world problem. The current study constructed a new
stimulus set with two levels of scene complexity and guided
participants actively or passively attend to the background details
in the vehicle detection task. Results from behavioral tests and
ERP analysis revealed the effects of scene complexity and task-
relevance of background on participants’ response time, accuracy
and brain response in vehicle detection. We suggest that these
phenomena may be attributed to the attentional cueing and
sensory evidence accumulation effects of native backgrounds.

4.1. Native Background and Visual Object
Processing
Effective processing for visual objects relies on the neural
encoding of both target and background (Luo and Ding, 2020).
The visual background may contain task-relevant contextual
information and task-irrelevant distractors, and has a significant
impact on participant’s performance (Naber et al., 2012).
Concretely, context is a statistical property of the world that
provides critical information to facilitate faster andmore accurate
resolution of perceptual reasoning tasks (Mottaghi et al., 2014).
Distractors, on another note, are task-irrelevant information
that may modulate cortical responses and interfere with task
performance (Cave and Chen, 2016; Itthipuripat et al., 2019).
Extensive body of studies have demonstrated the positive effects
of context in perceptual tasks such as object detection, object
recognition, and object segmentation. Specifically, context is
an effective cue for human to detect objects, especially when
the appearance information of object is impoverished (Parikh
et al., 2012). Moreover, contextual information can modulate
the allocation of human attention and thus promote the process
of recognizing objects embedded in the scene (Sun et al.,
2011). In addition, contextual information can facilitate reliable
execution of difficult tasks such as object segmentation at very
low resolutions (Torralba, 2009). On the other hand, signals
from visual distractors inevitably leak through selective filters and
compete with the target for processing resources (Cave and Chen,
2016), which could reduce task performance in object recognition
(Davenport and Potter, 2004), categorization (Prass et al., 2013),
and detection (Luo and Ding, 2020).

Previous studies of visual processing have investigated the
role of context and distractors independently in the absence
of a stimulus set with objects in their native backgrounds.
They typically embedded objects in different scenes that were
considered distractors to visual object processing (Davenport
and Potter, 2004; Prass et al., 2013; Luo and Ding, 2020) and
reached the conclusion that it was more difficult to identify
or detect objects in complex scenes. Alternatively, human

performance was compared between conditions that objects
were in their native and un-native backgrounds (Sun et al.,
2011) or in different resolutions (Torralba, 2009; Barenholtz,
2014), concluding that contextual information facilitated visual
target processing. However, context and distractors could be
intermingled in the realistic scenes and might attach to the
same content with conflicting effects on visual object processing.
Taking the images shown in Figure 2 as an example, the vehicles
may appear in the roads but not on the roofs. The road directs
attention to find vehicles along the road, while the building guides
attention to search for vehicles in non-building areas (e.g., open
spaces near buildings). In this regard, both roads and buildings
exert positive incentives for attention shifting. However, the
salient contents in the background (e.g., the buildings) may also
automatically attract attentions (Lavie, 2005; Beste et al., 2011)
and become a distraction that interferes with task performance.
Using stimuli where the targets are in their native backgrounds
helps us to understand more clearly the mechanism of visual
object processing in realistic scenes.

Previous studies have observed that the targets and distractors
mediate attention in visual object processing through biased-
competition processes (Duncan et al., 1997), which are
modulated by stimulus saliency and task intention (Knudsen,
2007), and can be achieved by enhancing target features (Mazza
et al., 2009) or suppressing distractors (Hopf et al., 2006). It has
been corroborated that proactive top-down processes are critical
in preventing bottom-up attention from being captured by salient
distractors (Mueller et al., 2009). This is supported by the results
of the current study. In the single-task experiment, participants
were asked to focus on the vehicle detection task, which allowed
them to resist the influence of irrelevant background information
on the detection task, as reflected in faster reaction speed and
higher accuracy than in the dual-task experiment that required
them to observe detailed background information (Table 2). In
addition, we observed some differences in occipital and centro-
parietal ERPs related to scene complexity and attentional state
to the background, which may be related to the variations in
attentional cueing and sensory evidence accumulation effects
across experimental conditions. These issues are discussed in
detail in the following sections.

4.2. Attentional Cueing Effect of Native
Backgrounds in Vehicle Detection
Attention is the basis of visual processing, which is modulated
by both stimulus-driven and goal-directed factors (Yantis, 2000).
It has been demonstrated that scene context facilitated the
processing of visual objects by providing attentional cues,
which could increase the apparent contrast of visual stimuli,
enhance early neurophysiological responses in visual cortex,
and elicit behavioral improvements such as increasing the
speed and accuracy of visual processing (Stormer et al., 2009;
Itthipuripat et al., 2014). In current study, we observed a late
occipital positivity (LOP) peaked approximately 350 ms after
stimulus onset (Figure 6), which has been regarded as a cue-
induced activation of the visual cortex that would lead to
more efficient perceptual processing of visual information at
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FIGURE 9 | Peak ERP responses and scene similarity judgement accuracy averaged over participants. (A) Peak LOP amplitude of short RT and long RT groups.

(B–D) Peak LOP amplitude evoked by target and non-target in simple-scene (B), simple-scene and complex-scene without target in single-task (C), single-task and

dual-task in complex-scene without target (D). (E) Peak CPP amplitude of high accuracy and low accuracy groups. (F) Peak CPP amplitude evoked by target and

non-target. (G) Peak CPP amplitude evoked by non-target in single-task and dual-task. (H) Accuracy of scene similarity judgement for stimuli with target and without

target. Significant differences are indicated by black stars (p < 0.05, two-sample t-test).

the cued location (Feng et al., 2014), and has been found to
associated with the rapid covert shift of spatial attention in
visual search (Simpson et al., 2011). As a neural representation
for the cue-directed attention, the amplitude of LOP reflected
the attention-cueing effects across experimental conditions in
this study.

The current results of ERP analysis showed that the amplitude

of LOP in the participant group with short RT was significantly
stronger than that with long RT (Figure 9A), which implied

that the attentional cueing effect overall positively related with

participants’ task performance in object detection. Moreover, we
observed stronger LOP when attention was aroused by salient
visual content such as vehicle targets (Figure 9B) or complex

background contents (Figure 9C), or when attention was focused
due to the task requirement (i.e., in the single-task, Figure 9D). In
these cases, the presence of vehicle target and the concentration
of attention on object detection task were accompanied by better
behavioral performance, while higher scene complexity was
accompanied by poorer behavioral performance (Table 2). These
results demonstrated that the attentional cueing effects were
influenced by both stimulus-driven and psychological factors,
which suggest that the LOP amplitude reflects the extent to which
attention is cued, rather than the contribution of attention to the
task. High performance in target detection tasks also relies on the
suppression of excessive attentional cues.

4.3. Sensory Evidence Accumulation Effect
of Native Backgrounds in Vehicle Detection
We observed that in the vehicle detection task, a centro-parietal
positivity (CPP) reached a maximum between 400 and 650
ms after stimulus onset (Figure 7). The CPP is a late ERP
component specifically linked to perceptual decision-making
(Kelly and O’Connell, 2015; Herding et al., 2019), which has
strong resemblance to the classical P300 (O’Connell et al., 2012)
and is suggested to be a correlate of the accumulation of sensory
evidence (Kelly and O’Connell, 2013; Loughnance et al., 2016;
Tagliabue et al., 2019). Previous studies have shown that the
timing of CPP varies closely with participant’s reaction time
(Kutas et al., 1977), while its amplitude is strongly related with
the subjective experience of stimulus clarity, which positively
correlates with the level of visual awareness rating (Tagliabue
et al., 2019).Moreover, the amplitude of CPP is subject to additive
effects of directed attention and motivated attention for visual
object processing, which are induced by bottom-up saliency and
top-down task-relevance, respectively. Specifically, salient targets
evoke the largest CPP and non-salient backgrounds evoke the
least CPP (Ferrari et al., 2008).

In the dual-task of current study, the participants with
high background observing performance showed stronger CPP
amplitude than those with low performance (Figure 9E), which
implied that participants with higher scene similarity judgement
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accuracymay accumulatemore useful sensory evidences from the
background scenes. What’s more, target stimuli were observed to
evoke stronger CPP than non-target stimuli (Figure 9F), which
may be the contribution of motivated attention induced by the
relevance of task requirement of detecting vehicles. The CPP
evoked by non-targets in the dual-task was stronger than that
evoked by non-targets in the single-task (Figure 9G), which may
reflect the increased demand for background-derived sensory
evidence for additional scene observing requirement. The CPP
evoked by tarets in both single-task and dual-task had similar
amplitude (Figure 7C, left two sub-figures), but participants
showed significant higher accuracy in scene similarity judgment
for target stimuli than non-target stimuli (Figure 9H, target vs.
non-target = 0.875 ± 0.067 vs. 0.836 ± 0.092, p < 0.05, two-
sample t-test), with similar time spend on judgement (target vs.
non-target = 1.603 ± 0.474 vs. 1.540 ± 0.446 s, p = 0.498, two-
sample t-test). These findings were consistent with the conclusion
of previous study that scene recognition could be facilitated by
the presence of consistent objects (Mack and Palmeri, 2010).
The presence of semantically consistent objects facilitated the
capture of core features of the scene, allowing the participants
to accumulate the sensory evidence more effectively when there
was an additional demand to actively observing the background
details, and to perform better in recalling the scene features in the
following scene similarity judgement task.

4.4. General Discussion
The achievement of meaningful contextual processing relies on
the separation of target and background (Vanmarcke et al., 2016).
Complex native scenes may provide more attention-guiding
cues, but salient scene contents also increases the difficulty to
target-background separation, so its negative effect on target
processing may overwhelm the positive effect of incremented
semantic cues. In this study, participants’ behavioral and neural
differences in the single-task and dual-task demonstrated that
object detection in natural scenes does not require the utilization
of detailed contextual information, and brief attentional cues
are sufficient for participants to efficiently localize the visual
targets. This is consistent with previous findings that simple
contextual information can be very helpful for visual object
processing, for example, contextual information in blurred scenes
can make objects more recognizable (Barenholtz, 2014), which
is particularly beneficial for visual processing of objects at
low resolution (Torralba, 2009). The above results show that
complex scenesmay providemore cues for attention-shifting, but
may also distract attention from object detection, thus slowing
the accumulation of sensory evidence for decision-making.
Active attention to background content enables participants
to obtain more detailed scene information but spreads their
attention from object detection, thereby reducing the effect
of attentional cues and slowing the perceptual evidence
accumulation for decision-making. Our findings imply that
object processing is inextricably linked to the processing of
background scene information, which has clear task-relevance
(attend or unattended) and significantly affects participant’s
object detection performance. While contextual information
is essential, excessive attentional cues and fine-grained but

semantically irrelevant scene information do not seem to benefit
real-world object detection.

4.5. Limitations
We suggest that several limitations should be taken into account
when interpreting the findings of the current study. First, the
sample size of stimulus set in this study was relatively small. In
order to avoid as much as possible the impact of predictable
confounding factors on the experiment, we cropped stimulus
patches from a single dataset to ensure that they were obtained
under the same imaging conditions and screened these patches
qualitatively and quantitatively, resulting in a relatively small
number of patches used for the experiment. We advocate further
studies using larger stimulus set to replicate the results of
the current study. Second, since the participants may adopt
multiple strategies when conducting the experimental tasks,
the influence of different task execution strategies cannot be
ruled out as possible explanations for the observed behavioral
and neurological differences across experimental conditions. In
further studies, more controllable experimental designs should be
considered to test the current findings.

5. CONCLUSION

The current study explored the role of scene complexity
and task-relevance of the native background in visual object
detection using a new stimulus set and an attention-guiding
strategy, and provided an answer to the question of how the
native background affects visual object detection. Behavioral and
neurological results demonstrated that both bottom-up and top-
down factors influence visual object detection, with a moderate
amount of attentional cues and focused task-relevant attention
being beneficial, while excessive attentional cues and fine-
grained but semantically irrelevant contextual information being
detrimental to real-world object detection. The current study
bridges the gap in understanding the role of native background
in object detection and may advance our understanding for
the neural mechanism of real-world visual processing. These
findings corroborate that efficient visual processing of real-world
objects may involve a competition process between contextual
information and distractors that co-exist in the natural scenes,
culminating in a visual processing system with high task
performance and high energy efficiency.
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