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ABSTRACT
We describe the successful detection of human, porcine and canine picornaviruses (CanPV) in sewage sludge (at each
stage of treatment) from Louisville, Kentucky, USA, using Pan-enterovirus amplicon-based long-read Illumina
sequencing. Based on publicly available sequence data in GenBank, this is the first detection of CanPV in the USA
and the first detection globally using wastewater-based epidemiology. Our findings also suggest there might be
clusters of endemic porcine enterovirus (which have been shown capable of causing systemic infection in porcine)
circulation in the USA that have not been sampled for around two decades. Our findings highlight the value of WBE
coupled with amplicon based long-read Illumina sequencing for virus surveillance and demonstrates this approach
can provide an avenue that supports a “One Health” model to virus surveillance. Finally, we describe a new CanPV
assay targeting the capsid protein gene region that can be used globally, especially in resource limited settings for its
detection and molecular epidemiology.
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To the Editor: In situations where most pathogenic,
human-infecting virus infections do not result in clini-
cal manifestations, such as with Enteroviruses (EVs)
[1], case-based surveillance (CBS) systems lack early
detection capacity which is central for mitigating out-
breaks before they result in significant morbidity and
mortality. Considering most infected people shed
viruses (or virus components such as nucleic acid) in
large quantities in feces and consequently into waste-
water, wastewater-based epidemiology (WBE) has
consistently demonstrated capacity to function as an
early warning system [2,3] and result in significant
time and resource savings by facilitating surveillance
of hundreds to thousands of people per sampling
event.

We investigated the feasibility of using sludge from
different stages of conventional wastewater treatment
(primary sludge [PS], waste activated sludge [WAS]
and dewatered sludge [centrifuged cake or CC]) for
virus surveillance using EVs as a prototype virus.
EVs are members of the genus Enterovirus (which

has over 300 distinct types classified into 15 species)
in the family Picornaviridae. EVs infect both humans
and animals and in the USA are responsible for
around 15 million human infections and tens of thou-
sands of hospitalizations annually [4]. Though, over
90% of EV infected individuals are asymptomatic, all
infected individuals excrete about 108 virus particles/
gram of feces (and consequently into wastewater)
and shedding continues intermittently for weeks
[1,5]. EVs are naked viruses with icosahedral sym-
metry that are very stable for elongated periods in
the environment [1].

In June 2020, nine total sewage sludge samples [PS,
WAS and CC] were collected (three per week), over
three weeks (Figure 1a) from the Morris Forman
Water Quality Treatment Center in Louisville, Ken-
tucky, which serves a catchment with a population
of ∼350,000 people. All samples were subjected to
RNA extraction and complete EV capsid RT–PCR
(Assay 1, Figure 1b,c) [6]. Subsequently, EV presence
per sample was ascertained using assay 2 alongside
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Sanger sequencing (SS) (Figure 1b,c) [6]. This ident-
ified five samples as reliably containing EVs (Table
S1). Three contained Enterovirus Species G (EV-G)
members while each of the remaining two contained
CVA11 (EV-C) and multiple peaks (suggestive of
more than one EV type, Figure S1), respectively.

Assay 1 amplicons from these five confirmed EV
positive samples were subjected to assay 3 and Long-
read Illumina sequencing (LRIS). Seventy-three long-
read contigs were recovered from the five EV positive
samples (Table S2). Though more variants were recov-
ered using LRIS, both SS and LRIS were congruent with
respect to the EV types detected in four (samples 5, 6, 7,
and 8) of the five samples (Tables S1 and S2). SS showed
multiple peaks in the fifth sample (Sample 3, Tables S1)
while LRIS delineated the different virus types (Figure
1a and Table S2) and variants present in the sample.
LRIS also showed the presence of two canine picorna-
virus variants in the sample (Table S2 and S3).

Since unlike for EV-A and EV-C, the enterovirus
genotyping tool (EGT) [7] does not resolve EV-G
species members into types (Table S3), we used a com-
bination of phylogenetic and pairwise identity analysis
to type the EV-Gs, and found them belonging to gen-
otypes 1, 2, 9 and 15 (Figure S2). Pairwise identity
analysis showed that the EV-Gs detected in this
study were ∼20% divergent (Table S4 and Figure S3)
from the most similar sequence in GenBank (even
those detected in California, USA in 2018 [8] [Figure

S3]) suggesting these might have circulated unde-
scribed for around two decades (at an evolutionary
rate of 1 × 10−2 substitutions per site per year [i.e.
∼1% divergence per year] [9]). A similar observation
was made for the EV-Cs (CVA11 and CVA24)
which were 16% to 20% divergent (Table S4) from
the most similar sequence in GenBank. The EV-A
(CVA2) was different in that the most similar
sequence in GenBank was ∼3% divergent
(MT641397; found in a respiratory specimen in the
UK in 2018) (Table S4).

Phylogenetic analysis of the two CanPV contigs
(Figure S4) showed that they belong to a group of
unclassified canine picornaviruses that (based on pub-
licly available sequence data in GenBank) have not
been previously described in the USA. They have how-
ever been described in dogs in the United Arab Emi-
rates (UAE), China and Hong Kong for over a
decade (2008 to 2019) [10–12] and more recently in
Foxes in Australia [13] but <10 sequences are publicly
available in GenBank as of the 23rd of March 2022.
Since CanPV detection as described above was seren-
dipitous, to confirm it was truly present in our sample,
we designed assay 4 (Figure 1d) and subjected both
assays 1 and 3 amplicon from sample 3 to the assay
(assay 4, Figure 1b). We succeeded in amplifying the
∼950 bp amplicon from both (Figure S5) and Sanger
sequencing confirmed that CanPV was, in fact, pre-
sent. This suggests that CanPV amplification occurred

Figure 1. (A) Virus types detected in this study. S1-S9 refer to Samples 1-9. Numbers in bracket refer to the number of variants per
virus type. (B) Schematic representation of the workflow used in this study, (C) EV genomic region amplified by Assays 1, 2 and 3,
respectively (D) and CanPV genomic region recovered by long-read Illumina sequencing of amplicon from assay 3 and amplified
by assay 4.
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first in assay 1. In fact, we have subsequently recovered
multiple variants of CanPV (with the same contig size)
in an independent study using samples from another
state in the USA (unpublished data) in which we
sequenced products from assay 1 using Illumina tech-
nology. This confirmed that near complete CanPV
capsid region could be amplified using assay 1 and
showed divergence bordering ∼20% between CanPV
capsid variants circulating in the USA between 2019
and 2021 (unpublished data).

Our findings show that sludge from different stages
(PS, WAS and CC) of conventional wastewater treat-
ment can be used for virus surveillance. We recovered
porcine (EV-G), canine (CanPV) and human (EV-A
and EV-C) picornaviruses demonstrating this
approach provides an avenue that facilitates surveil-
lance of both human viruses and animal viruses and a
One-Health framework [14]. In addition, our findings
document the existence of both human and animal
virus (with potential to cause significant morbidity
and mortality) lineages that have been circulating in
the USA for around two decades undetected. Finally,
we document (based on publicly available sequence
data in GenBank) the first detection of CanPV in the
USA and the first detection globally using waste-
water-based epidemiology. Considering the dearth of
information on CanPV (with <10 sequences publicly
available in GenBank as of 23rd March 2022) we
describe a new CanPV assay (Figure 1d) targeting the
capsid protein gene region that can be used for
CanPVdetection andmolecular epidemiology globally,
especially in resource limited settings and thereby
facilitate our understanding of its global dynamics.
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