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Abstract

The acute respiratory distress syndrome (ARDS) is a severe lung disorder with a high morbidity and mortality which
affects all age groups. Despite active research with intense, ongoing attempts in developing pharmacological
agents to treat ARDS, its mortality rate remains unaltered high and treatment is still only supportive. Over the years,
there have been many attempts to identify meaningful subgroups likely to react differently to treatment among
the heterogenous ARDS population, most of them unsuccessful. Only recently, analysis of large ARDS cohorts from
randomized controlled trials have identified the presence of distinct biological subphenotypes among ARDS
patients: a hypoinflammatory (or uninflamed; named P1) and a hyperinflammatory (or reactive; named P2)
subphenotype have been proposed and corroborated with existing retrospective data. The hyperinflammatory
subphenotyope was clearly associated with shock state, metabolic acidosis, and worse clinical outcomes. Core
features of the respective subphenotypes were identified consistently in all assessed cohorts, independently of the
studied population, the geographical location, the study design, or the analysis method. Additionally and clinically
even more relevant treatment efficacies, as assessed retrospectively, appeared to be highly dependent on the
respective subphenotype. This discovery launches a promising new approach to targeted medicine in ARDS. Even
though it is now widely accepted that each ARDS subphenotype has distinct functional, biological, and mechanistic
differences, there are crucial gaps in our knowledge, hindering the translation to bedside application. First of all, the
underlying driving biological factors are still largely unknown, and secondly, there is currently no option for fast and
easy identification of ARDS subphenotypes. This narrative review aims to summarize the evidence in biological
subphenotyping in ARDS and tries to point out the current issues that will need addressing before translation of
biological subohenotypes into clinical practice will be possible.
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Infographic: visual explanation of the concepts of
phenotypes, subophenotypes, and endotypes in
ARDS
A phenotype denotes a group of patients that share a
common syndrome, ARDS in this case. A subphenotype
is a subset of patients within the phenotype that share
specific features, such as clinical variables, outcomes, or
responses to treatment or medical measures, that clearly
differentiates this subgroup from others. An endotype is
defined as a subgroup of patients within the subpheno-
type that have distinct biological mechanisms of the syn-
drome in common, such as gene expression and
activated molecular pathways. For now, the definition of
endotypes in ARDS is purely hypothetical as we know
little about underlying biology.
Described first in 1967 [1], acute respiratory distress

syndrome (ARDS) is an acute severe inflammation of both
lungs caused by various etiologies, either by direct pul-
monary or by indirect systemic injury [2–4]. Multiple and
heterogenous causes are known to result in ARDS, which
is pathophysiologically characterized by a profound dam-
age to the alveolar-capillary barrier due to injury, resulting
in overflooding of the alveolar space, causing an impossi-
bility of an adequate gas exchange [2, 3].
ARDS accounts for an average of 10.4% of all intensive

care unit (ICU) admissions [5] with mortality ranging
between 34.9% in mild cases to up to 46.1% in those
with severe ARDS [5] as defined according to the Berlin
definition [6] (Fig. 1). In survivors, quality of life is se-
verely impaired [7], causing unsustainable human and
economic burden. Considering the significant impact in
health and economical terms, major research efforts
have been conducted in the past 5 decades to more ac-
curately characterize ARDS pathophysiology and to find
an effective treatment. Unfortunately, research thus far
has been largely unsuccessful in providing conclusive
evidence of treatments that provide improved outcomes
[8, 9], aside from supportive care to reduce ARDS

mortality [8]. Consequently, regardless of the etiology or
severity, ARDS patients are currently treated in a
homogenous fashion [10].
However, it has to be emphasized that a good propor-

tion of interventional studies evaluating treatment op-
tions in ARDS were conducted before the dogma change
in mechanical ventilation toward lung-protective strat-
egies [11]. Since it is now known that a non-protective
ventilation strategy causes an additional inflammatory
reaction [12, 13], a potential benefit of these applied
treatments may therefore have been masked. Consider-
ing that the human ARDS population is highly
heterogenous, it seems very likely that a uniform therapy
non-selectively applied to all patients may further dilute
any potential effect. These two factors could have been
the main culprit of failure in previous studies.
This narrative review aims to provide an overview of

the state of the current evidence in biological subpheno-
typing in ARDS regarding identified features, mortality
rates, and different reaction to medical measures and
treatment among patient subgroups. Additionally, we
aim to identify important gaps in current knowledge that
are to overcome in order to move forward in using bio-
logical subphenotyping in ARDS in future trials. This re-
view focuses on biological subphenotyping only as this
approach seems to be the most promising one for en-
richment strategies in future ARDS trials.

Approaches to subphenotyping in ARDS
A subphenotype is defined as a subgroup among a dis-
ease entity that (a) is at highest risk for poor outcome
(prognostic enrichment) or (b) shares similar underlying
biological factors and/or a different reaction to medical
measures (predictive enrichment) [14, 15]. Enrichment
strategies offer the potential to reduce heterogeneity and
hence allow an approach to precision medicine by
selecting the subgroup most likely to benefit [16].
Over the years, there have been several attempts to de-

fine subgroups among ARDS, either by differentiation
according to the inflicting cause of ARDS as direct or in-
direct pulmonary injury [17, 18] or by confining trauma-
related ARDS as this seemed to display different bio-
logical features [19, 20]. The Berlin definition [6] itself
provides a prognostic enrichment as it divides the ARDS
population into three severity subphenotypes according
to the PaO2 to FiO2 ratio (PF ratio) with discriminative
mortality rates [5]. From autopsy studies, we learnt
about the presence of diffuse alveolar damage (DAD)
[21–23], that was mainly found in moderate to severe
ARDS [23] indicating a specific biological mechanism.
Imaging studies reported that ARDS patients with dif-
fuse radiological patterns displayed a higher mortality as
compared to patients with focal patterns [24, 25]; these
findings were associated with differences in pulmonary

Fig. 1 Mortality in ARDS according to the severity as defined
by PaO2/FiO2-ratio
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mechanics [26] but failed to result in different outcomes
when applying a targeted ventilation approach [27].
All these subphenotyping attempts helped us clinicians

to gain understanding about the complex syndrome of
ARDS but were ultimately shown a weak or complete
lack of evidence for a different treatment response or
improved outcomes, most likely because underlying bio-
logical factors are yet to be completely understood. The
novel concept of biological subphenotyes, two distinct
subphenotypes, defined by specific functional and bio-
logical parameters, offers a novel and potentially more
targeted approach to the very heterogenous population
of ARDS. These biological subphenotypes were identi-
fied by latent class analysis (LCA), a novel statistical
method for identifying unmeasured class membership
among subjects, assuming that the data contains a cer-
tain number of unobserved groups (or classes). LCA
uses an iterative algorithm by using mixture modeling,
that identifies the best fit of number of classes between
1 and n for a data set and assigns each subject to a spe-
cific class [28, 29].

The cornerstone of biological subphenotyping in
ARDS
The origin of this new approach to ARDS was imple-
mented in 2014 by Calfee et al. [30]. The group retro-
spectively analyzed two randomized controlled trials
(RCT) from the National Heart Lung and Blood Institute
(NHLBI) ARDS Network by LCA: the ARMA trial (Ven-
tilation with Lower Tidal Volumes as Compared with
Traditional Tidal Volumes for Acute Lung Injury and
the Acute Respiratory Distress Syndrome) [11] that con-
tributed 473 patients from the low tidal volume (VT)
ventilation group (429 patients with high VT’s were ex-
cluded) and the ALVEOLI trial (Assessment of Low tidal
Volume and elevated End-expiratory volume to Obviate
Lung Injury) [31] which assessed different positive end
expiratory pressure (PEEP) settings and contributed 549
patients to this analysis. Blood samples were taken at the
time of randomization, < 36 h since fulfilling ARDS cri-
teria. In the ARMA population as the derivation cohort,
a two-class model was found to be the best fit and di-
vided the population into a hyperinflammatory (named
P2) and a hypoinflammatory subphenotype (named P1).
One-third of patients were assigned to P2 (Fig. 2), with a
significantly higher fraction of these patients being in
shock. Dominant discriminating biomarkers were Inter-
leukin (IL)-6 and -8, soluble tumor necrosis factor re-
ceptor 1 (sTNFR1), plasminogen activator inhibitor-1
(PAI-1), intercellular adhesion molecule-1 (ICAM-1),
von Willebrand factor (vWF), bilirubin, bicarbonate,
protein C (PC), PaCO2, platelets, albumin, and glucose.
The clinical variables heart rate, minute ventilation,
vasoactive use, plateau pressure, PEEP, and systolic

blood pressure were shown to discriminate best between
the subphenotypes (Table 1). Interestingly, neither the
severity of ARDS as defined by the PaO2/FiO2 ratio (PF)
[6], the severity of renal or hepatic failure, nor the extent
of leukocytosis distinguished the two subphenotypes
from each other. Risk factors for P2 were sepsis, pneu-
monia, and aspiration (in decreasing order), whereas in
P1 it was pneumonia, sepsis, and aspiration. In compari-
son with the hypoinflammatory subphenotype, P2 dis-
played a higher 90-day mortality (44% vs. 23%, p =
0.006) (Fig. 2) and significantly less organ failure-free
(9.8% vs. 16.8%; p < 0.001) as well as ventilator-free days
(9.1% vs. 14.0%; p < 0.001). The same results were con-
firmed in the ALVEOLI cohort with remarkably similar
characteristics of subphenotypes. Regarding outcome,
the difference in 90-day mortality was even more pro-
nounced with 51% and 19% in the P2 and P1 subgroups,
respectively (p < 0.001) (Fig. 2).
The FACTT trial (Fluid and Catheter Treatment Trial)

[32] was another NHLBI-promoted study, randomizing
ARDS patients in a two-by-two factorial design into 2
study arms for comparing fluid-liberal versus fluid-
restrictive volume strategy and monitoring with pulmon-
ary artery catheter versus central venous catheter, re-
spectively. No difference in mortality at 60 days was
found with either intervention, but significantly more
ventilator-free days occurred in patients randomized to
the fluid-conservative group. Famous et al. [33] analyzed
the 1000 included patients retrospectively and found
again that a 2-class model was the best fit, with 27.2% of
patients assigned to P2 and 72.8% to P1 (Fig. 2). Best
discriminating biomarkers in this cohort were once
again IL-8 and -6, PAI-1, vWF, bilirubin, bicarbonate,
PC, PaCO2, platelets, albumin, but also TNFr-1,
angiopoetin-2 (Ang-2), receptor for advanced glycation
endproducts (RAGE), and creatinine. In terms of clinical
variables, heart rate, minute ventilation, airway pres-
sures, vasoactive use, PEEP, and systolic blood pressure
distinguished most accurately between subphenotypes.
These findings were later validated in the ARMA and
ALVEOLI cohorts. Again, 90-day mortality was signifi-
cantly higher in P2 than P1 with 45% and 22% respect-
ively (Fig. 2). Sepsis was a risk factor for ARDS in P2
subphenotype in 53%, whereas trauma, aspiration, and
pneumonia were more likely in P1.

The proof of stable class assignment over time
In order to understand the pathogenesis of subpheno-
types in ARDS, knowledge about stability of subpheno-
types over time is crucial. This task was accomplished by
Delucchi et al. [34] in the ARMA and ALVEOLI cohorts
through analysis on day 0 and 3 with a latent transition
model. Authors founds evidence for stable classes over
the first 3 days with the majority of patients being in the
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same class at day 0 and day 3 respectively. Only 5% of
patients had a change in class (more frequently from P1
to P2), whereas the clinical outcome was associated with
the later class. These important findings add further evi-
dence to the hypothesis that there are fundamental bio-
logical and clinically relevant differences in
subphenotypes in ARDS, concluding that these are not
manifestations of different stages of the same disease as
the subphenotype patterns are not affected by the meas-
urement time point.

The validation of ARDS subphenotypes in two
European cohorts
Bos et al. 2017 [35] chose hierarchical clustering as an
approach for the analysis of the MARS cohort (Molecu-
lar Diagnosis and Risk Stratification of Sepsis), a biobank
initiative in sepsis, conducted in 2 ICU’s in the
Netherlands between 2011 and 2013. In this analysis,
ARDS was clustered according to biomarkers only and
then associated with outcome. A total of 700 patients
were available for analysis, divided in 454 for the training
and 246 patients for the validation group. A reactive and

an uninflamed subphenotype was defined with an ICU
mortality of 36.4% and 15.6% accordingly (Fig. 2). The
reactive subphenotype was characterized by higher
Acute Physiology and Chronic Health Evaluation scores
(APACHE), more severe multi-organ failure and indirect
causes of ARDS. The dominant discriminant biomarkers
between the two subphenotypes were IL-6, -8, -10,
interferon-gamma (IFNγ), Ang-1/-2, and PAI-1 (Table 1).
A 5-factor model, consisting of IL-6, IFN-γ, Ang-1/2, and
PAI-1, provided an area under the curve (AUC) of 0.98
(95%CI 0.97 to 0.99) for discrimination between subphe-
notypes. Even though the class assignment to the reactive
subpenotype was twice as high than reported previously
[30, 33, 34], mortality and defining biomarkers of the two
subphenotypes were quite comparable, suggesting that a
similar cluster exists across all these cohorts. The differ-
ence in prevalence may be explained by a selection bias in
RCT`s or underlying biological factors.
The HARP-2 trial (hydroxymethylglutaryl-CoA

(HMG-CoA) reductase inhibition with simvastatin in
acute lung injury to reduce pulmonary dysfunction) [36]
was a multicenter RCT of simvastatin daily versus

Fig. 2 Class assignment to subphenotypes of ARDS, associated 90-day mortality and mortality according to different treatment. ARMA acute
respiratory management of acute lung injury, ALVEOLI assessment of low tidal volume and elevated end-expiratory volume to obviate lung injury,
MARS molecular diagnosis and risk stratification of sepsis, FACTT fluid and catheter treatment trial, SAILS statins for acutely injured lungs from
sepsis, HARP hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction, PEEP positive
end-expiratory pressure, P2 hyperinflammatory subphenotype, P1 hypoinflammatory subphenotype
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placebo in ARDS, conducted in 40 ICUs in the UK and
Ireland over 4 years, randomizing 540 patients. No sig-
nificant difference was detected between the study
groups regarding 28-day mortality or number of
ventilator-free days in the original study. Yet, in a sec-
ondary analysis by Calfee et al. [37], a 2-class model was
again the best fit: 65% of patients were assigned to P1
and 35% to P2 subphenotype (Fig. 2). The best discrim-
inating variables were sTNFR-1, creatinine, IL-6, biliru-
bin, platelets, vasoactive use, and the PF-ratio (Table 1).
P2 experienced less ventilator-free days (2 vs. 18 days),

fewer non-pulmonary organ failure-free days (15 vs. 27
days), and a higher 90-day mortality (47 vs. 22%; all p <
0.001) than the P1 subphenotype (Fig. 2). The most
common ARDS risk factors sepsis, pneumonia, and as-
piration were highly prevalent in both groups.

Findings from the SAILS cohort
As another 3-HMG-CoA-reductase inhibitor, rosuvasta-
tin was tested versus placebo for its efficacy in ARDS in
the SAILS study (Statins for Acutely Injured Lungs from
Sepsis). In this NHLBI ARDS Network trial in infection-

Table 1 Characteristics of retrospectively assessed ARDS studies regarding ARDS subphenotypes: study design, analysis method,
mortality, reaction to treatment, clinical variables, and biomarkers that differentiated best between subphenotypes of ARDS

Country Study design and
analysis
methodAnalysis
method

90-day
mortality

Evaluation of
reaction among
P2/P1 to

Clinical variables Blood parameters

ARMA, n
= 473
ALVEOLI,
n = 549

USA
(NHLBI)

RCT
LCA

ARMA
P2 44%
P1 23%
ALVEOLI
P2 51%
P1 22%

ALVEOLI:
application of
PEEP

Circulatory: heart rate, BPm,
vasoactive use
Respiratory: minute ventilation,
Pplat, PEEP

Inflammation: IL-6, IL-8, sTNFR-1,
CRP, WCC
Coagulation: PAI-1, protein C,
platelets
Endothelial: Ang-2, ICAM-1, vWF
Others: bilirubin, bicarbonate,
PaCO2, albumin, glucose

MARS, n
= 700

NL Observational cohort
Clustering methods

P2 37.7%
P1 21.6%

Macrolide
Antibiotics

None Inflammation: IL-6, IL-8, IL-10, IFN-
y
Enothelial: Ang-1, Ang-2
Coagulation: PAI-1, antithrombin

FACTT, n
= 1000

USA
(NHLBI)

RCT
LCA

P2 45%
P1 22%

Fluid strategy Circulatory: heart rate, BPs,
vasoactive use
Respiratory: minute ventilation,
airway pressure, PEEP

Inflammation: IL-6, IL-8, TNFR-1,
IFN-y
Coagulation: PAI-1, protein C,
platelets
Endothelial: Ang-2, vWF
Lung epithelial: RAGE
Others: bilirubin, bicarbonate,
creatinine, PaCO2, albumin,
glucose, glucose

SAILS, n
= 745

USA
(NHLBI)

RCT
LCA

P2 37.6%
P1 21.4%

Rosuvastatin Circulatory: heart rate, BPs,
vasoactive use
Respiratory: minute ventilation,
respiratory rate, pulmonary risk
factors
others: urinary output

Inflammation: IL-6, IL-8, sTNFR-1,
WCC
Coagulation: protein C, platelets,
PAI-1, platelets
Endothelial: ICAM-1
others: bilirubin, bicarbonate,
creatinine, PaCO2, albumin,
glucose

HARP, n
= 539

UK/IR RCT
LCA

P2 47%
P1 22%

Simvastatin Circulatory: vasoactive use
Pulmonary: PF ratio

Inflammation: IL-6, sTNFR-1
Coagulation: platelets
Others: creatinine, bilirubin

Kitsios
et al., n =
212

USA
(NHLBI)

Observational cohort
LCA

ARDS
P2 44%
P1 22%
ARFA
P2 53%
P1 18%

None Circulatory: BPs, heart rate
Pulmonary: PEEP, Pplat, PF
ratio, respiratory rate, PF ratio
Others: temperature

Inflammation: IL-6, IL-8, IL-10,
TNFR-1, WCC, PCT
Coagulation: protein C, platelets
Endothelial: ICAM-1, Ang-2
Lung epithelial: RAGE
Others: creatinine, PaCO2, ST-2;
fractalkine, pentraxin3, pH art

ARMA Acute Respiratory Management of Acute lung injury, ALVEOLI assessment of low tidal volume and elevated end-expiratory volume to obviate lung injury,
MARS Molecular diagnosis and risk stratification of sepsis, FACTT Fluid and Catheter Treatment Trial, SAILS statins for acutely injured lungs from sepsis, HARP
hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction, RCT randomized controlled trial, LCA latent
cluster analysis, P2 hyperinflammatory subphenotype, P1 hypoinflammatory subpenotype, ARFA at risk for ARDS, BPm mean blood pressure, BPs systolic blood
pressure, Pplat plateau pressure, PEEP positive end-exspiratory pressure, IL interleukin, sTNFR-1 soluable tumor necrosis factor receptor-1, CRP C-reactive protein,
WCC white cell count, PAI-1 plasminogen inhibitor-1, Ang-1/-2 angiopoetin-1/-2, ICAM-1 intracellular adhesion molecule-1, vWF von Willebrand factor, PaCO2

arterial CO2 partial pressure, IFN-γ interferon gamma, RAGE receptor for advanced glycation end-products, PF ratio PaO2/FiO2 ratio; ST-2 suppression of
tumorigenicity, PCT procalcitonin
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associated ARDS [38], including 745 patients between
2010 and 2013, no difference in mortality was found be-
tween the groups. The SAILS cohort was retrospectively
analyzed [39], using LCA for clinical variables and bio-
markers, and consistently, a two-class model was found
to be the best fit. Further, 227 patients (37%) were
assigned to P2 and 448 patients (63%) to the P1 subphe-
notype. The 60-day mortality of 36.5% and the 90-day
mortality of 37.6% was significantly higher in the P2
group than in the patient group assigned to P1 (20.9%
and 21.4% respectively, all comparison p < 0.0001) (Fig.
2). Furthermore, the P2 group experienced fewer
ventilator-free days (15 vs. 23 days; p < 0.0001). The
class defining features were consistent with the previous
analysis of the three NHLBI cohorts (ARMA, ALVEOLI,
FACTT): IL-6 and -8, sTNFR-1, ICAM-1, PAI-1, PC,
PaCO2, platelets, bicarbonate, albumin, bilirubin, cre-
atinine, systolic blood pressure, heart and respiratory
rate, vasoactive use, minute ventilation (Table 1). In
addition, the P2 group had a higher white cell count,
lower urinary output, and more pulmonary risk factors for
ARDS. Also consistently with the results from the NHLBI
ARDS Network datasets, respiratory variables including
the PF-ratio performed poorly in discriminating between
classes. The prominence of biomarkers as class defining
variables suggests that subphenotypes may primarily be
governed by basic biological factors. The authors con-
cluded that these 4 NHLBI ARDS network datasets con-
sistently reveal the same subphenotypes. This underlines
their contemporaneous relevance despite changing demo-
graphical patterns and clinical practice in ARDS [40]. The
replication of the results in ARDS cohorts from the UK/
Ireland [37] and the Netherlands [35] proves the robust-
ness and generalizability of the subphenotype model
intercontinentally.

Different reaction to medical measures among the
subphenotypes
By analyzing the ALVEOLI cohort, a significant inter-
action between class assignment and PEEP settings as
medical intervention was noted [30]. The P2 subpheno-
type displayed a 90-day mortality rate of 51% with low
PEEP and of 40% with high PEEP, whereas in P1 the
mortality rate of the two PEEP settings was 16% and
24% (p = 0.049) (Fig. 2). An even stronger interaction
was seen between subphenotype and PEEP strategy re-
garding ventilator-free and organ failure-free days, where
the P2 with a high-PEEP strategy showed significantly
lower numbers for both outcomes. The authors con-
cluded that the significant differences in natural histor-
ies, clinical, and biological characteristics as well as
outcomes and response to treatment among the two dif-
ferent ARDS subphenotypes are characteristic require-
ments that have to be fulfilled to define a subphenotype.

In contra distinction to the findings of the original
FACTT cohort as outlined above, differences in 90-day
mortality relating to the applied fluid strategy were iden-
tified in the two identified subphenotypes [33]: P1 had a
higher mortality with liberal compared to conservative
fluid management (26 vs. 18%) and P2 was shown a
higher mortality with conservative compared to liberal
fluid management (50 vs. 40%) (Fig. 2).
De Simonis et al. [41] analyzed the MARS cohort re-

garding a treatment effect of macrolide antibiotics on
subphenotypes using propensity-score (PS) matching.
Then, 715 patients without macrolides were 3/1-
matched to 158 patients with macrolide treatment (97%
erythromycin). Most patients were treated within 5 days
of ARDS diagnosis for a total of 3 days. Overall, patients
with macrolides had an odds ratio for mortality of 0.64
(p = 0.03); this remained significant after PS-matching.
The mortality at 30 days was specifically lower in non-
pulmonary ARDS after PS-matching and in the P1 sub-
phenotype before and after PS-matching (Fig. 2). The
authors concluded that the effect was most probably me-
diated through a reduction in cytokines and an effect on
neutrophil granulocytes.
Although the HARP-2 trial showed no difference in

adjudicated outcomes, the secondary analysis [37] identi-
fied a different response to simvastatin when splitting
the cohort into subphenotypes: P2 patients treated with
simvastatin had a lower 28-day mortality with 32% (27/
84) vs. 45% (46/102) (p = 0.008) in the placebo group.
This was not observed in P1 where the 28-day mortality
was 17% in the treatment group and 16% in the placebo
group (p = ns) (Fig. 2).
Interestingly, in the SAILS cohort [39] as opposed to

HARP-2, there was no difference in all three outcome
measures in the P2 subphenotype regarding treatment
with rosuvastatin (Fig. 2). While SAILS assessed
infection-related ARDS, HARP-2 included a much wider
variety of ARDS risk factors, therefore the identified sub-
phenotypes may differ between the two cohorts. In
addition, it was postulated that the use of a different 3-
HMG-reductase inhibitor might explain the difference in
outcome: while simvastatin is a lipophilic molecule with
some clinical evidence in lung injury [42], rosuvastatin is
hydrophilic with known different influence on plasma
levels of inflammation markers [43]. Therefore, the use
of a hydrophilic statin may be responsible for the nega-
tive results in the retrospective analysis of the SAILS
dataset.

Subphenotypes in patients at risk for ARDS?
In a recent publication [44], LCA was applied to baseline
clinical variables and biomarkers in patients with ARDS
as well as in patients at risk for ARDS (ARFA) but not
entirely fulfilling the diagnostic criteria. Interestingly, a
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two-class model provided the best fit in both patient
groups, whereas 38% (39/104) of ARDS and 28% (30/
108) of ARFA patients were assigned to the hyperinflam-
matory subphenotype. The differentiating variables be-
tween the subphenotypes were comparable to the ones
previously reported (Table 1). Both, hyperinflammatory
ARDS and ARFA, were shown a higher 90-day mortality
than hypoinflammatory subphenotypes (44% vs. 33% and
53% vs. 18%) but statistical significance was only reached
in ARFA. These findings suggest that likely the extent of
subphenotypes is not restricted to fully developed ARDS
but are already present in preliminary stages due to
similar driving factors.

The gaps in the current knowledge
All these outlined results underline that most likely simi-
lar subphenotypes are observed among ARMA, AL-
VEOLI, FACTT, and SAILS, as well as among HARP-2
and the MARS cohort, which highlights the
generalizability of subphenotypes among varying ARDS
populations. Although these recent developments in
ARDS research are very exciting and promising, there
are still major challenges to overcome.
First, the underlying driving biological factors are still

largely unknown. The key to a more thoroughly under-
standing may lay in omics data generation and applica-
tion [45, 46]. Analyzing leukocyte expression profiles in
the MARS cohort [47] was the first attempt to more
fully understand molecular pathways in subpenotypes in
ARDS by comparing differential gene expression that
might be indicative of pathophysiologic changes within
the subphenotype. The respective subphenotype was
identified by the 5-factor-model [35] as previously de-
rived in the MARS dataset [35]. Among 210 patients, 82
(38%) were assigned to the uninflamed (P1) and 128
(62%) patients to the reactive/hyperinflammatory sub-
phenotype (P2). These were compared to 547 patients
with sepsis but no ARDS and 42 healthy age-matched
controls. Twenty-nine percent (3332/11443) of genes
were significantly differently expressed between subphe-
notypes. In P2, 7 of 8 genes previously positively associ-
ated with ARDS [48], were shown to be upregulated,
with pathways of oxidative phosphorylation (indicative
of mitochondrial dysfunction) as well as cholesterol me-
tabolism and the innate immune system being the most
enriched ones. Fifty percent of genes that were previ-
ously found to be negatively associated with ARDS were
upregulated in P1. Specifically, pathways coordinating
cell proliferation and differentiation, motility and sur-
vival as well as the adaptive immune system were
enriched in P1. Interestingly, sepsis patients without
ARDS were most similar to P1 subphenotypes expres-
sion. While these results provide a glimpse to potential
revelation of different underlying biological factors, we

are still far away from an in-depth understanding. Previ-
ous studies with whole blood gene expression studies
failed to prove a consistent gene signature for ARDS pa-
tients [49], assumingly because of a mixture in ARDS
subphenotypes. In the near future, bioinformatic ap-
proaches like genomics, proteomics, transcriptomics and
metabolomics will enhance our understanding of driving
factors on a molecular level.
The second significant gap inhibiting current clinical

application lies in the lack of an reliable and easy to use
biomarker for differentiation between subphenotypes at
the bedside. A first attempt at solving this hindrance was
recently published [50]. Machine learning algorithms
were applied to 3 cohorts from the NHLBI ARDS Net-
work (ARMA, ALVEOLI, FACTT) incorporating 2200
patients, to select the six most important classifier vari-
ables for development of nested logistic regression
models. The logistic regression models with the highest
predictive accuracy were then evaluated in the validation
cohort (SAILS; n = 715). The most important classifier fac-
tors were IL-8, -6, PC, sTNFR-1, bicarbonate and vasoactive
use. A 4-variable model, incorporating IL-8, bicarbonate,
PC, and vasoactive use, resulted in an AUC of 0.95 (95%CI
0.93–0.96) and performed best as compared with the LCA
classification as the gold standard. Similar to the LCA-
derived subphenotypes, P2 derived from the classifier
model was shown to have a higher 90-day mortality than
P1 (39% vs. 23%, p < 0.0001) and fewer ventilator-free days.
However promising, so far there is no point-of-care test to
identify subphenotypes in the clinical setting.
Third, even if there was a bedside test to select a spe-

cific subphenotype, the resulting clinical relevance is yet
to be determined since the retrospective data have
shown conflicting results regarding a treatment benefit
in one specific ARDS subphenotype [37, 39, 41].
Fourth, the extent and clinical relevance of subpheno-

types beyond ARDS has to be determined. The results
by Kitsios et al. [44] are promising as we start to suspect
that the true extent of subphenotypes is much larger
than assumed and not only related to hypo- or hyperin-
flammatory states and maybe not even limited to lung
failure [51, 52]. Validation in a larger cohort of patients
with heterogenous risk factors for ARDS and a model to
predicate its stability is needed.
Within the coming years, very likely we will have a

more in-depth understanding of underlying disease
mechanisms. The key to successfully translate this
knowledge will lay in predictive enrichment [14, 53],
meaning that reducing heterogeneity and thereby im-
proving trial efficiency by refining patient selection and
choosing patients more likely to respond to drug treat-
ment will facilitate personalized medicine in this field
and increase absolute and relative effects, as it has been
shown previously [54–58].
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Conclusion
The clinical and biological heterogeneity of the ARDS
population continues to gain acceptance in the clinical
community, and might explain the five decades of ARDS
research without treatment success. Subphenotyping
provides a new promising approach for therapeutic de-
velopment through the concept of predictive and prog-
nostic enrichment, potentially resulting in a more
targeted treatment. Nevertheless, there are crucial gaps
yet to overcome, namely a more in-depth understanding
of the underlying driving biological factors and a reliable
biomarker for early differentiation between subpheno-
types at the bedside. Once these hindrances have been
resolved, subphenotyping will most likely be the key fac-
tor in all future pursuits in ARDS treatment.
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