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Abstract: Deep learning based analyses of computed tomography (CT) images contribute to automated diagnosis
of COVID-19, and ensemble learning may commonly provide a better solution. Here, we proposed an ensemble
learning method that integrates several component neural networks to jointly diagnose COVID-19. Two ensemble
strategies are considered: the output scores of all component models that are combined with the weights adjusted
adaptively by cost function back propagation; voting strategy. A database containing 8 347 CT slices of COVID-
19, common pneumonia and normal subjects was used as training and testing sets. Results show that the novel
method can reach a high accuracy of 99.37% (recall: 0.998 1; precision: 0.989 3), with an increase of about 7%
in comparison to single-component models. And the average test accuracy is 95.62% (recall: 0.958 7; precision:
0.955 9), with a corresponding increase of 5.2%. Compared with several latest deep learning models on the identical
test set, our method made an accuracy improvement up to 10.88%. The proposed method may be a promising
solution for the diagnosis of COVID-19.
Key words: COVID-19, deep learning, computed tomography (CT) images, ensemble model, convolutional neural
network
CLC number: TP 183, R 445 Document code: A

0 Introduction

COVID-19 has caused a large number of infections
and deaths, since it broke out, and it is spreading glob-
ally. Real-time polymerase chain reaction (RT-PCR)
is considered to be the gold standard for diagnosing
COVID-19, but its high false positive and unsatisfac-
tory detection efficiency hinder its rapid detection of
suspicious cases[1-2]. COVID-19 mainly causes lung
infection; pathological features, such as ground-glass
opacity (GGO) and lung consolidation, can be found on
computed tomography (CT) scans[3-4]. An experienced
doctor can capture these characteristics and make judg-
ments; however, visual inspection is time consuming
and prolonged concentration can easily lead to misjudg-
ment. In contrast, computer-aided diagnosis (CAD)
can make up for the lack of professional physicians and
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improve inspection efficiency, and deep learning is a
promising approach for intelligent assisted diagnosis.

Recent studies have shown the outstanding perfor-
mance of deep learning in the diagnosis of COVID-
19[5-6]. Popular convolutional neural networks (CNNs)
in the field of image recognition can distinguish be-
tween COVID-19 CT slices and others[7-9], even reach-
ing or surpassing human experts in some aspects[10].
Recently, some novel neural networks with attention
or auxiliary enhancement mechanisms have been pro-
posed, enhancing the robustness of deep learning to
complex samples. Shi et al.[11] proposed an attention
transfer deep neural network (DNN) that used a vari-
able attention module to enhance the response of in-
fected areas. Li et al.[12] proposed a comparative multi-
task convolutional neural network (CMT-CNN), and
their research showed that simple auxiliary tasks could
strongly enhance generalization ability. In addition,
some smarter multi-task networks that can diagnose
and locate COVID-19 at the same time also aroused
interest[13-14].

As a kind of combinational optimization learning
method, ensemble learning can efficiently solve prac-
tical application problems[15]. Related studies have
shown that simply training several neural networks and
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integrating their prediction can significantly improve
the performance of neural networks[16-17]. However, en-
semble learning was seldom applied to diagnose lung-
related diseases.

In this study, ensemble models composed of different
component models were built to diagnose COVID-19,
and they were compared with single component models
on the same test data. Transfer learning was applied
to initialize the parameters of all component models
before training. The proposed method was compared
with some latest ones, and its competitive performance
was proved on the same test data.

1 Materials and Methods

1.1 Dataset
Our database contains 8 347 chest CT images (Fig. 1)

from more than 400 patients and 32 healthy subjects.
These images come from three freely publicly avail-
able databases, COVIDx-CT, CC-CCII and COVID-
CT, among which there are 2 849, 2 897 and 2 601 sam-
ples of COVID-19, common pneumonia (CP) and nor-
mal samples, respectively. Figure 1 shows three types
of image examples, in which red marks indicate some
obvious infection characteristics.

COVID-19

Normal

CP

Fig. 1 CT images of COVID-19, CP and the normal

COVID-CT database contains 349 COVID-19 pos-
itive CT images and 397 negative ones[18]. All
of them were collected from 216 patients from
COVID-19-related papers from preprints (available
via: https://github.com/UCSD-AI4H/COVID-CT).
COVIDx-CT database is a large CT scan database that
contains 104 009 CT slices from 1 489 patients[19]; this
database is derived from CT database from CNCB[14],
and includes three types of chest CT images: COVID-

19, and CP and normal control. CT slices in CC-CCII
database come from the China Consortium of Chest
CT Image Investigation; this database contains a to-
tal of 617 775 CT slices from 6 752 CT scans of 4 154
patients. We manually selected 8 347 CT images from
the three databases as data sets. The source and re-
lated information of these CT images are summarized
in Table 1.

Table 1 Dataset information

Dataset source COVID-19 CP Normal
Patient

information

COVIDx-CT 2 500 2 500 – Yes

CC-CCII – – 2 601 Yes

COVID-CT 349 397 – Partly

Note: “yes” means detailed subject information is provided,
and “partly” means only part of that is provided.

1.2 Data Preprocessing and Augmentation
Images with excessive text or markings and too small

lung lobe area (less than 30% of the intact lung lobe
area) were removed. All samples were visually in-
spected to ensure those that failed to meet the require-
ments were removed. After screening, 2 485 COVID-19
samples, 2 548 CP samples and 2 475 normal samples
were obtained to perform model training and testing.

Data augmentation strategies include image scaling,
center cropping, random flip, and color jitter. Center
cropping and image scaling can remove irrelevant con-
tent around the image and ensure that the image of the
appropriate size is obtained. Application of random
cropping and color jitter (pixel value changed within
10%) reduces the influence of both position and color
change during training.

Independent test set was used to verify the actual
performance of the trained model, in which approxi-
mately 20% of all samples were involved, and the rest
were randomly divided into training set, fine-tuning set
and validation set according to a ratio of 0.64 : 0.16 : 0.2
(training set: 3 246 CT samples; fine-tuning set: 811;
validation set: 1 014; test set: 1 543).
1.3 Models and Methods
1.3.1 Used Component Models

In this study, three popular CNNs (VGG-19, ResNet-
18, DenseNet-121) have been applied, and all codes
were written using PyTorch (1.5.0) based on python
(3.7.4). Three types of CNNs will be briefly explained,
and the detailed structures can be found in Tables A1,
A2 and A3 in Appendix.

(1) VGG-19 is a CNN with 19 convolutional layers[20],
which uses successive small kernels for feature extrac-
tion, and this network structure has been proven to
have good extraction capabilities for images, including
medical images.

(2) Residual network is a neural network composed
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of a residual structure[21]. This structure can reduce
the gradient dispersion in the network learning process
and thus reduce the loss of information. For complex
medical images, this structure can build a deeper net-
work and help deal with more complex feature patterns
(Fig. 2(a)).

(3) DenseNet is a DNN constructed using a cross-
layer connection method[22]. Its core idea is to estab-
lish the connection relationship between different layers
(Fig. 2(b)). Owing to the limited medical image data,
the cross-layer connection structure can significantly re-
duce the number of network parameters.

A residual block can be expressed as xl+1 = xl +
f(xl), and has been proved to be beneficial to the
optimization of back-propagation neural network. In

Fig. 2(a), the residual block is the basic structure of
ResNet, composed of a direct mapping x that is the in-
put of residual block and a residual part f(x) that is the
output of the convolution branch. In Fig. 2(b), cross-
layer connection strengthens the transfer of features by
creating leaping connections between layers and helps
network training to a certain extent, while also reducing
the size and calculation of the model.

In addition to the above component models, a sim-
ple CNN model with only four convolutional layers was
built (Fig. 2(c)) as a component to build ensemble mod-
els (see Table A4 in Appendix for detailed network ar-
chitecture). This simple model uses four convolutional
layers for feature extraction, and features are trans-
ferred to the dense layer for classification.
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Fig. 2 Structures of different component models

1.3.2 Single Component Model Training Strategy
Component models were trained on training set. To

prevent overfitting, a dropout layer was added before
the classification layer for each component model. It
should be noted that snapshot ensembles were ap-
plied to optimize the parameters of each component

model[23], and the advantage of this method is that dif-
ferent models with different parameters could be ob-
tained in one training process through this method.
This method can not only reduce the training time,
but also obtain good training performance.

Transfer learning was used to obtain the pre-trained
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parameters, which are used to initialize the component
model. For each component model, four sets of optimal
model parameters were obtained using above mentioned
snapshot ensemble strategy in one trial. During train-
ing, learning rates of convolution layers and classifica-
tion layers were set to 1 × 10−5 and 1 × 10−4, respec-
tively and cross-entropy cost function was applied to
evaluate model performance. The mini-batch size was
set to 16 and Adam optimizer was used. The training
of component models was repeated 10 times.
1.3.3 Model Integration Strategy

In each training, four different models were obtained.
An important question is how we should combine four
component models to form an ensemble model. Here,
two simple strategies were proposed: score fusion and
prediction voting.

Score Fusion The output scores of each compo-
nent model are given a weighting coefficient β (0 � β <
1), and the sum of the weighted scores of each category
forms a final score of the ensemble model (Fig. 3(a)),
i.e.,

Si =
∑

k

βkSki, (1)

where Si is the output score of the ith category pre-
dicted by the ensemble model, Ski is the output score
of the ith category predicted by the kth component
model, and βk is the weight coefficient of the output
score of the kth component model for each category

(adaptively adjusted through back-propagation in the
fine-tuning process).

The training of ensemble model was divided into two
stages. In the first stage, the data set is randomly di-
vided into two parts (training data set and fine-tuning
data set). After k (here k = 4) component models are
obtained through snapshot ensembles on the training
data set, an ensemble model with weight parameter β
is constructed from these trained component models.
In the second stage, the parameter β of the ensemble
model is optimized on the fine-tuning data set through
back-propagation. It is worth noting that the entire
training process is done adaptively.

Prediction Voting Prediction voting is to select
the one with the largest number of categories predicted
by all component models according to the principle of
majority winning (Fig. 3(b)), i.e.,

C = argmax
ci

Nci , (2)

where C represents the category predicted by the en-
semble model, ci represents the ith predicted category,
and Nci represents the number of component models
whose prediction is the ith category.

We used four component models to form an ensemble
model, and evaluated the ensemble model. The overall
framework of the model is shown in Fig. 4. Overall
experimental scheme design is illustrated in Fig. 5.
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Different well trained component models compose
different ensemble models according to integration
strategies. The same or different component models are
considered in each ensemble model (note: “×4” repre-
sents four specific component models are used to form
an ensemble model). The categories of the input CT
images are finally predicted by ensemble models.

In the experiment, data screening and preprocess-
ing were first performed. All component models were
trained and validated in training data set and valida-
tion data set, respectively. Well-trained models were
saved to form different ensemble models according to
different integration strategies, and the performance of
these ensemble models was evaluated on the indepen-
dent test set. In particular, the test performance of
each component model is recorded at the same time for
comparison. The workflow is shown in Fig. 5.

1.4 Evaluation Metrics

An independent test data set was used to evaluate the
performance of both component and ensemble models.
Accuracy, F1 score, recall rate and precision rate were
separately calculated to show the test performance. Ac-
curacy was used to measure the proportion of samples
that are correctly classified. F1 score can be regarded
as a harmonic average of the model’s precision rate and
recall rate that are used to determine the test perfor-

mance of the model on positive and negative samples:

F1 = 2
Precision× Recall
Precision + Recall

, (3)

with

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

, (4)

where TP represents true positive and FN represents
false negative, FP stands for false positive, and TN
stands for true negative.

2 Results

2.1 Performance of Component Models
Figure 6 shows training curves of some component

models. All models can converge quickly, benefit-
ing from transfer learning. In addition, these curves
demonstrate that the data set is sufficient and data aug-
mentation is effective to avoid over-fitting. Table 2 lists
evaluation metrics of component models on the test set.
It can be seen that three popular CNNs have achieved
an average accuracy of more than 83%. ResNet-18 ob-
tained an average accuracy of 90.42% (highest) and F1
score of 0.894 3 (highest), followed by DenseNet-121
with an average accuracy of 88.38% and F1 score of
0.885 2. Besides, simple CNN obtained an average
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Fig. 6 Training and validation loss curves of some component models

accuracy of 64.75%, which is significantly higher than
a random probability of 33.3%.

It is easy to find that compared with simple CNN,
other models with better performance have a deeper
network structure and more reasonable design of feature
processing. These advantages may have a large impact

on the improvement of their performance.
2.2 Performance of Ensemble Models

Ensemble models were evaluated on the same test
set. Table 3 shows different evaluation metrics. Con-
fusion matrices on test set are shown in Figs. A1—A5
in Appendix. Among these ensemble models, the one
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Table 2 Performance of component models on test set

Model Accuracy F1 score Recall Precision

Simple CNN 0.647 5 ± 0.023 0.635 4 ± 0.027 0.630 4 ± 0.021 0.624 5 ± 0.023

VGG-19 0.835 0 ± 0.014 0.826 5 ± 0.024 0.833 1 ± 0.025 0.789 5 ± 0.021

ResNet-18 0.904 2 ± 0.015 0.8943 ± 0.018 0.917 1 ± 0.021 0.882 4 ± 0.016

DenseNet-121 0.883 8 ± 0.013 0.885 2 ± 0.018 0.876 7 ± 0.024 0.903 7 ± 0.019

Note: all data are reported as mean ± standard deviation, and the numbers in bold indicate the item with the highest score under
each metric (similarly hereinafter).

Table 3 Performance of different ensemble methods on independent test set

Metrics Simple-CNN × 4 VGG-19 × 4 ResNet-18 × 4 DenseNet-121 × 4 Hybrid model

Score fusion Accuracy 0.654 8 ± 0.025 0.852 1 ± 0.020 0.9231 ± 0.018 0.910 1 ± 0.024 0.854 9 ± 0.024

F1 score 0.658 1 ± 0.021 0.861 5 ± 0.017 0.9368 ± 0.015 0.907 1 ± 0.020 0.847 4 ± 0.019

Recall 0.676 9 ± 0.019 0.862 8 ± 0.021 0.9356 ± 0.017 0.904 5 ± 0.027 0.849 4 ± 0.027

Precision 0.641 6 ± 0.023 0.861 4 ± 0.029 0.9382 ± 0.015 0.910 7 ± 0.018 0.845 8 ± 0.023

Prediction voting Accuracy 0.680 5 ± 0.049 0.881 3 ± 0.029 0.9562 ± 0.027 0.931 5 ± 0.032 0.873 6 ± 0.029

F1 score 0.727 6 ± 0.023 0.896 1 ± 0.018 0.9588 ± 0.021 0.957 3 ± 0.026 0.851 4 ± 0.019

Recall 0.712 1 ± 0.019 0.894 1 ± 0.024 0.9587 ± 0.019 0.956 0 ± 0.019 0.837 4 ± 0.025

Precision 0.746 0 ± 0.021 0.898 5 ± 0.027 0.955 9 ± 0.023 0.9584 ± 0.018 0.859 7 ± 0.023

composed of four ResNet-18 models with voting strat-
egy showed an average accuracy of 95.62% (highest)
with an average F1 score of 0.958 8.

Figures 7 and 8 show the comparison between single
component models and ensemble models of different in-
tegrated strategies. The average accuracy of ensemble
models, especially with voting strategy, is significantly
higher than that of single component models that
compose them (Fig. 7). In Fig. 7, “fusion ensemble”
represents ensemble model with score fusion strategy,
“voting ensemble” represents ensemble model with vot-
ing strategy, and “hybrid model” represents ensemble
model composed of four different component models.

Figure 8 shows the distribution of the highest accu-
racy of single component models versus that of ensem-
ble models in each trial (10 repeat trials in total for
each ensemble or component model). It is easy to find
that the accuracy of ensemble models is significantly
higher than that of single component models in most
trials. Accuracy of ensemble models based on ResNet-
18 adopting voting strategy is increased by about 5%
on average, and the highest up to about 7%, and sim-
ilar phenomena can also be found in other ensemble
models. In addition, it seems that the voting strategy
can bring a more significant improvement in accuracy,
compared with the score fusion strategy (Fig. 8).

1.0

0.9

0.8

0.7

0.6

0.5

0.4

A
cc

ur
ac

y

Simple CNN VGG-19

Component_model
Fusion_ensemble
Voting_ensemble
Hybrid_model

ResNet-18 DenseNet-121 Hydrid model

Fig. 7 Average accuracy of component models and ensemble models with different integration strategies on independent
test set



J. Shanghai Jiao Tong Univ. (Sci.), 2022, 27(1): 70-80 77

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60A
cc

ur
ac

y 
of

 e
ns

em
bl

e 
m

od
el

0.55 0.60 0.70 0.80 0.90 0.95 1.000.85

Ensemble
model is better

Component
model is better

0.75
Accuracy of component model

(a) Vote strategy

0.65

Simple CNN,

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

VGG-19, ResNet-18, DenseNet-121

A
cc

ur
ac

y 
of

 e
ns

em
bl

e 
m

od
el

0.55 0.60 0.70 0.80 0.90 0.95 1.000.85

Ensemble
model is better

Component
model is better

0.75
Accuracy of component model

(b) Fusion strategy

0.65

Fig. 8 Distribution diagram of the highest test accuracy of component models versus test accuracy of ensemble models in
each trial

2.3 Comparison with Current Methods
We collected some latest COVID-19 diagnostic mod-

els based on deep learning and compared them with
the proposed method. The performance of all models
is obtained on the same test set. Table 4 shows the
comparative results. The settings of the training and
testing process were the same as before. It can be seen
that the best accuracy of other methods on our test set
is 93.61%, which is slightly lower than our average ac-
curacy of 95.62% and significantly lower than our best
accuracy of 99.37%. Compared with these methods,
the proposed method has an accuracy improvement up
to about 15%, showing the significant advantage of the
proposed ensemble method.

Table 4 Comparison of current methods

Method Accuracy

DRE-Net[9] 0.847 4

COVIDNet-CT[19] 0.904 8

Proposed ensemble model with vote strategy 0.956 2

3 Conclusion

CAD can greatly reduce the workload of professional
physicians and bring new hope to the automated di-
agnose of COVID-19. Deep learning can distinguish
between COVID-19 CT images and others. However,
most studies only focus on the improvement of the abil-
ity of a single model, and ignore the effect of ensemble
intelligence. To improve the accuracy of neural net-
work recognition of COVID-19 CT samples, we thus
proposed ensemble learning methods combining multi-
ple component models in order to obtain a more pow-
erful classifier.

In our research, transfer learning and snapshot en-
sembles were adopted to train component models. In
the performance, ensemble models were compared with
both their component models and some current popu-
lar methods, and their accuracy has been significantly
improved (up to 10.88%). In addition, two different en-
semble learning methods were compared, showing that
different ensemble learning methods also have a signif-
icant impact on the performance of ensemble models.
Our research is of reference significance for AI-based
assisted diagnosis systems.
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Appendix

Table A1 VGG-19 network architecture

Layer Network configuration Output size

Input – 224 × 224

Features Conv3-64

Conv3-64

Maxpool2-64 112 × 112

Conv3-128

Conv3-128

Maxpool2-128 56 × 56

Conv3-256

Conv3-256

Conv3-256

Conv3-256

Maxpool2-256 28 × 28

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Maxpool2-512 14 × 14

Conv3-512

Conv3-512

Conv3-512

Conv3-512

Dropout

Maxpool2-512 7 × 7

Classifier Flatten 25 088

Dense-1 000

Dropout

Dense-2 2

Softmax 2

Note: all dropout rates are set at 0.5; the convolution layer
parameter is denoted as Conv(receptive field size)-(number of
output channels), and the dense layer parameter are denoted as
Dense-(output dim).



J. Shanghai Jiao Tong Univ. (Sci.), 2022, 27(1): 70-80 79

Table A2 ResNet-18 network architectures

Layer Configuration Output size

Input – 224 × 224

Conv1 Conv7-64

Maxpool3-64 112 × 112

Conv2 x

⎡

⎣Conv3-64

Conv3-64

⎤

⎦ × 2 56 × 56

Conv3 x

⎡

⎣Conv3-128

Conv3-128

⎤

⎦ × 2 28 × 28

Conv4 x

⎡

⎣Conv3-256

Conv3-256

⎤

⎦ × 2 14 × 14

Conv5 x

⎡

⎣Conv3-512

Conv3-512

⎤

⎦ × 2 7 × 7

Pool Dropout

Averagepool 1 × 1

Classifier Flatten

Dense-512

Dense-2

Softmax 2

Table A3 DenseNet-121 network architectures

Layer Configuration Output size

Input – 224 × 224

Conv1 Conv7-64 112 × 112

Maxpool3-64 56 × 56

Dense block 1

⎡

⎣Conv1-128

Conv3-32

⎤

⎦ × 6 56 × 56

Transition layer 1 Conv1-128

Averagepool 28×28

Dense block 2

⎡

⎣Conv1-128

Conv3-32

⎤

⎦ × 12 28 × 28

Transition layer 2 Conv1-256

Averagepool 14 × 14

Dense block 3

⎡

⎣Conv1-128

Conv3-32

⎤

⎦ × 24 14 × 14

Transition layer 3 Conv1-512

Averagepool 7 × 7

Dense block 4

⎡

⎣Conv1-128

Conv3-32

⎤

⎦ × 24 7 × 7

Classifier Dropout

Averagepool 1 × 1

Dense-256

Dense-2

Softmax 2

Table A4 Simple CNN network architecture

Layer Network configuration Output size

Input – 256 × 256

Features Conv ReLU 3-32

BatchNorm 256 × 256

Maxpool 2-32 128 × 128

Conv ReLU 3-64

Conv ReLU 3-64

BatchNorm 64 × 64

AdaptiveAvgpool 8 × 8

Classifier Flatten 4 096

Dropout

Dense-256 256

Dense-3

Softmax 3

Note: all dropout rates are set at 0.5; the convolution-ReLU
layers and pool layers are denoted as Conv ReLU (receptive
field size)-(number of output channels), and the dense layer
parameter is denoted as Dense-(output dim).
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Fig. A1 Confusion matrices of simple CNN on indepen-
dent test set
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Fig. A2 Confusion matrices of VGG-19 on independent test set
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Fig. A3 Confusion matrices of ResNet-18 on independent test set
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Fig. A4 Confusion matrices of DenseNet-121 on independent test set

C
O

V
ID

-1
9

C
P

N
or

m
al

COVID-19
Predicted labels

Fusion strategy

T
ru

e 
la

b
el

s

CPNormal

453

23

9

37

526

1

8

6

480

C
O

V
ID

-1
9

C
P

N
or

m
al

COVID-19
Predicted labels

Vote strategy

T
ru

e 
la

b
el

s

CPNormal

417

42

26

63

476

9

18

37

472

Fig. A5 Confusion matrices of hybrid model of simple CNN, VGG-19, ResNet-18 and DenseNet-121 on independent test
set


