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Abstract

Isochore is the genome-wide mosaic structure in guanine-cytosine (GC) content. The origin of isochores is thought to have

emerged in the ancestral amniote genome, and the GC-rich isochore is eroded in the mammalian lineages. However, there

are many enigmas in the isochore evolution: 1) although all the mammalians, birds, and even reptiles, which are clearly

polyphyletic, have isochore, opossum and platypus lack GC-rich and GC-poor isochore classes; 2) although the isochore is

predicted to vanish according to a fairly robust theory, a completely opposite conclusion was led in some mammalian

lineages; and 3) the major three hypotheses on the isochore evolution cannot explain observed evidences without flaws. So

far compositional evolution has been studied under the assumption that per base pair rate of GC/AT (u) and AT/GC (v)
mutations are temporally constant (the constant model). With this model alone, however, it is difficult to explain the isochore

evolution. We propose a simple model for compositional evolution based on the temporal per base pair rate of mutations

(the variable model). In this model, rates u and v vary depending on temporal GC contents. Mathematically, the variable

model is an expansion of the constant model. By using high-density human single nucleotide polymorphism data, we

compared the variable model with the constant model. Although the variable model gave consistent results with the

constant model, it can potentially describe the complicated isochore evolution, which the constant model cannot explain.

The versatile characteristics of the variable model may shed new light on the mysterious isochore evolution.
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Introduction

One of the distinctive features of the amniote genome is the

huge mosaic structure in guanine-cytosine (GC) content var-

iation known as isochore (Bernardi et al. 1985). In mammals,

GC-rich isochore has three families: that is, H1, H2, and H3

(Bernardi 1993). The large-scale variability of base composition

is significantly related to various genomic features: densities of

LINE and ALU elements, level of methylation, recombination

rates, and gene densities (Mouchiroud et al. 1991; Eyre-
Walker 1993; Duret et al. 1995; Jabbari and Bernardi 1998;

Smit 1999; Fullerton et al. 2001; Lander et al. 2001).

Biological meaning of isochore is still an open question:

why did isochore emerge andwhy was it maintained against

frequent mutations in putatively evolutionarily neutral re-

gions (e.g., intergenic regions)? There are mainly three hy-

potheses in regarding to the isochore evolution: 1) selection

(Bernardi et al. 1985), 2) the mutation bias (Sueoka 1988;

Wolfe et al. 1989), and 3) biased gene conversion

(Holmquist 1992; Eyre-Walker 1993) hypotheses. So far

no evidence was found to exclusively support one of them,

suggesting that the isochore evolution harbors a compli-

cated evolutionary mechanism.
When we consider phylogenies of various organisms

whose genome data are recently available, the isochore evo-

lution is further enigmatic. Figure 1 shows polyphyletic char-

acteristics of isochore families. In this figure, the isochore
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maps were used (Costantini et al. 2006, 2009) to represent

isochore structures. Instead of using mere GC content dis-

tribution in the genome, this approach employs the plateau

values reached by the standard deviation of GC levels of iso-

chors belonging to different isochore families, that is, the

results are expected to reflect spatial isochore structures

in terms of the original definition. Duret et al. (2002) claimed

that the origin of isochore is the ancestral amniote genome
(gray ellipse in fig. 1), and the GC-rich isochore is eroded in

the mammalian lineages. However, although primates (hu-

man and chimpanzee), Rodentia (mouse), and Aves

(chicken) have clear isochore structures, Didelphimorphia

(opossum) and platypus lack GC-rich and GC-poor isochore

families, respectively. These suggest lineage-specific iso-

chore evolution or multiple emergence of isochore (black

ellipses in fig. 1), both of which are hard to be explained
by the existing theories.

One of the difficulties underlying the isochore studies is

that there were no sufficient data to analyze the isochore

evolution with an appropriate evolutionary model. Major

part of isochore resides in noncoding genomic regions,

which are in general not alignable between distantly related

species like human and mouse. Conventional evolutionary

models are empirically based on substitution patterns in

coding regions (in many cases, substitution patterns in syn-

onymous sites and introns are employed to exclude selective

pressures). In other words, we implicitly assume that evolu-

tion of alignable genic regions fairly reflect genome-level
isochore evolution.

By using synonymous substitution patterns in coding se-

quences, Duret et al. (2002) and Belle et al. (2004) predicted

that mammalian isochore is vanishing. Meanwhile, Alvarez-

Valin et al. (2004) and Gu and Li (2006) claims that the van-

ishing isochore theory may be wrong due to misinference of

ancestral states because the ‘‘parsimony-based’’ method

may not be appropriate to analyze the long-term evolution.
Gu and Li (2006) thus applied the maximum likelihood (ML)

method, which is more robust than the parsimony-based

method, using the nonhomogeneous model (Galtier and

Gouy 1998), to reconstruct ancestral states. Surprisingly,

FIG. 1.—Polyphyletic characteristics of relative amounts of isochore families. Although primates, Rodentia, and Aves have clear isochore

structures, Didelphimorphia and platypus lack GC-rich and GC-poor isochore families, respectively. Gray ellipse (indicated by a question symbol)

represents a putative origin of GC-rich isochore. Black ellipses represent alternative (multiple) origins of GC-rich isochore. Scale at bottom represents the

geological era (S, Silurian; D, Devonian; C, Carboniferous; P, Permian; Tr, Triassic; Pg, Paleogene; Ng, Neogene). Time unit is million years. Histograms

represent weighted distributions of relative amounts of isochore families of various organisms (Costantini et al. 2006). Abscissa and ordinate are GC

contents and relative amounts of sequences, respectively. Colors in the histograms represent five isochore families (blue, L1; cyan, L2; yellow, H1;

orange, H2; red, H3) (for details, see Costantini et al. 2006). Phylogenetic tree and histograms are based on Hedges et al. (2006) and Costantini et al.

(2006). Nomenclature of OTUs does not follow precise taxonomic hierarchies.
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they led to an opposite conclusion to that of Duret et al
(2002): the GC content of GC-rich genes appears to have in-

creased in recent times at least in some lineages, for example,

the rabbit genome. Galtier and Gouy (1998) claimed that the

nonhomogeneous model is able to estimate accurate ances-

tral compositions under a given evolutionary model. As men-

tioned above, however, conventional evolutionary models

(including the nonhomogeneous model) were originally

devised to analyze genic regions not to analyze genomic
regions. The definition of isochore is the genome-wide

nonrandom spatial variation in GC content. Taking them into

consideration, we should be cautious to analyze isochore

evolution by using the conventional models.

Webster et al. (2003) examined the compositional evolu-

tion of noncoding DNA by using 1.8 Mb genomic align-

ments of human, chimpanzee, and baboon. According to

mutation patterns inferred by parsimony in human single
nucleotide polymorphisms (SNPs), the equilibrium GC con-

tent of each GC content class was not significantly different.

This again suggests homogenization of the isochore struc-

ture (the vanishing isochore theory). Because it may be in-

appropriate to parsimoniously reconstruct ancestral GC

levels among even closely related species, they carefully

compared results by the conventional parsimony-based

method with those by the ML method and found virtually
no difference between them. Therefore, the model-depen-

dent mis-inference is likely avoided in the genomic substitu-

tion patterns in the human and chimpanzee lineage.

Since most of the SNP sites in intergenic regions are ap-

proximately subject to neutral evolution, human SNP data

and the human and chimpanzee genomes are ideal extant

data. Today, large amounts of reliable human SNP data are

available at the international HapMap project (International
HapMap Consortium 2004; Couzin 2006). To infer reliable

mutation patterns, we used the human genome and SNP

data obtained from the HapMap database and dbSNP as

well as the chimpanzee genome as outgroup (a reference).

In this paper, we focus on mutation patterns, which can be

estimated from the SNP data and the reference genome

data, to study the isochore evolution. Our objectives are:

1) by using the high-density SNP data set to detect
characteristic evolutionary patterns that were missed

in the previous studies and 2) to develop a simple

mathematical model of the compositional evolution.

Basic Concepts for the Model

To estimate the equilibrium GC content, in general, the per

base pair rate of GC/AT (u) and AT/GC (v) mutations
have been assumed to be temporally constant (Webster

et al. 2003): that is, a time-homogeneous Markov process

is used in the model. We call this model ‘‘the constant

model.’’ However, as Galtier and Gouy (1998) mentioned,

this may be an unrealistic assumption. The constant model

implicitly assumes that a genomic region has position-
specific mutation rates u and v. On the other hand, it is

shown that both of rates u and v are positively correlated

to GC contents (Smith et al. 2002; Webster et al. 2003). This

raises a question: can rates u and v be temporally constant

while GC content is changing?

According to the previous studies, inferred mutation pat-

terns (in fact, synonymous substitution patterns in many

cases) have a tendency to converge toward an equilibrium
state. If it is exactly true, by using a sufficiently rich data set

and a reliable evolutionary model, we can estimate a set of

similar equilibrium values to each other independent from

initial GC contents.

We propose a simple model that explains compositional

evolution without a complicated parameter set. We call this

model ‘‘the variable model’’: unlike the constant model, the

per base pair rate of GC/AT (u) and AT/GC (v) mutations
vary depending on time. It is virtually impossible to estimate

functions u and v of time t by using currently available data.

Instead, we propose a more specific model under the as-

sumption that rates u and v are constant in each GC content

class but vary in time. In the constant model, u and v are

fixed depending on ‘‘observed’’ GC content. In the variable

model, u and v are determined depending on ‘‘temporal’’

GC content: that is, they are functions of temporal GC con-
tent GC(t) (GC content at time t). Therefore, this is not

a time-homogeneous Markov model and is determined

by two functions u(GC(t)) and v(GC(t)). Once GC content

at time t is given, the variable model allows us to estimate

values of u and v at time t. Consequently, GC content at time

tþ 1 is recursively estimated from the one at time t. Because
time t is arbitrary, we use reconstructed ancestral GC con-

tent as an initial GC content at t 5 0. The constant model
can be defined as a special case of the variable model

((u(GC(t)) and v(GC(t)) are constant functions here). In this

paper, we formalize the variable model as an extension of

the constant model and evaluate the model by using an

actual rich data set: the human and chimpanzee genomes.

Materials and Methods

Analysis of Mutation Patterns on the Human
Lineage

A total of 3,100,436 SNPs of the human genome were

obtained from the HapMap database (The International

HapMap Consortium 2003) and dbSNP (Sherry et al.

1999). By using Blast program (Altschul et al. 1990), we

mapped the SNPs on the chimpanzee genome (National

Center for Biotechnology Information [NCBI] PanTro1.1)
by using 5# and 3# flanking regions of the SNPs as queries.

To distinguish coding and transcribed regions from the other

genomic regions, we used the Ensembl annotation (re-

lease41) of the human genome from the UCSC genome an-

notation database for the March 2006 GenBank freeze
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assembled by NCBI (hg18, Build 36.1). We also excluded pu-

tative CpG islands and repetitive regions from the human

genome, which were predetected by the UCSC genome da-
tabase. The human genome was divided into 2 kb windows

(nonoverlapped bins). Only biallelic SNPs, in which the chim-

panzee root was the same as one of the two human alleles

(fig. 2), and windows greater than or equal to 100 bp were

used in this analysis.

The genome data are mixture of derived and ancestral

states in polymorphic loci. To estimate accurate per base pair

rate of GC/AT (u) and AT/GC (v) mutations (Sueoka
1988, 1993), we need to reconstruct nucleotide composi-

tions of the ancestral genome of the human population. An-

cestral and derived nucleotide compositions are generally

nearly identical to each other in the human genome. How-

ever, especially when the number of SNP data is huge (i.e.,

SNP density is high) and/or an effective window (bin) size

can happen to be small, an effect of the heterogeneity is

not negligible. We reconstructed ‘‘ancestral’’ chromosomes
of the human population by the parsimony-based method.

We basically followed Webster et al. (2003) to estimate

the per base pair rate of mutations for various GC content

classes. They estimated equilibrium GC contents by using

five GC content classes (GC1 , 0.3, 0.3 � GC2 , 0.4,

0.4 � GC3 , 0.5, 0.5 � GC4 , 0.6, and GC5 � 0.6, where

GCi is the i th GC content class) with parsimony-inferred

mutation patterns. Owning to the high-density SNP data,

we categorized the known mutations in human into 50
GC classes by 49 GC content values (0.02, 0.04, . . . , and

0.998). We performed bootstrap resampling from the

effective bins, assuming that mutations independently

occurred in different bins.

Estimation of the Equilibrium GC Contents by the
Constant and Variable Models

We consider expected GC content transitions with discrete

time t 5 0, 1, 2, . . . in the following description.

The ConstantModel. The constant model is based on the

following two assumptions:

Assumption 1. The mutation rates u and v are constant in
each GC class and further.

Assumption 2. The mutation rates u and v are constant in

time as well.

Let �NGCðtÞ be the expected number of Gþ C sites at time

t. Under these assumptions, �NGCðt þ 1Þ and �NGCðtÞ satisfy
the following formula

�NGCðt þ 1Þ5 �NGCðtÞ þ �NAT/GCðtÞ � �NGC/ATðtÞ; ð1Þ

where �NAT/GCðtÞ and �NGC/ATðtÞ are the expected numbers

of transitions AT-.GC and GC-.AT at time t, respectively.
In the constant model, �NAT/GCðtÞ and �NGC/ATðtÞ are

written as �NAT/GCðtÞ5vNATðtÞ and �NGC/ATðtÞ5uNGCðtÞ,
respectively.

Note that �NATðtÞ þ �NGCðtÞ[L, the total number of sites.

From these we obtain

�NGCðt þ 1Þ5 �NGCðtÞ þ v�NATðtÞ � u�NGCðtÞ
5 �NGCðtÞ þ vðL � �NGCðtÞÞ � u�NGCðtÞ
5 ð1 � u � vÞ�NGCðtÞ þ v L:

Dividing both sides by L and noticing that

GCðtÞ5�NGCðtÞ=L, we obtain

GCðt þ 1Þ5 ð1 � u � vÞGCðtÞ þ v; ð2Þ

where GC(t) is GC content at time t. Suppose that GC(t) has
reached an equilibrium f* at time te. Then f* 5 GC(te) 5
GC(te þ 1) 5 ���. By equation (2), we obtain the equilibrium

formula (Sueoka 1988, 1993) f�5 v
uþv.

The Variable Model. The Derivation of the Variable
Model by Generalizing the Constant Model. Now we retain

Assumption 1 and replace Assumption 2 by:

Assumption 3. The mutation rates u and v vary in time.

Furthermore, we make a stronger assumption:

Assumption 3a.Themutation rates u and v are functions u5
u(GC(t)) and v 5 vGC(t) of the GC content at time t, GC(t).

We do not claim that Assumption 3a is theoretically jus-

tified. First of all, there is no a priori reason to assume that
mutation rates u and v depend only on GC(t). Secondly, the

FIG. 2.—Schematic representation of inference of a mutation

pattern by using human SNP and the chimpanzee genome as

a reference. In this figure, the human genome has a polymorphism

adenine (A) and guanine (G) in a site. A homolog site in the chimpanzee

genome has G. Therefore, an ancestral state of the human genome is

inferred to be G, according to the parsimonious method. Note that the

coalescence time of the human SNP is regarded as a unit time in the

following formalization. Expected length of the unit time is approxi-

mately 2NeX20 years because the average time to coalescence for two

randomly chosen SNPs is 2Ne generations, where Ne is an expected

effective population size of the human lineage.
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mutation rates u and v, if they vary in time, should be
regarded as stochastic processes and the distributions of

u(GC(t)) and v(GC(t)) should play an important role.

Assumption 3a states that u and v follow deterministic rules

defined by the functions u(GC(t)) and v (GC(t)).
On the basis of Assumption 3a, the formula (2) is

changed as follows

GCðt þ 1Þ5GCðtÞ � GCðtÞfuðGCðtÞÞ
þ vðGCðtÞg þ vðGCðtÞÞ:

ð3Þ

When the GC content (at the site we are examining) has

reached the equilibrium fN at time te, then we obtain fN 5

GC(te) 5 GC(te þ 1) 5 GC(te þ 2) 5 . . .. From this with

equation (3), we obtain fN5 fN� fNfu(GC(te))þ v(GC(te)g
þ v(GC(te)) and Sueoka’s formula in this context takes an

analogs form

fN 5
vðGCðteÞÞ

uðGCðteÞÞ þ vðGCðteÞÞ
: ð4Þ

We still do not know explicit formulas of u(GC(t)) and
v(GC(t)). These functions are to be estimated from the actual

mutation patterns (AT-.GC and GC-.AT, respectively) by
using the 50 GC classes described above. Because formula

3 is concernedwith the GC contents at time t and time tþ 1,

we choose the initial time t5 0 as an initial state or t5 1 as

an observed state.

By the generalization, the model no longer follows the

stationery Markov process because the transition matrices

changes depending on time. Before proceeding further,

we make a digression to an auxiliary consideration.

An Auxiliary Consideration on Potential Equilibria. We

introduce an auxiliary function f(x) defined by

fðxÞ5 ð1 � uðxÞ � vðxÞÞx þ vðxÞ; 0 � x � 1; ð5Þ

where u(x) and v(x) are smooth functions, such that 0, u(x),
v(x) ,, 1. The change of variable x 5 GC(t) gives equation
(3) and the function f(x) stands for a transition rule of the GC

content. Because f(x) is given by the two mutation rates u(x)
and v(x), a temporal GC content GC(t) is also given by the

twomutation rates in a recursive way. We have f(0)5 v(0).
0 and f(1) 5 1 – u(1) , 1. These two inequalities imply that

there is at least a value xe such that f(xe) 5 xe. Such value is
also called a ‘‘fixed point.’’ There may be several fixed points,

each of which corresponds to a potential equilibrium.

The behavior of iterations of the function f near a poten-
tial equilibrium xe is described by the absolute value of the

derivative, jf’(xe)j (most likely ,1 or .1 and not exactly

equal to 1 in our context). Let f(2)(x) 5 f(f(x)), f (3)(x) 5

f(f(f(x))), and so on.

Class I: 0 , f (xe) , 1: When we start with a value x0 , xe,
which is ‘‘sufficiently close’’ to xe, then we have x0 , f(x0),

f (2)(x0), . . ., f (n)(x0),/ xe as n/N. Similarly whenwe

start with a value x0 . xe, which is sufficiently close to xe,
then we have x0 . f(x0). f (2)(x0). . . .. f (n)(x0)./ xe as
n / N (see fig. 3).

Class II:�1, f’(xe), 0: When we start with a value x0 , xe,
which is sufficiently close to xe, then we have an

‘‘oscillation’’ x0 ,xe. f(x0) áxeñ . f(2)(xe) ,xe. f(3)(xe),
. . . and f(n)(x0) / xe as n / N (see fig. 4a).
Class III: jf’(xe)j . 1: Here, the behavior of iterations of f ex-
hibits a sharp contrast with Classes I and II. Even if we start

with a value x arbitrarily close to xe, the iterated values f (n)(x)
are ‘‘repelled’’ from xe, and it is not possible to predict their

asymptotic behavior in general.

Although sometimes there may be periodic values xp in

the sense that after some iteration of the function f, xp
comes back to itself. In formula, this is expressed as: xp 5

f (n)(xp): 5 f (f (f . . . (n times) (xp))).
If the derivative (f (n))‘(xp)5 f’ (f (n � 1)(xp)) f‘(f

(n � 1)(xp)) . . .
f‘(xp) falls into Class I or Class II, we may derive similar

conclusions on the periodic value xp (see fig. 4b).
In our application to the actual data set, f(x) is consider-

ably close to x. It is convenient to introduce a function g(x)5
x – f(x). Noticing that g‘(x) 5 1 – f‘(x), we have

Class I : 0,f #ðxeÞ,1 if and only if 0,g#ðxeÞ,1;

ð6:1Þ

FIG. 3.—Schematic representations of a typical transition of GC

content under the f(GC(t)) framework (red lines). The diagonal broken

line represents f(GC(t))5 GC(t þ 1)5 GC(t), that is, a set of fixed points

and, in this case, the equilibrium states. The intersection of GC(t) and

GC(t þ 1) represents an equilibrium. GC content transition (red lines)

asymptotically approaches the equilibrium (GCe). The variable model

predicts asymptotical convergence of transitions on potential equilib-

rium GC(te), where te is equilibrium time. The total derivative f#(GC(t))

satisfies condition 0 , f‘ (GC (te)) , 1 (Class I).

OOta et al. GBE

562 Genome Biol. Evol. 2:558–571. doi:10.1093/gbe/evq041 Advance Access publication July 8, 2010



Class II : � 1,f #ðxeÞ,0 if and only if 1,g#ðxeÞ,2;

ð6:2Þ

Class III : jf #ðxeÞj.1 if and only if g#ðxeÞ,0 or 2,g#ðxeÞ:
ð6:3Þ

A Preliminary Assessment. To briefly assess characteristics of
the variable model, we first performed three kinds of com-

putations by using human chromosome 21 (HSA21): 1) qua-

dratic fitting and numeric: u and v were given by nonlinear

regression to fit the five sets of replicated data to quadratic

models, and the equilibrium GC contents were estimated by

giving a large value of time t (say, 2,000 unit times); 2) qua-

dratic fitting and analytic: the equilibrium GC contents were

analytically estimated under assumption that GC(te �
1)’GC(te) 5 GC(te þ 1) holds, where te is time when the

GC content reaches the equilibrium; 3) GC class: u and v
are estimated according to discrete GC classes (as a step

function), say, 0 � GC , 0.3, 0.3 � GC , 0.4, 0.4 �
GC , 0.5, 0.5 � GC , 0.6, and 0.6 � GC , 1.0. Six initial

GC contents were used (0.1, 0.3, 0.4, 0.5, 0.6, and 0.8).

Note that the 2,000 unit times are 2,000 times as long as

the average time to coalescence for two randomly chosen
SNPs: approximately 800 My, assuming that the effective

population size for the human lineage is 10,000 and the

generation time for human is 20 years.

Results

Figure 5 shows transitions of GC content under the constant

model with various initial GC content classes (0.2, 0.3, 0.4,

0.5, 0.6, 0.7, and 0.8). To examine overall characteristics of

transitions of GC content, u(GC(t)) and v(GC(t)), are simpli-

fied by nonlinear regression: û50:002014� 0:000735 ĜC2

and v̂50:003486� 0:000812 ĜC2, respectively. The fitting

was better in the quadratic models than the linear models:

R-squared values of rates u and v are 0.623 and 0.547 in

the linear models, respectively, whereas those in the

quadratic models are 0.700 and 0.551, respectively. In

the constant model, each ĜC was given as an initial GC con-

tent for each GC content class. Although it is known that GC

contents under the constantmodel take extremely long time

to reach the equilibria (Sueoka 1962), an estimated conver-

gence time is around 350 My under the given conditions: 1)

the intergenic regions we used are subject to neutral evo-

lution, 2) the effective population size of the human lineages

is 10,000, and 3) the generation time for human is 20 years.

It is approximately equal to or rather shorter than 400 My,

which corresponds to the divergence time of amniotes: a pu-

tative age of the origin of isochore (Duret et al. 2002) (fig. 1).

Table 1 shows comparison of GC content equilibria of

HSA21 between the constant and variable models. The

equilibrium GC contents under the constant model were

fairly similar. Meanwhile, owing to the high-density SNP

data, the small differences appeared to be significant (fig.

6a). Although Webster et al. (2003) did not report any sig-

nificant differences of the equilibrium among GC classes,

our results were consistent with theirs in terms of those sim-

ilar equilibria, suggesting homogenization or ‘‘vanishing’’

isochore under the constant model. Meanwhile, under

the variable model, all the GC content categories converged

on the exactly same equilibrium (table 1 and fig. 6b), which

FIG. 4.—Schematic representations of ‘‘atypical’’ transitions of GC content under the f(GC(t)) framework (red lines). (a) Class II: oscillatory

convergence of transitions on a potential equilibrium GC(te). The total derivative f#(GC(t)) must satisfy condition � 1 , f#(GC(te)) , 0. (b) Class III:

divergence of transitions from fixed points.
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is still close to the equilibrium values under the constant

model.

Next, we examined transition behaviors of GC content

based on the f(GC(t)) framework, the one which describes

GC(t þ 1) by a function f(GC(t)) of GC(t). We used the

functions u(GC(t)) and v (GC(t)) instead of the simplified
quadratic models and the stepwise functions of GC content

classes. Figure 7 shows the per base pair rate of GC/AT (u)
and AT/GC (v) mutations corresponding to GC content in

human chromosome 3 (HSA3). Note that figure 7a and

b shows the relationships between GC content and rates

u and v, respectively, instead of the net mutation rates.

By using synonymous substitution patterns, Smith et al.

(2002) showed that both u and v are positively correlated
to GC content. However, detailed relationships estimated

from the rich SNP data were more complicated in the

intergenic regions. Owing to the high-density SNP data,

we could detect multimodal structures of relationships

between GC and per base rates u and v. These multimodal

structures of estimated u(GC(t)) and v(GC(t)) were observed

in all chromosomes (data not shown). According to the re-
sampled data, the structural relationships between GC

content and the per base pair rates are moderately stable

across the chromosome, suggesting that the relationships

are universal at intrachromosomal level. Figure 8 shows

relationships between GC(t) and g(GC(t)) 5 GC(t) �
f(GC(t)) 5 GC(t) � GC(t � 1) under the variable model

(HSA21). A root of g(GC(t))5 0 is a fixed point (see section,

An auxiliary consideration on potential equilibria) of f(GC(t))
and, in this case, a potential equilibrium value since the de-

rivative at the fixed point satisfied the condition given by

formulas (6.1) and (6.2) (note that g(GC(t)) is the function

of GC(t), not t, in our context). This value belongs to Class I

in the transition behavior of GC content (fig. 3). As shown in

figure 8, while g(GC(t)) varies depending on resampled SNP

data from HSA21, the variation is moderate (for details, see

figure legends).
We furthermore elaborated on characteristics of g(GC(t))

for each replicated data set. Figure 9 shows distribution of

fixed points of f(GC(t)) and the derivatives at fixed points of

g(GC(t)) in chromosome 1 (HSA1). There are mainly three

clusters: low (;0.2), medium (;0.37), and high (;0.7).

The derivatives at the fixed points have a tendency to be

negative, positive (or nearly zero), and negative for the

low, medium, and high clusters, respectively. Because many
of the fixed points of the medium cluster satisfy the condi-

tions given by formulas (6.1) and (6.2), they are suggested to

be potential equilibria. However, there are a considerable

number of fixed points that do not follow the tendency: for

FIG. 5.—Transitions of CG content of chromosome 21 (HSA21) under the constant model. Italic bold figures represent initial GC content; Italic

figures represent GC content values at t 5 2,000 (putative unit times to reach the equilibria). A unit time represents approximately 400,000 years.

Table 1

Comparison of GC Content Equilibria of HSA21 between the

Constant and Variable Models

Initial GC

Equilibrium

Constant

Variable

Quadratic Fitting

GC ClassNumeric Analytic

0.1 0.3659 0.3620

0.3620

0.3683

0.3 0.3634 0.3620 0.3683

0.4 0.3611 0.3620 0.3683

0.5 0.3580 0.3620 0.3683

0.6 0.3539 0.3620 0.3683

0.8 0.3423 0.3620 0.3683

NOTE.—Initial GC: GC content at time t 5 0, which corresponds to GC content

classes; Constant, the constant model; Variable, the variable models; Quadratic fitting,

u and v are given as quadratic models of local GC content; Numeric, numeric

estimation of the equilibrium GC content by giving a large value to time t; Analytic,

analytical estimation of the equilibrium GC content; GC class, u and v are estimated

according to discrete GC classes (as a step function). For detail, see text.

}
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example, some of the fixed points at low and high GC con-

tent clusters satisfy the condition (6.3), many of which are

thought to be ‘‘repulsive’’ fixed points leading to the adja-

cent potential equilibria. Figure 10 shows distribution of

fixed points of g(GC(t)) in all chromosomes. CpG and

non-CpG SNPs were distinguished. Overall, there are 2–4

clusters of fixed points for each of the data sets, suggesting

that plural GC content equilibria and/or divergent behaviors
under the variable model. GC content equilibria under the

constant model (indicated by dashed and dotted lines for

the all SNP and non-CpG SNP data, respectively) are well

matched in mean GC values of one of the clusters, many

of which are potential equilibria under the variable model.

Surprisingly, except for these clusters, therewere virtually no

fixed points between them. This means that randomly sam-

pled data from each chromosome share the characteristics,
suggesting that the f(GC(t)) framework is considerably sta-

ble in the given data set.

Figure 11 shows the genome-level derivatives of g(GC(t))
at the fixed points appeared in figure 10. It is obvious that all

chromosomes share similar characteristics in terms of distri-

bution of the clusters. Note that we did not elaborate upon

Class III except for repulsive fixed points because it was im-

possible to predict their asymptotic behavior in general.

Discussion

There are evolutionary enigmas in compositional evolution:

1) the opossum (Mikkelsen et al. 2007) and platypus

(Warren et al. 2008) genomes lack GC-rich and GC-poor

isochore families, respectively, whereas all the other mam-

malians, birds, and even reptiles, which are polyphyletic,

have clear isochore structures (Duret et al. 2002); 2) rat

and mouse show reduction of GC content variation (murine

shift); 3) the ML-based inference can sometimes lead to a
completely opposite conclusion against that by the

FIG. 6.—Close-ups of transitions of CG content of HSA21 under (a) the constant model and (b) the variable model. Although all the GC categories

showed similar but different equilibria under the constant model, all the GC content categories converged on the same equilibrium under the variable

model. For legend, see figure 5.

FIG. 7.—The per base pair rate of GC-.AT (u) (a) and AT-.GC (v) (b) mutations corresponding to GC content in chromosome 3 (HSA3). Thick

(gray) and thin (black) regions indicate 95% confidence intervals based on a normal distribution fitted to 1,000 bootstrap replications of HSA3 data and

for their means, respectively.
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maximum parsimony-based inference (Gu and Li 2006); 4)

the major three hypotheses, which are all sophisticated and

plausible, cannot explain the isochore evolution without

flaw (Eyre-Walker and Hurst 2001). These suggest that

the existing compositional evolution frameworks need to

be reconsidered.
The constant model (the time-homogeneous/stationary

Markov model) is simple and intuitive. Many compositional

evolution studies, explicitly or implicitly, have used this

model: that is, the per base pair rate of mutations is assumed

to be temporally constant. As a consequence, transitions of

GC content are necessarily gradual and asymptotic to equi-

librium states. However, with this model alone, it is difficult

to elucidate the above four enigmatic phenomena.

Alvarez-Valin et al. (2004) and Gu and Li (2006) used the
ML method with the nonhomogeneous model (i.e., the

‘‘time-nonhomogeneous’’ Markov model) (Galtier and Gouy

1998) to reconstruct ancestral states and obtained the op-

posite conclusion from the ‘‘vanishing isochore’’ hypothesis

at least in certain lineages. We should note that their non-

homogeneous model is composed of different kinds of the

time-homogeneous Markov models, which are branch spe-

cific in a phylogenetic tree of the compared organisms.
Therefore, if we consider only one branch between ancestral

and descend nodes, this model is identical to the time-ho-

mogeneous Markov model for estimating the ancestral base

compositions.

The variable model is essentially different from the

‘‘nonhomogeneous’’ model. Our model is literally ‘‘time-

heterogeneous’’ even on a branch. An a priori assumption

that the variable model requires is that each GC content
class has a moderately fixed per base pair rate as shown in

section The Variable Model (Materials and Methods). This

assumption may look like too strong. However, as long as

GC content homogenization is predicted under the con-

stant model, this assumption is implicitly required also

in the constant model: if this assumption is violated, the

same GC content class will have different equilibria,

namely, the homogenization will not occur. Therefore,
both the constant and variable models share the same

assumption at this point.

One might be confused by the complicated characteris-

tics of the variable model. Overall, the variable model has 2-

fold characteristics: 1) if mutation patterns belong to Classes

I and II, the variable model has a unique equilibrium regard-

less of initial GC content values and 2) if mutation patterns

belong to Class III, the variable model can have plural equi-
libria. In the constant model, it is required that mutation pat-

terns are temporally constant in a genomic region: that is,

the constant model assumes that initial GC content-specific

(or rather position-specific) mutation patterns last forever.

This is a special case of the variable model when u(GC(t))
and v(GC(t)) are constant functions. Therefore, the variable

and constant models are not antagonistic to each other, but

the former is an extension of the latter.
In the net compositional evolution, the variable model

provided consistent results with the constant model (fig.

10). Meanwhile, there exist plural clusters of fixed points,

suggesting plural equilibria. For example, data belonging

to Classes I and II in figure 9 indicate potential GC content

equilibria, according to formulas (6.1) and (6.2). A question

arising here is whether the isochore structure could reflect

this multiplicity of equilibrium GC contents. The observed
distribution of GC content across genomic regions in human

is apparently unimodal. However, this does not contradict

the multiplicity of equilibrium GC contents. Note that 1)

the definition of isochore is the heterogeneity of spatial dis-

tribution of GC content not multimodality of the gross

FIG. 8.—An example of relationships between GC(t) and g(GC(t))

5 GC(t) � f(GC(t)) 5 GC(t) � GC(t þ 1) in the variable model (HSA21).

The upper and lower arrows indicate an equilibrium GC value and the

slope of g(GC(t)) at the fixed point, respectively. For legend, see figure 7.

FIG. 9.—Distribution of fixed points of f(GC(t)) in chromosome 1

(HSA1). Left axis: frequencies of fixed points of f(GC(t)) in HSA1

(histogram); Right axis: the derivative at of fixed points of g(GC(t))

(yellow dots). Classes I and II: ‘‘attractive’’ fixed points or potential

equilibria; Class III: ‘‘divergent’’ fixed points (green). Note that, in actual

computation, the fixed points were given by roots of g(GC(t)) 5 0.

Therefore, the three classes in terms of behaviors of GC content

transition were determined as follows: (a) 0 � g’(GC(te)) , 2:

convergence, suggesting an equilibrium (purple); (b) g’(GC(te)) . 2 or

g’(GC(te)) , 0: divergence (green). The constant model shows equilibria

around GC content ;0.4, which are consistent with those of the

constant model with substitution patterns of GC3.
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distribution (see the isochore maps in fig. 1) and that 2) we
observe a snapshot of a GC content transition. As the pre-

vious studies (Webster et al. 2006; Duret and Arndt 2008)

suggested, GC content is probably not at equilibrium in

many mammalian lineages. Furthermore, unlike the con-

stant model, the variable model allows a change of a muta-

tion pattern at a genomic region. This makes it difficult to

intuitively follow a behavior of GC content distribution. For

example, if the transition is oscillatory (Class II), it is quite
difficult to predict how the gross GC content distribution

behaves. Besides that, it is not obvious that each chromo-

some shows a unimodal GC content distribution if we ex-

tract genomic regions putatively subject to the neutral

evolution: for example, chromosomes 17 and 22 are appar-

ently exceptional.

We assume that each chromosome has a pair of specific

functions u(GC(t)) and v(GC(t)). The bootstrapped data
share the similar characteristics in terms of distribution of

fixed points overall (fig. 10; for the whole genome perspec-

tives, see also supplementary figs. S1 and S2, Supplemen-

tary Material online). Although this assumption is

moderate for the net compositional evolution, the functions

u(GC(t)) and v(GC(t)) vary depending on positions in a chro-

mosome. The nonlinearity of the variable model opens an-

other possibility on the transitions of GC contents. As was
shown in Li and Yorke (1975), a function f(x) (0 � x �1) sat-
isfying a certain ‘‘global’’ condition (roughly illustrated in fig.

12; for detail, see Li and Yorke [1975]) exhibits a rather com-

plicated behavior on its iterations. For example:

i) Arbitrarily small difference of initial conditions may
cause a large deviation of long-term iterations;

ii) There may be many periodic points with almost
arbitrary period.
This type of iteration behavior is generally called ‘‘cha-

otic,’’ and many mathematical studies have been made

on chaotic dynamical systems. Although no such transition
function is clearly observed in our data, there could be a pos-

sibility that future studies find transition functions that ex-

hibit chaotic behaviors. This might shed another light on the

isochore evolution.

The variable model can explain both the gradual (and/or

asymptotic) and the drastic (and/or chaotic) compositional

transitions. By considering the present genomic composi-

tions as a snapshot of dynamic transitions, the paradoxes
of isochore are explained under the variable model: that

is, a local genomic composition can occasionally converge

on a certain GC content value and occasionally can diverge

with tiny changes of mutation patterns. Under those condi-

tions, GC content transitions are more rapid than those pre-

dicted by the constant model because tiny fluctuations of

u(GC(t)) and v(GC(t)) lead to drastic difference in GC con-
tent transitions.

How did isochore evolve? The previous study (Duret et al.

2002) suggests the origin of isochore is the ancestral amni-

ote genome (fig. 1). Although their theory is plausible for

many extant genome data, there are counterexamples:

for example, the opossum (Mikkelsen et al. 2007) and platy-

pus (Warren et al. 2008) genomes. As mentioned above, ho-

mogenization of isochore (vanishing isochore) is supported
by the constant model. Because the homogenization takes

extremely long time to reach the equilibrium (Sueoka 1962),

we are tempted to consider that the observed isochore is

just remnants of the original isochore of the ancestral am-

niote genome. However, under the constant model, the

convergence time of vanishing isochore is around 350 My

(see figs. 5 and 6). Because the estimated divergence time

between the amniote and its counterparts is around 400My
(Hedges et al. 2006), it is hard to think that the extant iso-

chore is mere remnants of the ancient isochore. Further-

more, we should note that the estimated convergence

time (350 My) may be an overestimation according to the

following reason. We set the unit time to 2 Ne � 20 5

800,000 years, assuming that the effective population size

of the human lineage is 10,000. Because an effective pop-

ulation size is the harmonic mean of the actual numbers, the
long-term effective population size tends to be dominated

by the smallest temporal population size in a lineage: that is,

the human effective population size (10,000) is putatively an

overestimation as the long-term effective population size.

Therefore, it is reasonable to think that the 800,000 years

is an upper limit of the unit time and that the ancestral am-

niote genome would have reached the equilibrium by today

under the constant model.
To solve this contradiction, we need to assume lineage-

specific isochore evolution and/or multiple emergence of

isochore. Those phenomena are hard to be explained under

the constant model.

According to the variable model, tiny fluctuation of pa-

rameters (u(GC(t)) and v(GC(t))), which are easily observed

in real data, can lead to drastic changes in the genome com-

positions under the variable model. On the other hand, if
mutation patterns in a genome do not satisfy any conditions

resulting oscillatory, plural, or chaotic transition behaviors

(Classes II and III), the genome does not have clear isochore

in our context. Therefore, the genome that does not have

clear GC-rich isochore (e.g., the opossum genome) is pre-

dicted to harbor fixed points belonging to only Class I

(we need to wait for high-density SNP data of the opossum

genome to confirm this prediction as well as closely related
species as a reference).

FIG. 10.—Distribution of fixed points of g(GC(t)) in human chromosomes (open bars: all SNP data; shaded bars: non-CpG SNP data). Subsets of

the fixed points are potential equilibria. Abscissa and ordinate are GC content and frequency of fixed points, respectively. Dashed and dotted lines

indicate estimated GC content equilibria in each chromosome under the constant model by using all SNP data and non-CpG SNP data, respectively.
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FIG. 11.—The genome-level derivatives of g(GC(t)) at the fixed points (open bars: all SNP data; shaded bars: non-CpG SNP data). The three classes

are indicated by roman numerals: convergence or potential equilibrium (Classes I and II); divergence (Class III). Part of histograms are truncated for

comparison. Note that each replicated data set has plural fixed points in general (the sum of fixed points are greater than 1,000).
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Note that the variable model requires a pair of functions

u(GC(t)) and v(GC(t)), which are derived only frommutation

patterns of unfunctional intergenic regions. They are (puta-

tively) selectively neutral. Although, the neutrality is not

essential in our model, it is unlikely that vast amounts of

the genomic regions that we used in the analyses are under
strong selection. The variable model may be able to explain

emergence and maintenance of isochore under the neutral

theory.

The previous studies (Eyre-Walker 1999; Duret et al.

2002; Smith et al. 2002; Webster et al. 2003; Duret and

Galtier 2009) suggested that the fixation process in mam-

mals is biased toward G and C. The fixation biases are, how-

ever, primarily discussed in the context of evolutionary
changes in synonymous sites and introns as well as inter-

genic regions. The data we used (SNP data only from un-

functional intergenic regions) showed a different view:

for example, Webster et al. (2003) estimated the overall

equilibrium GC content 0.41 based on the parsimony-

inferred substitution data since human–chimpanzee and

the common ancestor (95% confidence interval is 0.40–

0.42). Those values are consistent with our equilibrium es-
timations both by the variable and constant models when

the non-CpG SNP data were used (see fig. 10).

We categorized fixed points of f(GC(t)) derived from the

replicated data into three classes: Classes I, II, and III. Each

class theoretically shows a characteristic behavior in transi-

tions of GC content: asymptotic convergence (Class I), os-

cillatory convergence (Class II), and divergence (Class III).

Note that those transitions described here are local
behaviors: that is, a single fixed point is considered in each

class. If plural fixed points are involved (and this is a common
case), a global behavior of GC content transitions will be

more complicated. Further theoretical studies of f(GC(t)) will

provide insight to the compositional evolution under the var-

iable model. We used high-density SNP data of the human

population and closely related species, chimpanzee, as a ref-

erence. Recently, high-speed sequencing technologies are

emerging. More abundant and reliable SNP data of various

species will be available soon. At a point of view on polymor-
phism, the isochore evolution is still open to further discus-

sion due to lack of the data. New rich data will make it

possible to shed light on dynamics of the isochore evolution.

With accumulation of reliable SNP data not only of human

but also of the other animals (e.g., laboratory mouse, zebra

fish, opossum, and platypus), studies on compositional evo-

lution will reach a new era.

Supplementary Material

Supplementary figures S1–S2 are available at Genome
Biology and Evolution online (http://www.oxfordjournals.

org/our_journals/gbe/).
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