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Abstract

Background: Drug combination therapy, which is considered as an alternative to single drug therapy, can
potentially reduce resistance and toxicity, and have synergistic efficacy. As drug combination therapies are widely
used in the clinic for hypertension, asthma, and AIDS, they have also been proposed for the treatment of cancer.
However, it is difficult to select and experimentally evaluate effective combinations because not only is the number of
cancer drug combinations extremely large but also the effectiveness of drug combinations varies depending on the
genetic variation of cancer patients. A computational approach that prioritizes the best drug combinations
considering the genetic information of a cancer patient is necessary to reduce the search space.

Results: We propose an in-silico method for personalized drug combination therapy discovery. We predict the
synergy between two drugs and a cell line using genomic information, targets of drugs, and pharmacological
information. We calculate and predict the synergy scores of 583 drug combinations for 31 cancer cell lines. For feature
dimension reduction, we select the mutations or expression levels of the genes in cancer-related pathways. We also
used various machine learning models. Extremely Randomized Trees (ERT), a tree-based ensemble model, achieved
the best performance in the synergy score prediction regression task. The correlation coefficient between the synergy
scores predicted by ERT and the actual observations is 0.738. To compare with an existing drug combination synergy
classification model, we reformulate the problem as a binary classification problem by thresholding the synergy
scores. ERT achieved an F1 score of 0.954 when synergy scores of 20 and -20 were used as the threshold, which is 8.7%
higher than that obtained by the state-of-the-art baseline model. Moreover, the model correctly predicts the most
synergistic combination, from approximately 100 candidate drug combinations, as the top choice for 15 out of the 31
cell lines. For 28 out of the 31 cell lines, the model predicts the most synergistic combination in the top 10 of
approximately 100 candidate drug combinations. Finally, we analyze the results, generate synergistic rules using the
features, and validate the rules through the literature survey.

Conclusion: Using various types of genomic information of cancer cell lines, targets of drugs, and pharmacological
information, a drug combination synergy prediction pipeline is proposed. The pipeline regresses the synergy level
between two drugs and a cell line as well as classifies if there exists synergy or antagonism between them. Discovering
new drug combinations by our pipeline may improve personalized cancer therapy.
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Background
Researchers have been working for years to develop new
cancer drugs with “one drug, one target, one disease”
strategy. However, the discovery and approval of new
molecular entities has been on the decline in the phar-
maceutical industry [1]. According to the Biotechnology
Innovation Organization’s 2016 report, the success rate
of new drug development in oncology between 2006 and
2015 was 5.1%, the lowest among 14 major diseases while
the overall average was 9.6% [2]. Cancer is a complex dis-
ease in which various molecules interact; the networks
formed by interactions are robust, redundant, and com-
pensatory [3]. When cancer is treated with a single drug
that targets a specific molecule, the cancer tries to dis-
cover bypasses in the networks and finds alternative can-
cer addicted pathways to evade apoptosis or proliferate
[4]. Thus, it is difficult to develop a sustainable targeted
cancer drug.
Drug combination therapy, which is considered as an

alternative to single drug therapy, can potentially reduce
resistance and toxicity, and have synergistic effects [5]. As
drug combination therapies are widely used in clinics for
hypertension, asthma, and AIDS, they have also been pro-
posed for treating cancer. SinceMOPP(Mechlorethamine,
Oncovin, Procarbazine, Prednisone) has been used for
Hodgkin’s lymphoma in the 1960s, more than 50 drug
combination therapies have been approved by the FDA.
For example, the combination of vemurafenib, which tar-
gets BRAF, and cobimetinib, which targets MAP2K1, was
approved by the FDA in 2015 for use in treating BRAF
mutated melanoma.
However, it is difficult to select and experimentally eval-

uate effective combinations because the number of cancer
drug combinations is extremely large. The number of
FDA-approved cancer drugs is more than 200. Combin-
ing two drugs will result in at least 19,900 combinations.
Since several thousands of chemical compounds are used
in clinical trials, the number of combinations to be tested
will be in the millions. If we are combining three or more
drugs, the number will increase exponentially.
Moreover, it is assumed that drug combination therapy

will always be better than a single drug treatment, but it
may have synergistic or antagonistic effects depending on
the genetic variation of a person [6]. Therefore, it is nec-
essary to consider the genetic characteristics of a patient
when using drug combination therapy. Genetic variation
makes it more difficult to generate biological hypotheses
and experimentally discover effective drug combinations.
For this reason, an efficient computational approach

that prioritizes the best synergistic drug combinations
while considering a cancer patient’s genetic information
is necessary. Many computational methods have been
developed to find effective personalized drug combination
therapies. As this problem is important, a community

based-competition called the DREAM Challenge was
launched to help generate drug combination predic-
tion models [7]. Although various models have been
proposed for the DREAM Challenge, the models are
insufficient for making a scalable prediction system for
various cell lines and drug combinations using drug
screening data of 14 drugs on the OCI-LY3 DLBCL
cell line.
There are various machine learning-based approaches.

A sensitivity-based approach [8] uses drug-response data
on BRAF mutant melanoma cancer cell lines and employs
a classification model that predicts synergistic drug com-
binations. Since this classification model uses only the
BRAF mutant melanoma cell lines, it is difficult to gen-
eralize to all cancer types. It also cannot rank synergis-
tic drug combinations. Drug target- or kinase inhibition
profile-based approaches [9, 10] find potential combina-
tional targets based on individual drug effects. Matlock et
al. attempted to find effective and less toxic combinational
targets using drug sensitivity data of cancer cell lines and
normal cells. The method by Matlock et al. is based on
calculating the effectiveness probability of combinational
targets using a drug’s effect on the cell and the target infor-
mation of the drug. However, to employ these approaches,
we should know the effects of drugs including unintended
off-target effects that are difficult to obtain. Moreover,
theremay not exist any drug known to target the combina-
tional targets suggested by these systems. Network-based
modeling [11–13] uses cancer pathways or drug-target
networks for discovering drug combinations. Unlike the
other models, network-based models can be utilized to
hypothesize interventionmechanisms because themodels
are based on prior knowledge such as molecular inter-
action networks and drug-target networks. However, the
accuracy of the models can be lowered by the existing net-
works’ limited coverage. Althoughmany studies have been
proposed to find effective drug combinations, the stud-
ies are either limited to specific cancer types [8], require
comprehensive off-target information [9, 10], or are based
on incomplete prior knowledge [11–13], making it diffi-
cult to perform scalable computational drug combination
prediction using high-throughput drug screening data.
To address these problems, we propose an in-silico

method that uses unbiased high-throughput drug screen-
ing data for personalized synergistic drug combina-
tion therapy discovery for the treatment of cancer.
Our machine learning models use the genomic infor-
mation of cancer cell lines from various cancer types,
regress the synergy level between two drugs and a
cell line as well as classify whether there exists syner-
gism or antagonism between them, and make synergistic
rules for predicting the synergism of drug combinations
using the features. The source code will be available
at http://infos.korea.ac.kr/dcpipe/.

http://infos.korea.ac.kr/dcpipe/
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Methods
Approach
We constructed a personalized drug combination synergy
prediction pipeline and Fig. 1 shows how our pipeline
works with an example data. Synergy in the pipeline is
defined as a synergy score quantified using a tool called
Combenefit [14]. We used genomic information such as
gene expression, mutation, and copy number variation
data of cell lines from various unbiased cancer types,

and target information of cancer drugs to predict syn-
ergy scores. In addition, single drug response data and
synthetic lethality data are used as well.
The high dimensionality problem of the feature space

was the main difficulty when constructing a model
to predict synergism. The number of genomic fea-
tures such as mutations and expressions of more than
10,000 genes should be reduced to a much smaller size.
To address this, we reduce the feature dimensions by

Cell Line A2780
Drug Dasatinib
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Drug
MK-2206

0 uM 100 86.9 78.8 65.2 85.6

0.045 uM 96.5 71.9 53.4 55.8 63.6

0.2 uM 84.8 58.7 45.5 46.5 49.3

0.9 uM 60.5 48.4 35.6 37.3 42.7

4 uM 53.1 40.7 34.2 31.9 36.2
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Fig. 1 a Reformatted experimental data from O‘Neil’s dataset for analyzing by Combenefit. b Synergy scores calculated by Combenefit. c For
predicting synergy scores, each sample is vectorized. The vector contains drug targets, genomic information of a cell line, pharmacological data,
and other external knowledge such as synthetic lethality. d and e Predicted synergy scores calculated using various machine learning models.
Pearson correlation coefficient and F1 score were used as the evaluation metrics for the regression models and classification models, respectively
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using only the mutations or expression levels of the
genes in cancer-related pathways. Finally, the features
for each sample are represented as a 1,028-dimensional
vector.
We use various machine learning models including lin-

ear regression, RBF(Radial Basis Function) kernel-based
ridge regression, random forest, and so on and compare
them. We analyze the results and make synergistic rules
for predicting the synergism of drug combinations using
the features.

Datasets
We use O’Neil’s high-throughput drug combination
screening data [15]. This data contains 23,052 experimen-
tal results for 583 drug combinations and 39 cancer cell
lines. Each experiment consists of a 5 by 5 matrix of drug
concentrations. Unlike other high-throughput screening
data, this data includes unbiased cell lines from vari-
ous sites, such as breast, lung, and colon. Drugs are also
unbiased; for example, some drugs are FDA-approved,
chemical compounds used in clinical trials, chemother-
apy drugs, or targeted therapy drugs. We used only 31
cell lines whose genomic profiles are publicly available
and only 16,575 experimental data samples excluding
duplicates.
For evaluating machine learning models, whole samples

were randomly divided into a training set and a test set at
a ratio of 80:20. The samples in the training set were ran-
domly divided into five equal-sized subsamples and used
as 5-fold cross-validation sets. The cross-validation sets
are used to decide hyperparameters for machine learning
models.

Synergy score calculation
We employed a tool called Combenefit [14] to quan-
tify the synergy level between two drugs and a cancer
cell line using dose-response data. Combenefit enables
model-based quantification of drug combinations by
comparing additive and actual effect for given dose-
response data as shown in Fig. 1b. This tool calculates the
difference between the Loewe model-based expected
additive effect and the actual effect of the drug combi-
nation. We call this difference value a synergy score. If
the actual effect of a drug combination is greater than
the additive effect, the synergy score is greater than zero.
Otherwise, it is less than zero. A higher synergy score
denotes greater synergy of the corresponding drug com-
bination. As shown in Fig. 2, the average synergy score of
16,575 samples is about 4.52 and the standard deviation
is 20.65. The synergy scores obtained using Combene-
fit are target variables in the regression model in our
pipeline. The regression model that predicts the syn-
ergy scores is the drug combination synergy prediction
model.
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Fig. 2 Synergy Score Distribution. The average synergy score of
16,575 samples is 4.52 and the standard deviation is 20.65

Features
A sample consisting of a cell line and two drugs is repre-
sented as a feature vector. The vector contains genomic
information of the cell line and target information of the
drugs. Other information such as pharmacological experi-
mental results of the cell line and the drugs is also included
in the vector. A detailed description of the features fol-
lows.

Genomics
Information of gene mutations, gene expression, and copy
number variations for 31 cell lines among 39 cell lines
in the dataset from O‘Neil was obtained from COSMIC
[16]. A high dimensionality problem exists because of the
large number of genes in the dataset. Therefore, we select
genes in cancer-related pathways. cBioPortal [17] defines
14 gene sets consisting of cancer-related pathways such
as DNA damage response or RTK signaling pathways. We
use only the mutations, expression levels, and copy num-
ber variations of the genes in the gene sets. For mutations,
if there is an amino acid variation in the gene, the varia-
tion is marked as 1 in the feature vector. The normalized
expression levels are marked in the feature vector. For
copy number variations, each gene is divided into two
features: amplification and deletion. Amplification and
deletion are marked as binary.

Targets
A total number of 56 drug targets of 38 drugs in the
dataset were obtained from DrugBank [18] and GDSC
[19]. Targets of two drugs in a sample are marked as 1.

Mono-therapy
Mono-therapy information about drug effects on cell lines
is used. IC50 is the half maximal inhibitory concentration.
Drug Sensitivity Score (DSS) [20] calculates the area under
the IC50 plot. Einf is the effect observed when an infinite
amount of a drug used. We use the sum and difference of
these values of two drugs.
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Addition score
The addition score indicates the additive effects between
two drugs using only the mono-therapy response data of
the two drugs (excluding the actual observations of com-
bination responses). We calculate the addition score by
comparing the Loewe additive effect of the two drugs with
the non-drug effect as shown in the additive response
plot in Fig. 1b. Addition scores were also calculated using
Combenefit.

Mean/median synergy scores of similar samples
We assumed that the average synergy score of the samples
in the training set containing the same cell line or the same
drug combination as the test sample would be helpful for
predicting the synergy score of a sample in the test set. For
example, we hypothesize that the average synergy score of
the samples in the training set that contains the cell line
HT29 would be helpful for determining whether the drug
combination AZD1775 and MK-8776, and the cell line
HT29 in the test set are synergistic. Likewise, we hypoth-
esize that for the same test sample, the average synergy
score of the training samples containing AZD1775 and
MK-8776 would be helpful for predicting the synergism of
the test sample. To capture this, we sub-grouped the sam-
ples in the training set by cell line or drug combination,
and used the mean and median values of their synergy
scores as features of the given sample. For the sample with
the drug combination AZD1775 and MK-8776, and the
cell line HT29, the mean and median synergy scores of
the following samples are obtained: samples with HT29,
samples with either AZD1775 or MK-8776 (i.e., sharing at
least one drug with the given sample), samples with both
AZD1775 andMK-8776, samples with either AZD1775 or
MK-8776, and HT29 (i.e., sharing at least one drug and
the cell line). This is intended to capture some inherent
pharmacological similarities among drugs and cell lines.

Synthetic lethality
Synthetic lethality occurs when perturbations such as
mutations, malfunctions, or inhibitions of two genes lead

to cell death. SynLethDB [21] is a comprehensive database
of over 20,000 synthetic lethality gene pairs from vari-
ous types of sources such as biomedical literature and
databases, and provides the confidence scores of the pairs.
We use this information to determine howmany synthetic
lethality pairs occur in a sample. For each sample, we sum
the confidence scores of the pairs when one of the two
genes is perturbed and the rest of the gene is targeted by
drugs.

Results and discussion
We evaluate the machine learning models on both the
regression and classification tasks. In the regression task,
the models are trained to predict the synergy scores of
samples, and in the classification task, the models are
trained to classify samples into the following two groups:
synergism or antagonism.

Regression
We use the Pearson correlation coefficient to evaluate the
performance of all the machine learning models used for
our pipeline. We have trained a variety of machine learn-
ing models. For the hyperparameter optimization of each
model, we use a grid search to find hyperparameters that
maximize the 5-fold cross-validation performance. For
example, for a regularized coefficient for a kernel-based
ridge regression model or a C value for an SVMmodel, we
performed a grid search over exponentially increasing val-
ues from 0.0001 to 1 or 0.0001 to 100. Then each model
is trained on the training set with the specified hyperpa-
rameters and evaluated on the test set for performance
measurement.
We use linear and nonlinear machine learning mod-

els. The models are implemented using scikit-learn [22]
which is a machine learning package in Python. Table 1
shows the correlation coefficient between the observed
values and predicted values of each model. Overall, the
performance of linear models is clearly lower than that
of nonlinear models; however, the performance differ-

Table 1 Prediction Evaluation (correlation coefficient)

Model Correlation
coefficient

Correlation
coefficient

Correlation
coefficient

Correlation
coefficient

(1700 samples
with >10 or <-10)

(1177 samples with
>15 or <-15)

(780 samples with
>20 or <-20)

Linear Elastic net 0.65 0.696 0.711 0.733

Ridge regression 0.661 0.717 0.742 0.752

Nonlinear Kernel ridge
regression (RBF)

0.728 0.773 0.795 0.822

Random forest 0.731 0.792 0.8 0.827

Extremely
randomized trees

0.738 0.785 0.816 0.821

Italicized values are the best performance for each experiment
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ence between nonlinear models is small. The Extremely
Randomized Trees (ERT) model [23], which is a tree-
based ensemble model, obtains the highest correlation
coefficient of 0.738.
ERT model’s basic structure is similar to that of

Random Forest in which every tree uses a randomly
selected subset of samples as well as a randomly selected
subset of features, whereas a tree in ERT model selects a
random feature from the subset of features rather than the
most discriminant feature when branching. We believe
that the ERTmodel outperforms the others for the follow-
ing reasons: ERTmodel’s extreme randomness introduced
by the random subsampling of samples and features, and
the random feature selection during the branching. This
randomness helps reduce the variance of the model. The
reduced variance, in turn, makes the model more robust
in dealing with noisy data such as our high-throughput
experimental drug screening data.
In addition, we collected only samples whose synergy

were predicted to be very small (e.g., < -10) or large
(e.g., >10). We computed the performance of the models
only for the samples and reported the results in Table 1
(column 3 to 5). The correlation coefficient of the samples
that are predicted to be greater than 20 or less than -20
by Random Forest is 0.827. All the models achieve better
performance on the samples with larger or smaller pre-
dicted values, which means that our models are suitable
for predicting synergism or antagonism.
Figure 3 shows a plot of the observed synergy scores and

the predicted synergy scores computed by the Extremely
Randomized Trees model. In addition, Table 2 shows the
correlation coefficient for each cell line computed by the
model. Themost predictable cell line is RPMI7951 and the
least predictable cell line is NCIH23. Column 4 in Table 2
shows the most synergistic drug combination for each
cell line in the test set. The most synergistic drug combi-
nations are computed from real observations in O’Neil’s

Fig. 3 Observation and prediction values obtained by the Extremely
Randomized Trees model (correlation coefficient is 0.738)

data. Column 5 shows the rank of the combination pre-
dicted by our model. Our model correctly predicts the
most synergistic combination, from approximately 100
candidate drug combinations, as the top choice for 15 out
of the 31 cell lines. For 28 out of the 31 cell lines, ourmodel
predicts the most synergistic combination in the top 10
among approximately 100 drug combinations.

Classification
To compare our model with an existing drug combination
synergy classification model, we reformulate the prob-
lem as a binary classification problem by thresholding
the synergy scores. If a synergy score is greater than the
upper threshold, it is classified as a positive class. If the
value is less than the lower threshold, it is classified as
a negative class; otherwise, it is dropped. After gener-
ating classification models using the classified samples,
the F1 score is used to evaluate the models. F1 score is
defined as the harmonic mean of precision and recall, i.e.,
F1 = 2×precision×recall/(precision+recall), where preci-
sion=true positives/(true positives + false positives) and
recall=true positives/(true positives+false negatives). F1
score is one of the standard metrics for evaluating a clas-
sifier’s performance. F1 score is commonly used when the
target classes are imbalanced. In our dataset, 10,392 sam-
ples have synergy scores of greater than 0 (positive class)
and 6,183 samples have synergy scores of less than 0 (neg-
ative class). Therefore, we used the F1 score to evaluate
the performance of the classification models.
Table 3 shows the F1 score of each model by thresh-

olding the synergy scores. The Extremely Randomized
Trees model achieves the highest F1 score of 0.954 with
a threshold of ±20. As the threshold increases, perfor-
mance tends to improve. The Extremely Randomized
Trees model achieves the best performance for the thresh-
olds of 0, ±15, and ±20. Compared with the base-
line model [8], our pipeline based on the Extremely
Randomized Trees model improves the performance
by 8.7%.

Synergistic rule generation: a qualitative analysis
In addition to the quantitative analysis of our pipeline’s
performance, we also conducted a qualitative evaluation.
For the qualitative evaluation, we use combinations of
feature conditions and construct rules to predict syner-
gism. Although the Extremely Randomized Trees model
achieves the best performance, it randomly selects fea-
tures when it splits, which makes it difficult to interpret
the results. For this reason, we choose the Random Forest
model because its results are easy to interpret. We extract
frequent decision paths generated by the Random Forest
model and inspect the paths for predicting synergism. We
generate four potential synergistic rules from the paths
and report them in Table 4.
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Table 2 Correlation coefficients of 31 cell lines calculated by the Extremely Randomized Trees model

Cell line name Site Correlation coefficient Best observed Its predicted rank out of
drug combination N drug combinations

RPMI7951 Skin 0.893 MK-4827.TEMOZOLOMIDE 1 out of 88

HCT116 Colon 0.892 ETOPOSIDE.MK-2206 7 out of 105

HT29 Colon 0.889 AZD1775.MK-8776 2 out of 116

SW620 Colon 0.874 BEZ-235.MK-8669 1 out of 108

PA1 Ovarian 0.868 MK-2206.SUNITINIB 5 out of 85

A2780 Ovarian 0.865 DASATINIB.MK-5108 1 out of 112

MDAMB436 Breast 0.864 MK-4827.TEMOZOLOMIDE 1 out of 114

VCAP Prostate 0.856 BEZ-235.MK-8669 1 out of 109

LOVO Colon 0.839 MK-4827.TEMOZOLOMIDE 1 out of 121

OV90 Ovarian 0.833 AZD1775.MK-8776 1 out of 99

OCUBM Breast 0.831 AZD1775.MK-8776 1 out of 62

NCIH1650 Lung 0.83 DASATINIB.MK-2206 2 out of 91

A2058 Skin 0.829 MK-4827.MK-8776 28 out of 119

SKMES1 Lung 0.825 BEZ-235.MK-8669 1 out of 113

A427 Lung 0.807 MK-8776.TEMOZOLOMIDE 9 out of 105

SKOV3 Ovarian 0.798 ERLOTINIB.MK-8669 3 out of 105

UACC62 Skin 0.797 GEMCITABINE.MK-8776 5 out of 120

DLD1 Colon 0.79 MK-2206.MK-8669 2 out of 116

ES2 Ovarian 0.789 BEZ-235.MK-8669 1 out of 125

NCIH2122 Lung 0.766 DEXAMETHASONE.MK-2206 8 out of 137

SKMEL30 Skin 0.709 BEZ-235.MK-8669 1 out of 105

A375 Skin 0.691 MK-4827.TEMOZOLOMIDE 1 out of 103

RKO Colon 0.688 GELDANAMYCIN.PD325901 20 out of 117

HT144 Skin 0.669 MK-2206.SN-38 7 out of 124

NCIH520 Lung 0.643 DASATINIB.TOPOTECAN 20 out of 124

UWB1289 Ovarian 0.63 BEZ-235.MK-8669 1 out of 125

MSTO Lung 0.628 BEZ-235.MK-8669 1 out of 86

SW837 Colon 0.626 BEZ-235.DASATINIB 8 out of 110

OVCAR3 Ovarian 0.554 AZD1775.SN-38 5 out of 93

T47D Breast 0.493 DOXORUBICIN.MK-8669 1 out of 61

NCIH23 Lung 0.478 L778123.MK-8669 2 out of 117

Table 3 Prediction evaluation results (F1 score)

Model F1 (threshold=0) F1 (threshold=±10) F1 (threshold=±15) F1 (threshold=±20)

Baseline [8] 0.784 0.856 0.871 0.877

Logistic regression 0.844 0.908 0.912 0.923

Support vector 0.84 0.909 0.915 0.917
machine

Random forest 0.86 0.934 0.939 0.944

Extremely randomized trees 0.865 0.933 0.948 0.954

Italicized values are the best performance for each experiment
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Table 4 Synergistic rules

Rule Positive Negative p-value Reference
synergy
score

synergy
score

Target: mTOR, DNA
GEX: underexpressed
HES5

23.055 8.651 1.3e−10 [24, 25]

Target: EGFR, mTOR,
PI3K GEX:
underexpressed
SNW1

22.219 8.588 6e−5

Target: mTOR, PI3K,
DNA GEX:
underexpressed
MAPK14,
underexpressed
NOTCH4

19.8 6.231 5e−7

Target: SRC, TOP1
GEX: underexpressed
TGFBR2,
underexpressed
ERBB3

28.089 7.113 2e−5

The most significant synergistic rule is about that a
chemotherapy drug(represented as DNA) combined with
an mTOR-targeting drug is synergistic when HES5 is
underexpressed. The Random Forest model predicts sam-
ples that satisfy these constraints as synergy. The average
synergy score of the positive samples (i.e., mTOR inhibitor
+ chemotherapy for cells with HES5 underexpression)
is 23.055. Conversely, the average synergy score of the
negative samples (i.e., mTOR inhibitor + chemotherapy
for cells with no HES5 underexpression) is 8.651 which
is 14.4 lower than the score of the positive samples
(p-value= 1.3e−10). Down-regulation of HES5 indicates
inactivated Notch signaling and results in sensitive
response to a chemotherapy drug [24]. Inactivated Notch
signaling is also involved in the down-regulation of mTOR
[25]. Thus, it seems that the mTOR inhibitor and under-
expressed HES5 enhance the efficacy of chemotherapy by
double-blocking mTOR.
In Table 4, we report three more potential synergistic

rules which we could not find supporting evidence from
the literature. These rules can become hypotheses and
can be verified by wet lab experiments. If validated, these
synergistic rules would be used as potential biomarkers
for new drug combination therapy. This suggests that our
pipeline can generate hypotheses in a completely data-
driven way. As more drug screening data accumulates, our
pipeline can automatically find more plausible hypotheses
for drug combination biomarkers.

Conclusion
Synergistic drug combinations are different for each cell
line. Therefore, we proposed a computational pipeline for

personalized synergistic drug combination therapy dis-
covery using unbiased high-throughput drug screening
data. We generated a 1,028-dimensional feature vector to
represent a sample’s genomic information such as muta-
tions and expressions of genes in cancer-related pathways,
and pharmacological information. The tree-based ensem-
ble models achieved the best regression and classification
performance. The correlation coefficient for the regres-
sion was 0.738 and the F1 score for the classification was
0.954. We demonstrated that our proposed model can
be applied to patient samples in place of cells when it is
employed in a clinical setting. We showed that our model
can predict and prioritize the best drug combinations for
patients using their genomic information. Finally, we gen-
erated synergistic rules from the frequent paths of the
Random Forest model and validated the rules by liter-
ature survey. With further experiments, the discovered
rules can be tested for biomarkers of drug combination
therapies.
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