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Abstract

In this article, we present an innovative MRI-based method for Alzheimer disease

(AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajec-

tories of brain structures. After a full screening of the most discriminant structures

between AD and normal aging based on MRI volumetric analysis of 3,032 subjects,

we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs)

based on normative lifespan models and AD lifespan models. During a validation on

three external datasets on 1,039 subjects, our approach showed very accurate detec-

tion (AUC ≥ 94%) of patients with AD compared to control subjects and accurate dis-

crimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year

follow-up). Compared to normative modeling, classical machine learning methods and

recent state-of-the-art deep learning methods, our method demonstrated better clas-

sification performance. Moreover, HAVAs simplicity makes it fully understandable

and thus well-suited for clinical practice or future pharmaceutical trials.
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1 | INTRODUCTION

Finding early and specific biomarkers of Alzheimer disease (AD) clinical

syndrome is of major interest to accelerate the development of new

therapies. Among the potential structural biomarkers proposed for AD,

neurodegeneration estimated using magnetic resonance imaging (MRI) is

still a good candidate (Frisoni, Fox, Jack, Scheltens, & Thompson, 2010;

Jack et al., 2016). From simple volume-based approaches to advanced

deep learning strategies, the development of new biomarkers able to

detect anatomical alterations caused by AD has been the subject of

much attention over the past decades (Feng & Ding, 2020; Leandrou,

Petroudi, Kyriacou, Reyes-Aldasoro, & Pattichis, 2018; Rathore, Habes,

Iftikhar, Shacklett, & Davatzikos, 2017).

Nowadays, two main strategies are used to detect neuro-

degeneration caused by AD using MRI: normative modeling for abnor-

mality detection (Marquand et al., 2019; Wolfers et al., 2020) and

classification-based approaches (Coupé et al., 2015; Wen et al., 2020).

On the one hand, normative modeling based only on cognitively

normal (CN) subjects can be used to detect abnormality and therefore to

distinguish AD patients from CN subjects. As explained in Marquand

et al. (2019), normative lifespan modeling is similar to growth charts used

in pediatric medicine to detect abnormal child development in terms of

height or weight related to the age's subject. Indeed, such charts can be

used to detect outliers considered as pathological. For AD detection,

volume or thickness of key structures as a function of age is usually used.

The main advantages of normative modeling are to robustly capture the

heterogeneity of normal anatomy and to provide an easily interpretable

distance between an individual and the normative range. Normative

modeling is the approach used in most of the available software for

quantitative brain analysis (in open access such as volBrain [Manj�on &

Coupé, 2016] or for commercial use as in Neuroquant [Ross et al., 2013],

Qscore [Cavedo et al., 2020] or Qreport [Pemberton et al., 2021]). The

added-value in terms of diagnosis accuracy has been shown for several

pathologies including AD (Cavedo et al., 2020; Hedderich et al., 2018;

Pemberton et al., 2021; Ross et al., 2013). Due to its simplicity and easy

understanding, normative modeling is the closest strategy to clinical

practice with several CE-marked and FDA-approved software packages.

On the other hand, a classifier can be trained using features

extracted from the two groups—one composed of CN subjects and

another one composed of AD patients. The used features can be

handcrafted as usually done in machine learning (ML) (Rathore

et al., 2017) or automatically learned using deep learning (DL) (Jo,

Nho, & Saykin, 2019). At the end of the training, a decision boundary is

available to discriminate features of CN subjects from features of AD

patients. Such a strategy is supposed to be more accurate than norma-

tive modeling since patients are used in addition to CN subjects during

training. Consequently, the developed method is pathology specific.

Moreover, by using advanced methods such as DL, a specific signature

of a given pathology can be automatically and efficiently learned. How-

ever, such approaches suffers from a lack of generalization usually

related to overfitting on the training database (Bron et al., 2021; Wen

et al., 2020). Moreover, with the advent of DL methods, interpretation

of the results and explanation of the underlying decision-making pro-

cess is far from being straightforward (Jo et al., 2019).

In this article, we present an alternative framework combining

advantages of both strategies: an easy interpretation and an accurate

classification. To this end, we propose a novel method able to detect

patients with AD using both normal and pathological lifespan models.

First introduced in Coupé, Manj�on, Lanuza, and Catheline (2019),

lifespan modeling of AD provides an useful and easily interpretable

tool to capture the heterogeneity of AD signature. Moreover, by using

multiple models (i.e., an AD model in addition to a CN model), the

decision boundary is pathology specific and thus produces a more

accurate detection of AD patients compared to usual normative

modeling. Finally, we also propose an innovative framework to extract

the most discriminant structures between both groups based on a

fully automatic multiscale brain segmentation pipeline. Applied to AD,

this framework led us to propose a novel Hippocampal-Amygdalo-

Ventricular Atrophy score (HAVAs) based on multiple lifespan models.

2 | MATERIAL AND METHOD

2.1 | Dataset description

2.1.1 | Training dataset

Our training dataset was composed of 3,032 T1-weighted (T1w) MRI

from seven open access databases (Table 1). This dataset was com-

posed of 2,655 CN subjects (CN) and 377 patients with AD. As
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explained in the following, CN subjects younger than 55y (N = 1874)

were used to estimate both CN and AD lifespan trajectories.

2.1.2 | Testing dataset

To validate our model, we built a testing dataset based on two open

access databases (AIBL and MIRIAD) to perform AD versus CN diag-

nosis task. Therefore, we validated the generalization capacity of our

method and its robustness to domain shift. In addition, we used sub-

jects with mild cognitive impairment (MCI) from ADNI to estimate the

capability of our models on prognosis task (Table 2). Consequently,

we validated the generalization of our models to unseen related tasks.

As in Wen et al. (2020), the MCI group was split into stable MCI

(sMCI) over 3 years and progressive MCI (pMCI) who will convert to

AD within 36 months following the baseline visit. Finally, we used the

ClinicaDL software (https://github.com/aramis-lab/clinicadl) (Wen

et al., 2020) to define the groups of AD and CN groups in AIBL, and

the pMCI and sMCI groups in ADNI. Therefore, we used the same

selection criteria.

2.1.3 | Sensitivity analysis

Finally, in order to test the consistency of our findings, we changed

training and testing datasets: AIBL, OASIS, and MIRIAD databases

were used for training and ADNI was used for testing.

2.2 | Image processing

All the considered images were processed using AssemblyNet soft-

ware (https://github.com/volBrain/AssemblyNet) (Coupé et al., 2020).

Based on collective artificial intelligence, AssemblyNet is able to pro-

duce fine-grained segmentation of the whole brain in 15 min. The

AssemblyNet preprocessing pipeline was based on several steps:

image denoising (Manj�on, Coupé, Martí-Bonmatí, Collins, &

Robles, 2010), inhomogeneity correction (Tustison et al., 2010), affine

registration to the MNI space, automatic quality control (QC) (Denis

de Senneville, Manj�on, & Coupé, 2020), a second inhomogeneity cor-

rection in the MNI space (Ashburner & Friston, 2005) and a final

intensity standardization step (Manj�on & Coupé, 2016).

After preprocessing, the brain was segmented into several struc-

tures using 250 DL models (see Coupé et al., 2020 for details). All the

segmentations were based on the Neuromorphometrics protocol which

comprises 132 structures (Klein & Tourville, 2012). In this protocol, the

segmentation of the subcortical structures follows the “general segmen-

tation protocol” as defined by the MGH Center for Morphometric Analy-

sis (http://neuromorphometrics.com/Seg/). Moreover, the segmentation

of the cortical structures follows the “BrainCOLOR protocol” (http://

neuromorphometrics.com/ParcellationProtocol_2010-04-05.PDF) These

structures are combined to create tissue segmentations (gray matter

[GM], white matter [WM], and cerebrospinal fluid [CSF]), regional tissue

segmentations (cortical GM, subcortical GM, ventricular CSF, and exter-

nal CSF), and lobar segmentations (temporal, limbic, insular, parietal and

frontal)—Figure 1.

TABLE 1 Training dataset
description used for model constructions
after quality control (N = 3,032)

Dataset Group N = 3,032 Gender Age in years

C-MIND CN 236 F = 129/M = 107 8.44 (0.74–18.86)

NDAR CN 382 F = 174/M = 208 12.39 (1.08–49.92)

ABIDE CN 492 F = 84/M = 408 17.53 (6.50–52.20)

ICBM CN 294 F = 142/M = 152 33.75 (18–80)

IXI CN 549 F = 307/M = 242 48.76 (20.0–86.2)

OASIS CN 298 F = 187/M = 111 45.34 (18–94)

ADNI CN 404 F = 203/M = 201 74.81 (60–90)

OASIS AD 45 F = 29/M = 16 77.04 (63–96)

ADNI AD 332 F = 151/M = 181 75.13 (55–91)

Note: This table provides the name of the databases, the group, the number of considered subjects, the

gender proportion, and the average age with the interval in brackets.

TABLE 2 External dataset used for validation (N = 1,039)

Dataset Group N = 1,039 Gender Age in years

AIBL CN 467 F = 277/M = 190 73.4 (60.5–92.4)

MIRIAD CN 23 F = 11/M = 12 69.7 (58.0–85.7)

ADNI sMCI 255 F = 100/M = 155 72.3 (55–89.5)

AIBL AD 82 F = 47/M = 36 74.8 (55.5–93.4)

MIRIAD AD 46 F = 27/M = 19 69.3 (55.6–85.8)

ADNI pMCI 235 F = 103/M = 132 74.0 (55–88.0)

Note: This table provides the name of the databases, the group, the number of considered subjects, the gender proportion, and the average age with the

interval in brackets.
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Finally, we performed a QC procedure to carefully select subjects

included in our training dataset. For all the training subjects detected

as failure by the automatic QC RegQCNet (Denis de Senneville

et al., 2020), a visual assessment was performed by individually check-

ing the input images and the segmentations produced by

AssemblyNet using a 3D viewer. If the failure was confirmed by our

expert, the subject was removed from training dataset.

2.3 | Volume normalization

To compensate for the inter-subject variability, we normalized all the

structure volumes using the intracranial cavity volume (ICV) (Manj�on

et al., 2014). Moreover, in order to be able to combine several struc-

tures with different sizes, we performed z-score normalization of all

the normalized volumes (in percentage of ICV). To do that, we first

estimated the mean and the SD for each structures using all the CN

subjects over the entire lifespan. Then, for a given structures, we

applied the same z-score normalization to all the subjects (i.e., CN,

AD, and MCI). Therefore, by using z-score of normalized volumes in %

of ICV, we compensated for both inter-subject and inter-structure

variabilities. In the following, all the volumes are expressed as z-scores

of normalized volumes.

2.4 | Lifespan model estimation

To create our lifespan models, we estimated normal and pathological

trajectories of structure volumes across the entire lifespan. To this

end, for each considered structure, models were estimated on two dif-

ferent groups to generate CN and AD trajectories. For CN trajectories,

we used the N = 2,655 subjects from 9 months to 94y of the training

dataset as done in Coupé et al. (2017). For the AD trajectories, we

used N = 2,251 subjects. As done in Coupé et al. (2019), we mixed

AD patients with young CN. More precisely, we used 377 AD patients

(from 55y to 96y) and all the CN younger than 55y available in the

training dataset (i.e., 1874 subjects) assuming that neurodegeneration

is a slow and progressive process.

To estimate the volume trajectories, we considered several low

order polynomial models:

• Linear model

vol Ageð Þ¼ β0þβ1Ageþε

• Quadratic model

vol Ageð Þ¼ β0þβ1Ageþβ2Age
2þ ε

• Cubic model

vol Ageð Þ¼ β0þβ1Ageþβ2Age
2þβ3Age

3þ ε

As in Coupé et al. (2017, 2019), a polynomial model was consid-

ered as a potential candidate only when simultaneously F-statistic

based on ANOVA (i.e., model vs. constant model) was found signifi-

cant (p < .05) and when all its coefficients were also significant using

T-statistic (p < .05). Afterwards, to select the most relevant model

between these potential candidates, we used the Bayesian Informa-

tion Criterion (Schwarz, 1978). In addition, we estimated the distance

between both AD and CN models as the Euclidean distance between

trajectories. Finally, we estimated the confidence interval for each

model at 95% and the lifetime period for which the two models

diverged significantly (i.e., when confidence intervals do not overlap).

2.5 | Classification using volume trajectories

Once the AD and CN lifespan trajectories were estimated for each

structure using the training dataset, we used them to perform subject

classification. To classify each subject of the testing dataset, we

F IGURE 1 Illustrations of the AssemblyNet multiscale segmentations
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simply estimated the closest lifespan trajectory in terms of Euclidean

distance to assign the class of the subject under study.

Moreover, in order to provide easily interpretable nonbinary

scores to the user about the probability of the subject's status

(and to be able to estimate area under curve), we proposed new

scores of being an AD patient (respectively a CN subject) based

on the distance to the models. This score was built to ensure that

when AD score is higher than 50%, the closest model is the

AD model. Moreover, we ensured that an AD score of 50%

(i.e., CN score of 50%) is obtained for an equal distance between

both models. To define these scores, we used the following

approach.

First, for GM and WM structures, we defined a score sCN to be

CN (respectively sAD to be AD) based on the distance to CN model

(respectively to AD model) taking into account structure atrophy:

sCN ¼Φ volsubject,volCN Ageð Þ,δ� �

sAD ¼1�Φ volsubject,volAD Ageð Þ,δ� �

where Φ z,μ,σð Þ is the cumulative distribution function of the standard

normal distribution of mean μ and SD σ: In our case, we used

δ¼ volCN Ageð Þ�volAD Ageð Þj j to take into account the increasing dis-

tance between the both models during aging.

For CSF structures, we adapted the estimation taking into

account structure enlargement caused by AD (Nestor et al., 2008) as

follows:

sCN ¼1�Φ volsubject,volCN Ageð Þ,δ� �

sAD ¼Φ volsubject,volAD Ageð Þ,δ� �

Finally, these scores were normalized to obtain the final scores. This

normalization enables to get the sum of both scores equal to 1.

SCN ¼ sCN
sCNþ sAD

,SAD ¼ sAD
sCNþ sAD

Consequently, the proposed HAVAs (i.e., the SAD score) reflects the

probability for the subject under study to be a patient with AD (or a

pMCI subject). The classification performance of the proposed

method was validated using several metrics: balanced accuracy

(BACC), specificity (SPE), sensibility (SEN) and area under the curve

(AUC) based on HAVAs.

2.6 | Comparison with state-of-the-art methods

In this study, we compared the proposed multimodel HAVAs with

normative model-based strategy (i.e., using only CN model), state-of-

the-art deep learning methods and classical machine learning

methods.

First, as usually done in normative modeling (Marquand

et al., 2019) or in automatic quantitative software (Pemberton

et al., 2021), we used 2σ as threshold to detect abnormal values

when using normative model-based methods. To ensure that this

threshold was suitable for our analysis, we tested multiple thresholds

and we confirmed that 2σ was the best one. We decided to evaluate

lifespan normative approach using hippocampus (considered as the

TABLE 3 Performance of the classification using multiple lifespan
models on the training ADNI dataset (404 CN vs. 332 AD) for the 33
selected structures

BACC SPE SEN AUC

WM 61 53 69 69

CSF 66 60 71 73

External CSF 59 53 64 64

Ventricular CSF 68 72 64 71

Inf. Lat. Vent 75 85 64 82

Lat. Vent 68 70 65 71

GM 66 64 68 70

Subcortical GM 70 66 73 75

Amygdala 82 85 79 88

Hippocampus 80 78 81 87

Accumbens area 59 52 66 64

Putamen 57 53 60 61

Thalamus 56 55 58 62

Pallidum 55 55 55 58

Caudate 57 52 62 61

Cortical GM 61 59 63 69

Temporal lobe 71 71 71 78

Middle temporal gyrus 66 66 66 63

Fusiform gyrus 63 61 66 72

Inferior temporal gyrus 62 60 64 68

Superior temporal gyrus 60 59 62 65

Temporal pole 61 60 63 67

Limbic cortex 64 61 67 68

Entorhinal area 64 64 63 71

Parahippocampal gyrus 64 65 63 70

Anterior cingulate gyrus 59 54 64 63

Insular cortex 60 57 63 63

Anterior insula 58 55 61 63

Posterior insula 58 56 59 63

Parietal lobe 57 53 60 59

Angular gyrus 59 55 64 63

Frontal lobe n.s n.s n.s n.s

Middle frontal gyrus 55 52 57 58

Note: The best results are indicated in bold and second best in italic.

Finally, “n.s.” means that the divergence of frontal lobe was not

significant.
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state-of-the-art biomarker [Frisoni et al., 2010]), amygdala (also

known to be a good candidate [Coupé et al., 2019]), inferior lateral

ventricle (main part of lateral ventricle impacted by AD [Bartos, Gre-

gus, Ibrahim, & Tintěra, 2019]) and the combination of the three as

done for the proposed HAVAs (called Normative HAV model in the

following).

Second, as shown in Wen et al. (2020), most of the proposed

deep learning methods suffer from data leakage resulting in

biased reported performances. In addition, most of the published

studies used the same dataset for training and testing that pro-

duce over-optimistic performance of the methods (Bron

et al., 2021; Wen et al., 2020). Consequently, we decided to

report the score of the well-evaluated methods proposed in Wen

et al. (2020) as state-of-the-art deep learning methods since the

training was well-designed and that the proposed methods were

well-validated on external datasets. We selected a ROI-based

convolutional neural network (CNN) focused on hippocampal

area, one subject-based CNN method using the entire image and

one patch-based CNN processing the whole image patch by

patch. These three strategies are a good representation of current

deep learning frameworks for AD detection and prognosis. We

used the ClinicaDL software proposed in Wen et al. (2020) to cre-

ate the testing databases. Consequently, the selection criteria

were similar although the number of subjects per cases were not

exactly the same.

Finally, since (Wen et al., 2020) demonstrated that classical

machine learning methods (i.e., SVM) can perform similarly and some-

times better than deep learning methods, we decided to include two

classical classifiers in our comparison. First, we used the nonlinear

SVM with RBF kernel of Matlab with default parameters. Second, we

used the logistic regression with LASSO regularization of Matlab with

default parameters. The z-score of normalized volumes were used as

input features.

3 | RESULTS

3.1 | Detection of the most discriminant structures

First, we selected all the multiscale brain areas (i.e., tissues,

regional tissues, lobes, and structures) for which CN and AD

models significantly diverged (i.e., confidence intervals stop over-

lapping at some point across lifespan). Thanks to this analysis, we

obtained 33 areas. Using these 33 selected areas, we performed

a screening to detect the most discriminant ones in terms of clas-

sification accuracy on the training ADNI dataset in order not to

F IGURE 2 Trajectories based on z-scores of normalized volumes (in % total intracranial volume) for the selected brain structures and the
proposed HAVAs for both models (AD in red and CN in black) across the entire lifespan. The prediction bounds of the models are estimated with
a confidence level at 95%. The orange curve is the distance between both models in SD. The orange area indicates the time period where
confidence intervals of both models do not overlap
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use testing data during method development. This analysis

showed that amygdala, hippocampus, and inferior lateral ventri-

cle were the most discriminant structures for AD vs. CN classifi-

cation (Table 3). These three structures obtained AUC > 80% and

thus were selected to build our AD-specific hybrid lifespan

models.

3.2 | Combination of the main AD MRI-based
biomarkers

Based on our screening, we decided to combine the volume of hippo-

campus, amygdala, and inferior lateral ventricle to propose a novel

HAVAs. To do that, we simply added hippocampus and amygdala vol-

umes and subtracted the inferior lateral ventricle volume. Indeed, con-

trary to hippocampus and amygdala showing lower volumes in AD

model due to atrophy, inferior lateral ventricle exhibited larger volumes

in AD model due to enlargement. As done before, HAVAs is also

expressed as a z-score of normalized volume. As shown in Figure 2,

HAVAs exhibited an earlier divergence between CN and AD models

(i.e., it can be used on younger subjects) and a larger distance between

models (i.e., it is more discriminant) compared to single structure models.

TABLE 4 Results of model analysis for hippocampus, amygdala, inferior lateral ventricle and HAVAs

Selected

model F-statistic R2

p-Value of the

T-statistic

p-Value of the F-statistic

based on ANOVA BIC

Hippocampus for CN Quadratic 202 0.13 β0: p < .0001;

β1: p < .0001;

β2: p < .0001

p < .0001 7,172

Hippocampus for AD Quadratic 704 0.38 β0: p < .0001;

β1: p < .0001;

β2: p < .0001

p < .0001 6,346

Amygdala for CN Quadratic 230 0.15 β0: p < .0001;

β1: p < .0001;

β2: p < .0001

p < .0001 7,120

Amygdala for AD Quadratic 902 0.44 β0: p < .0001;

β1: p < .0001;

β2: p < .0001

p < .0001 6,598

Inf. Lat. Ventricle for CN Cubic 685 0.44 β0: p < .0001;

β1: p < .0001;

β2: p < .0001;

β3: p < .0001

p < .0001 6,031

Inf. Lat. ventricle for AD Cubic 725 0.65 β0: p < .0001;

β1: p < .05;

β2: p < .05;

β3: p < .0001

p < .001 6,968

HAVAs for CN Quadratic 483 0.27 β0: p < .0001;

β1: p < .0001;

β2: p < .0001

p < .0001 6,720

HAVAs for AD Quadratic 483 0.66 β0: p < .0001;

β1: p < .0001;

β2: p < .0001

p < .0001 6,827

TABLE 5 Comparison of classification performance of HAVAs
compared to individual structures on three unseen external datasets
(N = 1,039)

BACC SPE SEN AUC

AIBL (467 CN/82 AD)

HAVAs 88 93 83 94

Amygdala 80 85 76 89

Hippocampus 80 78 82 88

Inferior lateral ventricle 79 91 67 89

MIRIAD (23 CN/46 AD)

HAVAs 89 87 91 96

Amygdala 88 83 93 95

Hippocampus 74 61 87 87

Inferior lateral ventricle 86 87 85 91

ADNI-MCI (255 sMCI/235 pMCI)

HAVAs 73 72 74 78

Amygdala 68 69 68 74

Hippocampus 66 56 77 70

Inferior lateral ventricle 65 76 54 71

Note: The best results are indicated in bold and second best in italic.
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In Table 4, we present the statistical analysis of the estimated

lifespan models for the selected structures. First, we can observe

that most of the estimated models were quadratic. Only, the infe-

rior lateral ventricle models were cubic. This is in line with previous

lifespan studies (Coupé et al., 2017, 2019). Second, all the model

statistics were highly significant (p < .0001), excepted for the infe-

rior lateral ventricle model for AD which was only signifi-

cant (p < .05).

3.3 | Classification based on multiple lifespan
models

To evaluate the classification performance of HAVAs on testing

datasets, we performed a comparison with the three most discrimi-

nant structures. As shown in Table 5, in all the cases, HAVAs out-

performed strategies based on a single structure, in terms of BACC

and AUC, demonstrating its higher classification performance. In most

of the cases, the second best one was the lifespan model of amygdala

that confirmed the results previously obtained in Coupé et al. (2019).

For diagnostic task (i.e., AD vs. CN), HAVAs obtained 88% of BACC

and 94% of AUC on the AIBL database, and 89% of BACC and 96% of

AUC on the MIRIAD database. Moreover, while developed using only

AD and CN subjects, HAVAs obtained 73% of BACC and 78% of AUC

for prognosis task (i.e., discriminating between sMCI and pMCI). These

results demonstrate the good generalization capabilities of HAVAs on

unseen databases and on unseen tasks.

During our experiments, we also tested several strategies to com-

bine the selected structure volumes. First, we evaluated the

hippocampal-ventricle ratio (HVR)—defined as hippocampus/(inferior

lateral ventricle + hippocampus). HVR has recently been proposed as a

better alternative than hippocampus volume (Bartos et al., 2019;

Schoemaker et al., 2019). During our experiments, we observed a drop

of 7% point of BACC for diagnosis on AIBL and for prognosis on ADNI

compared to the proposed HAVAs. Consequently, we found similar

performance between using HVR or hippocampus z-score normalized

volume. Second, we tried to add the temporal lobe volume (the fourth

best structure during our screening) in HAVAs. This reduced by 1%

point of BACC the diagnosis performance and kept prognosis similar.

Finally, we also evaluated the use of weights to combine HAV volumes

(e.g., to give more importance to amygdala than hippocampus). Such

strategy provided marginal improvement for diagnosis <1% point and

1% point of improvement for prognosis. However, for a sake of simplic-

ity, we decided not to use weights in our approach.

F IGURE 3 HAVAs classification results on three external testing datasets (ADNI was the training dataset). The CN trajectory is in green, the
AD trajectory in red and the boundary decision in orange. For AIBL and MIRIAD datasets, CN subjects are in green and AD patients in red. For
ADNI dataset, sMCI patients are in yellow and the pMCI patients in orange
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Figure 3 presents the results of the classification produced by

HAVAs on the external datasets. The boundary decision is simply

the middle distance between both models. Consequently, false posi-

tive are CN subjects (green dots) below orange curve and false nega-

tive are AD patients (red dots) above orange curve. Visually, we

observed that AD patients exhibited higher variability than CN

subjects. Moreover, as expected, most of the MCI were between

both models.

3.4 | Comparison with state-of-the-art methods

In this section, we compared HAVAs with normative modeling strat-

egy, classical ML and recent DL methods.

First, as shown in Table 6, HAVAs obtained the best results for

both diagnostic and prognostic tasks. Compared to the second-best

methods, HAVAs produced an improvement of 3% point for diagnosis

and for prognosis. Second, the second-best methods were the ROI-

based CNN involving mostly the same structures as HAVAs and LASSO

using the combination of HAV structures. We also observed using HAV

structure combination was the best solution for SVM and normative

modeling. Consequently, the proposed HAV combination based on

z-score was beneficial for all the compared strategies (multimodel, nor-

mative modeling, SVM, and LASSO). In addition, for all the considered

structures, the proposed multimodel strategies outperformed single-

model-based approaches (i.e., normative modeling). This result shows

the interest of using multiple models for classification compared of

using a single normative model. Moreover, the normative modeling and

machine learning based on HAV combination obtained results similar to

CNN-based methods. These results are in line with the comparisons

proposed in Bron et al. (2021 and Wen et al. (2020). Finally, while hip-

pocampus volume is considered a hallmark of AD, normative modeling

using hippocampus obtained the worst results (16% point lower than

the proposed multimodel HAVAs). For all the considered strategies

(multimodel, normative modeling, SVM, and LASSO), amygdala volume

provided the best performance when using a single structure. These

results are in line with previous studies dedicated to lifespan modeling

of AD (Coupé et al., 2019).

TABLE 6 Comparison with state-of-the-art strategies based on
normative modeling and recent deep learning methods

BACC on external datasets

AIBL (AD

vs. CN)

ADNI (sMCI

vs. pMCI)

Multimodel HAVAs 88 73

ROI-based CNN (Wen et al., 2020) 84 70

LASSO HAV 85 67

Subject-based CNN (Wen et al., 2020) 83 69

SVM HAV 82 70

LASSO amygdala 83 68

Normative HAV model 81 70

Patch-based CNN (Wen et al., 2020) 81 70

LASSO hippocampus 81 67

Multimodel amygdala 80 68

SVM amygdala 80 66

Multimodel hippocampus 79 66

LASSO inf. lat. vent. 79 66

Multimodel inf. lat. vent. 79 65

SVM hippocampus 79 64

Normative amygdala model 75 63

SVM inf. lat. Vent. 75 63

Normative inf. lat. vent. model 71 61

Normative hippocampus model 70 58

Note: BACC is provided for each method for both datasets. For CNN-

based methods, the results published in Wen et al., 2020 are used. For

normative modeling, a threshold of 2σ was used to detect abnormal

volumes. Finally, for SVM and LASSO, the Matlab version with default

parameters is used. The best results are indicated in bold and second best

in italics.

TABLE 7 Sensitivity analysis

BACC SPE SEN AUC

ADNI (404 CN/332 AD)

HAVAs 87 87 86 93

Amygdala 82 81 83 89

Hippocampus 78 71 86 88

Inferior lateral ventricle 75 83 66 84

Note: Comparison of classification performance of HAVAs compared to

individual structures using AIBL, OASIS and MIRIAD in the training and

the AD and CN subjects ADNI as testing. The best results are indicated in

bold and second best in italics.

F IGURE 4 Sensitivity analyses. HAVAs classification results for
AD and CN subjects of the ADNI database while using AIBL, OASIS,
and MIRIAD in the training dataset. The CN trajectory is in green, the

AD trajectory in red and the boundary decision in orange
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3.5 | Sensitivity analysis to training domain

Finally, as a sensitivity analysis, in order to evaluate the consistency

and the robustness of HAVAs to training domain, we performed an

additional experiment using AIBL, OASIS, and MIRIAD databases in

the training dataset while removing the AD and CN subjects of the

ADNI database from training and used them as testing dataset. First,

Table 7 shows the results obtained by HAVAs, amygdala, hippocam-

pus, and inferior lateral ventricles. The obtained results are similar to

the results previously obtained on AIBL. This result highlights the

robustness of the proposed HAVAs strategy to training domain selec-

tion and the good generalization capability of our method.

Moreover, Figure 4 presents the graphical results obtained using

HAVAs score in the same condition. As previously, we observed that

most of the CN subjects well follow the CN model while most of the

AD patients are below the decision bounds and exhibit higher variabil-

ity. Finally, it is interesting to observe that HAVAs models estimated

on AIBL, OASIS, and MIRIAD are very similar to HAVAs models esti-

mated using ADNI (Figure 3). This result highlights the stability of the

proposed HAVAs strategy to images used during training.

4 | DISCUSSION

In this article, we proposed a novel framework for AD detection based

on lifespan modeling of the hippocampal-amygdalo-ventricular vol-

ume trajectory for both CN and AD. To this end, we first estimated

volume trajectories for AD and CN models across the entire lifespan

using a large number of subjects. In this study, we analyzed 132 struc-

tures, 5 lobes, 4 regional tissues, and 3 tissues. This whole brain analy-

sis, in a multiscale fashion, enabled us to produce a full screening of

the diverging brain areas across lifespan between CN and AD. Within

the considered brain areas, only 33 showed significantly divergences

between AD and CN models. For these 33 brain areas, we estimated

the most discriminant lifespan model in terms of classification perfor-

mance. We found that amygdala, hippocampus, and inferior lateral

ventricle were the most discriminant structures. These results

obtained using AssemblyNet were in line with recent studies based on

other segmentation protocols, software or frameworks (Bartos

et al., 2019; Coupé et al., 2019; Mu, Xie, Wen, Weng, &

Shuyun, 1999; Pinaya et al., 2021; Qiu, Fennema-Notestine, Dale, &

Miller, 2009). Therefore, we proposed a new AD score based on

hippocampal-amygdalo-ventricular volume called HAVAs. This score

is based on the distances between the volume of the subject under

study and the AD and CN lifespan trajectories. During the validation

of HAVAs on three external datasets, we showed that our strategy

enables accurate detection of subject having AD, or MCI who will

convert to AD in the next 3 years (i.e., pMCI). Finally, we demon-

strated the competitive performance of the proposed HAVAs com-

pared to usual normative modeling, classical ML and recent DL

methods.

During our experiments, we showed that models combining sev-

eral structures (i.e., HAVAs and HAV) outperformed models based on

a single structure. This demonstrates the advantage of combining vol-

umes of key structures to improve AD detection. Moreover, our

results suggests that methods based on amygdala provide higher

accuracy than models based only on hippocampus. The important role

of amygdala at the early state of AD has been already observed in the

past (Coupé et al., 2019; Poulin, Dautoff, Morris, Barrett, &

Dickerson, 2011; Qiu et al., 2009). Finally, we showed that using sev-

eral models had beneficial impact for improving classification accuracy

compared to single-based model normative approach. We also found

that DL methods were in general more accurate than normative

modeling approach but not better than usual ML. Recently, it has been

suggested that the combination of both could improve the perfor-

mance by using normative modeling of learned features (Pinaya

et al., 2021). We will investigate this strategy in future works.

To conclude, in addition to improving classification performance,

the proposed HAVAs strategy has several advantages over recent DL

approaches:

• First, HAVAs is conceptually very simple to understand since based

on the distance to AD or CN trajectories. This aspect enables an

easy interpretability of the results in terms of hippocampal-

amygdalo atrophy and concomitant ventricular enlargement. While

current DL methods failed to produce relevant explanation on the

used features for their decision making (Bron et al., 2021), HAVAs

is fully interpretable and thus is well-suited for clinical practice or

pharmaceutical trials. Moreover, the simplicity of HAVAs makes it

fast and easy to reimplement. A software package including

AssemblyNet pipeline and HAVAs estimation will be made freely

available as a downloadable Docker (https://github.com/volBrain/

AssemblyNetAD) as well as an online pipeline on the volBrain plat-

form (http://www.volbrain.net/).

• Second, HAVAs is based on a very low number of parameters and

hyperparameters. The use of low order polynomial models for tra-

jectory results in few learnable parameters per trajectory. Thus,

using less than 10 parameters, HAVAs is able to outperform CNN

models involving more than 10 million parameters. Moreover,

thanks to our volume normalization procedure compensating for

inter-subject and inter-structure variabilities, no hyper-parameter

is needed to combine hippocampus, amygdala, and inferior lateral

ventricle volumes. As shown during our experiments, this enables

HAVAs to generalize well by being robust to domain shift and effi-

cient on prognosis task.
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