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Abstract: Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases and

a prototypic inflammatory disease, affecting the small joints of the hands and feet.

Chemokines and chemokine receptors play a critical role in RA pathogenesis via immune

cells recruitment. Several chemokines and chemokine receptors are abundant in the periph-

eral blood and in the local inflamed joints of RA. Furthermore, synthetic and biologics

disease modifying anti rheumatic drugs have been reported to affect chemokines expression.

Thus, many studies have focused on targeting chemokines and chemokine receptors, where

some have shown positive promising results. However, most of the chemokine blockers in

human trials of RA treatment displayed some failures that can be attributed to several reasons

in their structures and binding affinities. Nevertheless, targeting chemokines will continue to

be under development, in order to improve their therapeutic potentials in RA and other

autoimmune diseases. In this review we provide an up-to-date knowledge regarding the role

of chemokines and chemokine receptors in RA with an emphasis on their activities on

immune cells. We also discussed the effects of drugs targeting those molecules in RA.

This knowledge might provide impetus for developing new therapeutic modalities to treat

this chronic disease.
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Introduction
Rheumatoid Arthritis
Autoimmune rheumatic diseases, including systemic lupus erythematosus (SLE),

Sjogren’s syndrome (SS), and rheumatoid arthritis (RA), can be difficult to diag-

nose as they share multiple symptoms and are of complex nature. It would take

years before clinical manifestations become apparent and that will probably happen

after organ/tissue damage has occurred. Hence, early diagnosis and treatment would

be crucial to preventing further damage.1 Autoimmune diseases are manifestations

of immune cells attacking normal tissues; however, the etiology of autoimmune

diseases is not clearly defined.

Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases

(1–3% of the world’s population). RA is a prototypic inflammatory disease, being

characterized by an altered state of homeostasis, in which immunological stimula-

tion and unwanted inflammation prevail. The disordered inflammation has painful

and debilitating immediate effects while causing cumulative tissue damage, which

could progress into symmetric polyarthritis thus leading to lifelong discomfort,

disability and shortened life expectancy.2–4 It has been reported that almost 50%
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of RA patients become disabled within 10 years of disease

onset, and hence, their survival is lessened.5–7 RA starts

with a painful inflammation in the small joints of the hands

and feet, especially in the metacarpophalangeal, metatar-

sophalangeal, and proximal interphalangeal joints. Also,

large joints can be involved such as the elbows, ankles,

knees and shoulders.4,8 Being a systemic autoimmune dis-

ease, RA also affects other organs and processes such as

osteoclastogensis, angiogenesis and cardiovascular, pul-

monary, and skeletal disorders. In clinical setting, RA

can be diagnosed by the presence of physical knee inflam-

mation (as per the ACR/EULAR 2010 criteria) along with

the presence of a high-titer of rheumatoid factor and/or

anticitrullinated peptide antibodies (ACPAs).9

The standard golden therapy for RA Patients is the

disease-modifying anti-rheumatic drugs (DMARDs).

These drugs act by ameliorating the signs of RA in order

to inhibit further progression and damage of the joints.10

The most commonly used DMARD is methotrexate.

However, due to inefficacy, intolerance and side effects,

there have been emerging therapeutic agents that can act

on specific molecules associated with RA pathogenesis.

Biologics DMARDs are prescribed only when treatment

with DMARDs and/or NSAIDs failed. Currently, there are

many specific biological DMARDs such as TNF-α inhibi-

tors, IL-6R antibodies and JAK inhibitors, that are con-

sidered to be the most efficient therapeutic agents in RA.11

The known anti-TNF therapies include etanercept, inflix-

imab, adalimumab, certolizumab, and golimumab, while

other cytokine receptor blockers include anakinra (IL-1R

blocker) and tocilizumab (IL-6R blocker). Nevertheless,

the therapeutic strategy for RA has to be monitored by

continuous assessment of the disease activity in order to

reach the clinical remission phase.12,13

RA is influenced by both genetic and environmental

factors, where smoking, diet, obesity, microbiota and

infections have been suggested to induce the disease in

genetically susceptible individuals. The clinical represen-

tation of RA is the result of a cascade of responses and

close interactions between immune and non-immune cells

(e.g. endothelial and fibroblast-like synoviocytes), autoan-

tibodies, soluble mediators such as cytokines and chemo-

kines, as well as signal transduction pathways of the innate

and adaptive immune system.14 Various players of the

immune system include neutrophils, macrophages,

B cells, natural killer (NK) cells and T cells migrate to

the synovial membrane and accumulate in the synovial

fluid, leading to the release of mediators such as cytokines,

chemokines, adhesion molecules, matrix metalloprotei-

nases (MMPs) and reactive oxidative species (ROS)

which consequently cause joint destruction.8

Each immune cell player can contribute to the patho-

genesis of RA. For instance, M1 macrophages play

a critical role in the production of several proinflammatory

cytokines such as TNF-α, IL-6, IL-12, IL-23, IL-1β and

IL-18,15 which promote the production of other mediators

from different cell types including endothelial cells and

fibroblast-like synoviocytes.16 Other innate immune cell

players are neutrophils which release high levels of ROS,

TNF-α, proteases, and defensins in RA joints. Various

subtypes of T cells, including Th1, Th2 and Th17, take

parts in immune-mediated inflammation of RA, where

they become activated and then accumulate in the inflamed

joints.17–19 On the other hand, regulatory T cells (Tregs)

have been described to suppress disease severity in col-

lagen induced arthritis (CIA) animal models, and this

could explain the finding that Tregs are decreased in the

peripheral blood of RA patients.20,21 One important arm in

immune-mediated pathogenesis of RA includes B cells

that react against citrullinated antigens and release antibo-

dies that contribute to the initiation and persistence of the

inflammatory process. The crosstalk among various

immune cells whether via cell to cell contact or the release

of mediators, is a critical aspect of the inflammatory pro-

cess observed in RA. For example, activated Th17 cells

are involved in the induction of inflammation by stimulat-

ing neutrophils, causing their chemoattraction into the

joints.22–24 Furthermore, neutrophils play a crucial role in

the activation of NK cells, as their depletion has led to

impairment in the function and homeostasis of NK cells.25

Chemokines
Chemokines are chemotactic cytokines that regulate the

migration of immune cells in various physiological and patho-

logical processes. They play a crucial role in homeostasis,

generation of cellular and humoral immune responses, as

well as pathologic immune contribution in various diseases.

Chemokines consist of a large family of more than 50 chemo-

kine ligands and receptors, that are classified based on the

assembly of cysteine residues in their primary amino acid

sequence.26 Their nomenclature is based on the arrangement

of the two cysteine residues dividing them into four subfami-

lies: CC, CXC, CX3C, and XC.27,28 In CC chemokines, the

cysteine residues are next to each other, while CXC chemo-

kines have one varying amino acid between them.On the other

hand, the CX3C chemokines have three variable amino acids
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between these two cysteine residues, and the XC chemokines

have only one cysteine amino acids.26,29 Almost all chemokine

ligands are secreted from the cells with the exception of CX3

CL1 and CXCL16, that have a transmembrane domain to keep

the chemokines at the surface, that can be later cleaved to

release the chemokine portion into the extracellular space.30,31

Chemokine receptors are expressed on all leukocytes and

can be classified into two groups: 1. serpentine G protein–

coupled chemokine receptors (GPCRs), and 2. atypical che-

mokine receptors.32 Many chemokine ligands can bind to

multiple receptors, while some receptors have many ligands,

especially with chemokines involved in inflammatory pro-

cesses. Atypical chemokine receptors (ACKRs) are involved

in regulating chemokine distribution and localization.33

These receptors play a vital role in the regulation of hemo-

poietic stem and progenitor cells in addition to acting as

chemokine scavengers that internalize and degrade

chemokines.34,35

Chemokines have several functions primarily leukocyte

migration, cell proliferation, survival, differentiation,

degranulation, and cytokine production. Additionally, many

chemokines were shown to possess angiogenic or anti-

angiogenic activities.36 Leukocyte migration is required and

necessary for rapid employment of innate immune cells in

order to kill pathogens, prevent microbial infection, and drive

inflammation as an attempt to repair the damage.37

Furthermore, chemokines help in the lymphoid organization,

regulation of the adaptive immune response, and the conse-

quent immune memory development.38,39 Any imbalance in

the chemokine system could lead to failure of immunosurveil-

lance that can trigger diseases including autoimmunity, chronic

inflammatory disease, allergy, cancer, and atherosclerosis.40,41

Chemokines in Rheumatoid Arthritis
Chronic inflammation represented in RA synovium is due

to the release of a variety of mediators, including chemo-

kines, cytokines, matrix metalloproteinases (MMPs), and

growth factors, thus causing continuous activation of

innate and adaptive immune systems, as illustrated in

Figure 1. Extravasation of inflammatory T cells into the

synovium is a crucial event in the pathogenesis of RA.

Furthermore, chemokine receptors and ligands have been

Figure 1 Chemokine involvement in the pathogenesis of rheumatoid arthritis. Various immune cells secrete chemokines that affect the joints. (A) Chemokines secreted in

the peripheral blood by immune cells. (B) Chemokines secreted inside the joints by various immune and non-immune cells.
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implicated in different processes of RA development

including inflammation and angiogenesis.42,43 Numerous

studies have confirmed the critical role of chemokines for

Th1 cell migration into the synovium where chemokine

ligands are abundantly present.39,44 Blocking these chemo-

kine receptors has led to inhibition of inflammatory Th1

cells resulting in decreased synovitis. Neutrophils produce

chemokines such as CXCL2 and CCL3 as well as trigger

the production of chemokines including CXCL1, CXCL5

and CCL9 from fibroblast-like synoviocytes, endothelial

cells, and macrophages.45

Chemokine production has been reported to vary at

different stages of RA. At an early phase, CCL4,

CXCL4, CXCL7 and CXCL13 were expressed, whereas

CCL3 and CCL9 were released at later stages.46,47 Other

chemokines, including CXCL1 and CXCL5, promote

inflammation and hence their levels keep escalating by

persistent inflammation.45 It is worth mentioning that

citrullination of chemokines (e.g. CXCL5 and CCL2)

occurs in RA and has been observed in synovial fluid of

RA patients. Citrullinated chemokines possess an altera-

tion in their activities which leads to reduction in

chemotaxis.48

RA patients exhibit increased levels of CCL2, CCL3,

CCL4, and CXCL10 in plasma as well as synovial fluid.49–53

On the other hand, CCL5 showed an increased level in the

plasma but a reduction in synovial fluid of RA patients.49

CCL2 is a potent chemoattractant for macrophages, while

CCL3 recruits various lymphocytes, monocytes, and

eosinophils.54 Elevated CCL2 level in RA has been strongly

associated with an increase in joint infiltration by immune

cells, specifically macrophages.55 Moreover, high levels of

CCL3 were found in neutrophils isolated from synovial

fluid.56 CCL4 has been found to be an important regulator

for osteoclast migration indicating that it is a potential therapy

target for bone resorptive diseases.57 A study reported that

CXCL10, CCL5 andCXCL8 chemokines were elevated in the

plasma of patients with active RA similar to Th1 associated

proinflammatory cytokines TNFα, and IL-6.58 CXCL10 is

primarily secreted by fibroblast-like synoviocytes and infiltrat-

ing macrophages in the synovium. Another study reported that

there is a strong association between serum CXCL10 and

disease activity scores (DAS) indicating that this chemokine

can be a possible biomarker and diagnostic aid in monitoring

disease progression in RA patients.59 CXCR3 is expressed

primarily on NK cells60 and activated T lymphocytes espe-

cially the inflammatory Th1 cells, that secrete high levels of

IFN-gamma.60,61 It has been stated that CXCR3 knockout

mice would be more resistant to inflammatory autoimmune

diseases.62 The interaction between CXCR3 and its ligands

CXCL9, CXCL10 and CXCL11, would lead to migration of

these Th1 cells such as those present in the synovial tissues of

RA patients.63–65

As mentioned earlier, the interplay between immune

cells consists of key players involved in the pathogenesis

of RA, including neutrophils, B cells, T cells and macro-

phages. Th17 cells are known to generate cytokines and

chemokines such as TNF-α and CXCL8 that attract

neutrophils.22,24 Mutually, neutrophils further activate

Th17 cells through the secretion of CCL2 and CCL20

chemokines.66 M1 macrophages secrete proinflammatory

cytokines and chemokines such as TNFα, IL-1β, IL-6, IL-
12, IL-23, CXCL5, CXCL8, CXCL9, CXCL10, and

CXCL13 which recruit more leukocytes thus promoting

RA and leading to joint destruction (Figure 1).22,67

It is well known that leukocyte migration to the joints

is one of the main causes of RA pathogenesis. CCR7 was

found to aid in the guidance of antigen presenting dendri-

tic cells and T cells to the inflamed synovium and thus

contributing to RA pathogenesis. This infiltration in the

synovial tissues is partially attributed to CCL21 and its

receptor CCR7, where their blockage led to prevention of

the migration.68 It has been reported that plasma CCL19

level and monocyte CCR7 surface expression were higher

in RA patients.69,70 Likewise, CCL19 and CCL21 were

reported to be higher in RA patients in comparison to

osteoarthritis individuals.69,71 Also, CCL19 has been

found at high concentrations in the synovium where it

was reported to be expressed by fibroblasts and

macrophages.69,70 In addition, inflammatory molecules

such as lipopolysaccharide, TNF-α and IL-1β were found

to promote CCR7 expression.71 Moreover, CCL19 and

CCL21 stimulated osteoclast migration as well as bone

resorption by osteoclasts in an animal model of RA,71

and CCL21 drives osteoclastogensis in RA through M1

macrophage polarization of Th17 cells as well as

neovascularization.68 CCL25 and its receptor CCR9 were

both detected in the RA synovium. CCR9 was reported to

be expressed on dendritic cells, macrophages, and fibro-

blast-like synoviocytes. In addition, stimulation with

CCL25 led to the secretion of proinflammatory cytokines

IL-6 and TNF-α from peripheral blood monocytes.72

A subgroup of T helper cells expressing CCR6 was

detected in the peripheral blood, synovial fluid and

inflamed synovial tissue of RA patients.73 These CCR6+

Th cells can be further classified to Th17, Th22, and
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Th17.1 which were identified to be pathogenic as they lead

to the progression of chronic arthritis.74–78 A proportion of

peripheral T memory cells were reported to be CCR6+,

highlighting the significance of CCR6-CCL20 axis in cell

migration to synovium in RA.79,80 It has been reported that

the presence of the rheumatoid arthritis risk variant: dinu-

cleotide polymorphism in the CCR6 gene (CCR6DNP

genotype) is linked to RA susceptibility.81,82 CCL20 has

been reported to be secreted by chondrocytes, synovio-

cytes and Th17 cells in the joints, as well as being able

to activate osteoblasts.73,83–85 Also, CCL20 works in

synergy with RANKL leading to bone resorption and

destruction.83 Additionally, CCL20 contributes to T cells,

monocytes and CD1a+ dendritic cells chemotaxis towards

the joints.79,80,84,86

Regarding its pathogenic role in RA, CXCL12 was

described to provoke osteoclastogensis by upregulating

RANKL expression in synovial fibroblasts and CD4+

T cells, via TNF-α.87 CXCL12 receptor CXCR4 was corre-

lated with the presence of synovial CD4+ T cells and thus

could be associated with T cell migration and joint

destruction.88,89 CXCL13 activates CXCR5 that is present

on B cells and T helper cells attracting them to the follicles.

CXCL13 which is known to play a critical role in RA

pathogenesis, has been reported to be a novel biomarker

for RA disease severity.46,90 It was found to be significantly

higher in early compared to established RA. Moreover, its

serum level significantly correlated with DAS28 score as

well as RF and ACPAs.91 Therefore, CXCL13 can aid in the

diagnosis of early RA with an enhanced diagnostic perfor-

mance compared to rheumatoid factor (RF) and anti-cyclic

citrullinated peptide (CCP).91 Serum baseline levels of both

CXCL10 and CXCL13 were found to be elevated in RA

patients, especially those that are RF and anti-CCP positive

individuals.46,70,90,92,93 Additionally, serum CXCL13 was

associated with inflammation, synovitis, RF and DAS28,

which could be a predictor of high RA severity. Several

studies have shown that CXCL16 is highly expressed in RA

synovia, causing the recruitment and accumulation of

CXCR6+ T cells in RA joints, which is highly associated

with RA pathogenesis.94,95 It has been suggested that

CXCL16 is released and expressed by synovial macro-

phages, where the expression was elevated by inflammatory

TNF-α.95

CX3CL1 “Fractalkine”, that is present in RA synovium,96

was found to play a crucial role in monocyte chemotaxis and

angiogenesis in the rheumatoid synovium. The interaction of

CX3CL1 and its receptor CX3CR1 contributes to the

recruitment of various immune cells including Tcells, mono-

cytes and NK cells causing inflammatory autoimmune dis-

eases such as RA and SLE.96–99 Moreover, stimulation by

CX3CL1 was found to trigger the proliferation of fibroblasts

and atherosclerosis as well as leading to an increased MMPs

and further inflammation in RA joints.100–104

Multiple studies in RA have been carried out with

antagonists and/or neutralizing antibodies against chemo-

kines including CCR1, CCR5, CXCR4, CXCR7, CCL19,

CXCL10, CXCL12, and CXCL13, where they revealed

potential to be future targets.105,106 However, further under-

standing of the role of these chemokines in RA is quite

essential.

Effect of Chemokines in RA Therapy
It has been noted that chemical and biologic DMARDs

affect chemokine expression in RA. Many studies have

shown that NSAIDs, glucocorticoids and DMARDs (sulfa-

salazine, sulfa pyridine, methotrexate, and leflunomide)

hinder the production of numerous chemokines in various

clinical setups,107–111 as summarized in Figure 2. RA

patients treated with biological DMARDs such as inflixi-

mab, etanercept and tocilizumab exhibited a significant

reduction in serum CCL20 levels compared to before

treatment.112 Furthermore, the expression of CCR7 and

CCL19 chemokines reversed to normal baseline levels

after 1 year of DMARD methotrexate and cyclosporine

A therapy.69 Similarly, levels of CCL5 and CCL19 were

reported to be decreased by rituximab and anti-TNF thera-

pies, respectively.69,70,113 Hence, blocking CCR7 and its

ligands CCL19 and CCL21 could be a therapeutic approach

targeting inflammation and bone destruction in RA.

Besides, serum CCL19 was reported to be a promising

predictive diagnostic tool for effective response to rituxi-

mab therapy.70

Additionally, RA patients that responded to IL-1 recep-

tor antagonist (IL-1Ra) therapy had significantly lower

mean changes in the serum CCL2 and CCL3 levels com-

pared to non-responders or placebo. This indicates that

CCL2 and CCL3 may be convenient markers for IL-1Ra

efficient treatment.51 Likewise, chemokine ligands such as

CXCL10, CCL2, and CCL4 levels decreased significantly

upon treatment with infliximab along with a reduction of

chemokine receptors CCR2 and CXCR1 on T cells.52

Furthermore, RA patients that responded to TNF inhibitors

had higher baseline serum levels of CXCL10 and

CXCL13, that were reduced after therapy.46,92,106

Another class of therapy, Janus kinase (JAK) inhibitor
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Tofacitinib caused a significant reduction of synovial

mRNA chemokine expression of CCL2, CXCL10 and

CXCL13.114 Therefore, levels of CXCL10 and CXCL13

could be used as prognostic tools for biological TNF and

JAK inhibitor therapy.46 Also, serum baseline levels of

CCL2 and CXCL8 were found to be higher in the tocili-

zumab responders compared to non-responder RA

patients. A closely related chemoattractant, macrophage

migration inhibitory factor (MIF) level was reduced after

tocilizumab treatment in RA responders, highlighting the

importance of MIF in RA.115

Numerous chemokine inhibitors targeting CC or CXC

receptors have been investigated, with controversial outcomes,

especially in autoimmune diseases.116–120 For instance,

CXCR4 antagonist Plerixafor and the CCR4 monoclonal anti-

body Mogamulizumab, have been utilized in the mobilization

of stem cells in the treatment of non-Hodgkin lymphomas and

T cell leukemias, respectively.105 Additionally, CCR5 antago-

nists Aplaviroc, Maraviroc and Vicriviroc have been utilized

for the treatment of HIV infection.121 Another CCR9 antago-

nist Vercirnon, displayed promising results in Crohn’s

disease.72 Interestingly, antibodies against CXCL12 and

CXCL13 showed beneficial effects in vitro and in animal

models of cancer and inflammatory diseases including col-

lagen induced arthritis (CIA).122,123 Currently, many studies

and clinical trials have investigated chemokine targeting in

autoimmune diseases including RA (Figure 2).118,124–131

Another autoimmune disease, Sjögren’s Syndrome

(SS), occurs when the immune system attacks exocrine

glands. Similar to RA, SS is a debilitating progressive

disease. CXCL13 expression was found to be increased

in salivary tissue and associated with disease progression

in SS mouse model.132 In addition, CXCL13 was

described to be elevated in the serum and saliva of SS

patients, highlighting its importance in SS.132 Studies have

reported that blockage of CXCL13 reduced glandular

inflammation and hence could be an effective therapeutic

strategy in SS mouse model as well as in SS

patients.132,133 Besides, mAb 526, an anti-CXCL13 anti-

body, has shown therapeutic efficacy in various autoim-

mune diseases including mice models of RA or CIA as

well as multiple sclerosis model (experimental autoim-

mune encephalomyelitis or EAE).134 In addition, inhibi-

tion of CXCR7, another receptor for CXCL12, decreased

inflammation in the joints and reduced angiogenesis in

CIA model.135

A recent study reported engineered nanobodies that

target CCR7 which can be used for therapeutic and diag-

nostic purposes.136 Another study indicated that both pro-

phylactic and therapeutic treatments of CIA-humanized

Figure 2 Effect of current RA therapies on chemokines as well as the current chemokine targeted therapies in RA. Closed arrows indicate antagonism.
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CCR7 mice with anti-human CCR7 monoclonal antibody

led to complete resistance to CIA and arrested progression,

thus highlighting that CCR7 could be a potential therapeu-

tic target in RA.136

One potential therapeutic target in RA is CX3CL1 which

has been blocked in a clinical trial using a monoclonal anti-

body as a treatment for RA.137 The humanized anti-CX3CL1

monoclonal antibody E6011 was found to be safe, well

tolerated, and exhibited efficacy for 52 weeks in active RA

patients who were non-responders or intolerant to MTX or

TNF inhibitor therapies.138,139 Moreover, E6011 was found

to hinder the migration of CX3CR1
+ macrophages as well as

blocking joint destruction via reducing inflammatory cyto-

kines and suppressing osteoclastogenesis.139,140 All of these

data support the utilization of anti-CX3CL1 monoclonal anti-

body in Phase 2 clinical trials for further assessment.

Different CXCR4 antagonists have shown positive

results in tempering synovitis in animal models of

arthritis including Plerixafor and T140.141,142 Previously,

SCH546738, a synthetic compound targeting CXCR3, was

found to weaken the development of CIA in mice.143

Furthermore, a CXCR3 antagonist JN-2, was reported to

improve arthritis symptoms in a CIA animal model.144

This was suggested to be due to inhibiting cell migration

and pro-inflammatory cytokine expression from macro-

phages and CD4+ T cells.144 A study by Broeren et al

reported that CXCR3 ligand, CXCL10 increases inflamma-

tory mediators which are present in the serum of patients

with RA.145 The CXCL10 promoter-regulated IL-10 over-

expression was described to lead to a reduction in inflam-

matory cytokine production. For that reason, this vector was

suggested to provide a possible gene therapy approach for

RA.145 Additionally, the use of blocking monoclonal anti-

body against CXCL10 as therapy for arthritis led to halting

its progression.146,147 Clinical trials using anti-CXCL10

monoclonal antibody (MDX-1100) for RA patients with an

ineffective response to methotrexate showed that blocking

CXCL10 significantly improved the response rate, suggest-

ing a possible therapeutic use in humans.148 This has been

supported by a decrease in the levels of C-reactive protein

and disease activity score (DAS) as well as an improvement

in the ACR20 (i.e. 20% improvement in RA symptoms) and

physical function.148

CCR9 antagonist, CCX8037 or knockdown of CCR9

repressed arthritis symptoms in mice.72 A neutralizing mAb

against CCL2was shown to reduce ankle swelling alongwith

a decrease in the number of monocytes/macrophages

recruited to the joints.149 While the treatment with a small-

molecule inhibitor of endogenous CCL2 (p8A-MCP-1) dis-

played a positive clinical efficacy on adjuvant-induced arthri-

tis (AIA),150 its receptor CCR2 is expressed by CD14+

monocytes, demonstrating a vital role in monocyte recruit-

ment during CIA.149 Consequently, low doses of

a monoclonal antibody against CCR2, the MC-21 showed

some improvement in CIA.151 On the other hand, adminis-

tration of an anti-CCR2 antibody (MLN1202) was imple-

mented in humans with no observed reduction in the numbers

of inflammatory cells.126,152 Another possible chemokine

target was a highly abundant chemokine in RA synovium,

i.e. CCR5 that is expressed by inflammatory Th1 cells and

tissue-resident macrophages.107,153,154 Local injection of

small interfering RNA (siRNA) against CCR5 in a rat

model of adjuvant-induced arthritis was found to repress

joint inflammation and swelling, highlighting that CCR5

inhibition may be a promising target for therapy.155

Additionally, CCR5 antagonist SCH-X was found to hinder

the development of CIA.156 A single nucleotide polymorph-

ism of CCR5 influenced RA severity and immune infiltration

to joints where individuals bearing the unfunctional Δ32-
CCR5 variant, were more likely to develop less severe RA

symptoms.157 However, CCR5 antagonists such as

Maraviroc and AZD5672 did not exhibit any clinical efficacy

in RA patients in terms of ACR20 response.158 Dual antago-

nists have been under development, where dual targeting of

CCR1 and CCR5 via Met-RANTES caused prevention of

arthritis in CIA and AIA animal models.159,160

Several studies suggested that CCR2 and CCR5 are not as

critical as CCR1 for the migration of monocytes towards the

synovial compartment in RA.127,131 As mentioned earlier,

CCR1 levels are elevated on several leukocytes present in

the RA synovium, along with its multiple ligands.130,161 This

has been supported by immunohistochemistry findings report-

ing the presence of CCR1+ cells promoting inflammatory

monocyte infiltration into RA synovial tissue.162 The CCR1

antagonist J-113863 displayed a positive clinical efficacy in

murine CIA.163 However, in the past, Phase II clinical trials

using oral CCR1 antagonists, such as CP-481,715 (Pfizer),

MLN3897 (Millennium), BMS-817399 (Bristol-Myers

Squibb) and c-4462 failed to induce noticeable activities in

RA patients.118,124,164–166 This could be attributed to persis-

tent high level of receptor blockage which may be necessary

to inhibit monocyte migration in the synovium. Another

possibility could be that CCR1 ligands can interact with

multiple receptors including CCR2 and CCR5,164 mediating

their effects in RA. However, a recent clinical trial using an

oral CCR1 antagonist, CCX354-C was performed to evaluate
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its safety and efficacy in RA patients.167 The clinical trial so

called CARAT-2 reported that CCX354-C revealed good

safety and tolerability profiles that can be implemented in

clinical aspects in RA.167 A slight elevation in the ACR20

was observed in RA patients using CCX354-C but the differ-

ence was not significant. Nevertheless, treatment with

CCX354-C revealed more than 90% receptor occupancy

that was required for effective blockade of infiltration of

inflammatory cells.131,168

Targeting chemokines as a therapeutic approach has

shown several obstacles that might hinder their develop-

ment and approval in various diseases. One of the main

reason for the failure is that chemokine receptors are not

cell-specific and can be shared by several inflammatory and

anti–inflammatory cells, making their blockage difficult to

reach reasonable therapeutic effects.169,170 Furthermore,

many chemokines are engaged in physiological and devel-

opmental processes where any intervention could lead to

undesirable adverse effects.54,94,107,171,172 It is worth men-

tioning that single targeting is not quite effective as the

binding affinities are much limited in vivo compared to

in vitro studies.173–175 Additionally, the use of animal mod-

els could create difficulties, as the affinity of a compound

for a rodent chemokine receptor can differ noticeably from

its affinity for the equivalent human chemokine. Also, as

mentioned earlier, chemokines could become citrullinated

in RA and hence, they might not be inhibited by chemokine

blockers that are designed for unmodified chemokines.48

Therefore, it is vital to find the appropriate chemokine

targets in order to be able to succeed in blocking pathogenic

lymphocyte recruitment to the RA synovium.

Conclusions
Chemokine signaling has shown to be critical in RA

pathogenesis, as several chemokines and their respective

receptors contribute to immune cell recruitment in

arthritic joints. Therefore, targeting chemokines could

be a suitable therapeutic approach in the treatment of

RA. Nevertheless, many studies with antagonists and

antibodies directed against chemokines and chemokine

receptors failed upon translation into clinical trials.

Currently, the development of more effective chemokine

therapies is underway, where it would provide new

opportunities for clinical trials for the treatment of RA

and similar autoimmune diseases. We aim from this

article to shed some lights on the importance of chemo-

kines and chemokine receptors in RA disease. This infor-

mation should provide a solid background for developing

new drugs or other therapeutic modalities to target che-

mokine or their receptors due to their vital importance in

disease initiation, progression and development.
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