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Abstract: Cancer is a dynamic disease involving constant changes. With these changes, cancer cells
become heterogeneous, resulting in varying sensitivity to chemotherapy. The heterogeneity of cancer
cells plays a key role in chemotherapy resistance and cancer recurrence. Therefore, for effective
treatment, cancer cells need to be analyzed at the single-cell level by monitoring various proteins and
investigating their heterogeneity. We propose a microfluidic chip for a single-cell proteomics assay
that is capable of analyzing complex cellular signaling systems to reveal the heterogeneity of cancer
cells. The single-cell assay chip comprises (i) microchambers (n = 1376) for manipulating single
cancer cells, (ii) micropumps for rapid single-cell lysis, and (iii) barcode immunosensors for detecting
nine different secretory and intracellular proteins to reveal the correlation among cancer-related
proteins. Using this chip, the single-cell proteomics of a lung cancer cell line, which may be easily
masked in bulk analysis, were evaluated. By comparing changes in the level of protein secretion
and heterogeneity in response to combinations of four anti-cancer drugs, this study suggests a new
method for selecting the best combination of anti-cancer drugs. Subsequent preclinical and clinical
trials should enable this platform to become applicable for patient-customized therapies.

Keywords: microfluidics; cancer; proteomics; heterogeneity; lung cancer

1. Introduction

Cancer is a dynamic disease that becomes increasingly heterogeneous as it pro-
gresses [1–3]. Cancer cells remain unstable, even after becoming malignant, and constantly
change by acquiring a variety of mutations [2]. With these continuous changes, cancer
cells produce bulk tumors formed from groups of heterogeneous cells, which have various
sensitivities to chemotherapy [3]. The heterogeneity of cancer cells contributes to the small
number of drug-tolerant cancer cells. Those that survive chemotherapy eventually play a
key role in chemotherapy resistance and cancer recurrence [4–6]. Therefore, heterogeneity
in tumors has recently emerged as a critical factor in the diagnosis and treatment of can-
cer [7]. Furthermore, it was shown that intra-tumor heterogeneity can be used as one of the
clinically important prognostic factors [8–10]. This implies that patients with tumors in
which the heterogeneity is high are more likely to have a poor prognosis for chemotherapy
and a higher resistance to targeted treatment [11]. In the clinical setting, the most com-
monly used method for chemotherapy-resistant tumor cells is a combination of two or
more anti-cancer drugs, potentially lowering the incidence of various drug-tolerant cancer
cell groups due to the heterogeneity of the tumor [6]; for such strategies to be successful for
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cancer patients, it is important to find the most effective combination and appropriate dose
for anti-cancer drugs. Therefore, it is necessary to accurately diagnose the heterogeneity
of cancer cells and predict the effectiveness of particular chemotherapies or combination
therapies before applying customized therapy to each patient [12,13].

Lung cancer, which has the highest mortality rate among all tumors, has become
an important target for personalized medicine [14]. As genomic sequencing technology
has developed, various genetic data have been used to select personalized drugs [15].
Although there have been several successes with this approach, cancer genomics is very
complex, and genes alone cannot predict all protein modifications and expressions. This
limits the understanding of drug responses [16,17]. Single-cell proteomic analysis can
confirm protein heterogeneity by revealing correlations among proteins that cannot be pre-
dicted by genomic data analysis [18,19]. Therefore, to determine the appropriate treatment
for each patient, it is necessary to analyze the genomic and proteomic data together [20].
Many single-cell proteomics tools for revealing the response to drugs have been studied.
Nanostructure initiator mass spectrometry (NIMS) is a representative example [21]. NIMS
enables the quantitative assessment of drug interactions and reactions via cell and tissue
biomarker measurements [22]. However, this technology requires a large laboratory in-
frastructure and is not easily accessible. In addition, many proteomic studies have used
microfluidics [23–25]. However, these methods are limited by their low throughput, small
number of measurable proteins, and inability to simultaneously confirm the internal signal
systems and secretion proteins [26–29]. Therefore, a highly efficient analysis method is
required to simultaneously measure the multiple signaling molecules associated with the
proliferation and necrosis of cancer cells treated with multiple combinations of anti-cancer
drugs at the single-cell level.

Epidermal growth factor receptor (EGFR) mutations are the most commonly observed
mutations in non-small cell lung cancer and EGFR tyrosine kinase inhibitors (gefitinib
and erlotinib) are used as the primary treatment [30]. However, 66% of patients develop
cancer recurrence with T790M secondary mutations [31,32]. In these cases, osimertinib
is proven to be effective against T790M mutations [32,33]. In addition to osimertinib,
studies have been conducted on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(AKT) pathway, the Janus kinase (JAK) pathway, and the mitogen-activated protein kinase
(MAPK) pathway, which correspond to the EGFR downstream pathways [34–36].

In this study, we propose a single-cell proteomics assay, comprising a microfluidic
platform that can analyze cancer signal transduction systems to elucidate the heterogeneity
of cancer cells. Using a single-cell assay chip, we analyzed and evaluated the effects of
combinations of four targeted anti-cancer drugs: Osimertinib (O, PI3K inhibitor), LY294002
(L, PI3K inhibitor), Ruxolitinib (R, JAK inhibitor), and Selumetinib (S, MEK inhibitor).
These are applied to non-small cell lung cancer cell lines with EGFR and T790M mutations
that are resistant to primary drugs.

2. Materials and Methods

The single-cell assay chip comprises (i) microchambers (n = 1376) for manipulating
single cancer cells, (ii) micropumps for rapid single-cell lysis, and (iii) barcode immunosen-
sors for detecting nine different secretive and intracellular proteins. The device used in this
study comprises two layers (flow and pump/valve layers) made of polydimethylsiloxane
(PDMS) with a bottom substrate that has been integrated with multiple immunosensor ar-
rays. The single-cell assay chip had 1376 microchambers for single-cancer-cell manipulation
(Figure 1A). A schematic view of a single chamber is shown in Figure 1B,C. A microscopic
image of the chamber is shown in Figure 1D. The pneumatic microvalves and mixing
pumps allow for rapid single-cancer-cell lysis and washing. The barcode immunosensor
array, comprising one reference and nine different proteins (p-AKT, p-P70S6K, p-ERK,
p-STAT3, p-P53, CPS3, MMP2, VEGF, and M-CSF1) involved in cancer cell proliferation
and necrosis, was integrated to allow all protein concentration levels to be simultaneously
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obtained (Figure 1E). The working principle of the microfluidic single-cell proteomics assay
chip is shown in Supplementary Materials Video S1.
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Figure 1. Design of single-cell proteomics assay chip. (A) Schematic drawing of the single-cell assay
chip. (B,C) A schematic view of a single chamber. (D) Real image of single-cell proteomics assay chip.
(E) Schematic view of multiplexed capture antibody arrays comprising a reference probe (green) and
captured antibody arrays (red).

2.1. Device Preparation

Each layer in the single-cell microfluidic platform consisted of PDMS (Sylgard 184®,
Dow Corning, Midland, MI, USA) mixed in a 10:1 ratio with a base and curing agent.
For the control layer, PDMS was cast at a height of 3 mm. For the flow layer, PDMS was
spin-coated at 2000 rpm on a dual-patterned photoresist mold. After curing the PDMS
layer, each layer was cleaned with tape (Scotch® MagicTM, St. Paul, MN, USA) before
being treated with oxygen plasma at 100 W for 30 s in a plasma machine (Femtoscience,
Hwaseong, Korea). The two-layer PDMS assembly was formed by bonding the layers
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using an oxygen plasma treatment. The device was finalized by assembling the multiplex
barcode substrate via physical contact between the two sides.

2.2. Preparation of the Multiplex Barcode Array

The multiplex barcode array contains ten stripes, including one reference probe
and nine capture antibody probes. All antibodies used in the multiplex barcode ar-
ray were obtained from commercial enzyme-linked immunosorbent assay (ELISA) kits
(Supplementary Materials Table S1; R&D Systems, DuoSet®, Minneapolis, MN, USA).
Each contains capture antibodies, detection antibodies, and standard proteins. To immobi-
lize the capture antibodies on a glass substrate, its surface properties must be modified.
First, the glass substrate was treated with oxygen plasma (100 W, 20 sccm, 30 s). Then,
by treating the substrate with 3-aminopropyltriethoxysilane (APTES) solution (3% v/v) in
ethanol overnight, the surface was converted to an amine surface, which can be converted
into an aldehyde surface using glutaraldehyde (10% v/v) solution. The amine groups of the
capture antibody bind to aldehyde groups. The procedure is illustrated in Supplementary
Materials Figure S1. The PDMS chip for the barcode array comprised ten microfluidic
channels. The chip and aldehyde-treated surfaces were combined by physical contact. Each
capture antibody was loaded into the inlet of the PDMS chip and then introduced into the
array by a vacuum pump. After incubation for 12 h at 4 ◦C, each channel was washed with
phosphate-buffered saline (PBS). After the PDMS chip was peeled off, the barcode antibody
array was ready to be tested. Then, the final PDMS channel, including microchamber and
micropumps, was bonded to the glass chip with antibody coating.

2.3. Cell Line and Reagents

For single-cell assay chip validation, a non-small-cell lung cancer cell line (NCI-H1650),
which has a deletion mutation in EGFR exon 19, was obtained from the Korean Cell Line
Bank (Seoul, Republic of Korea). For the proteomics experiments, a non-small-cell lung
cancer cell line (NCI-H1975) was obtained from ATCC (USA). The cells were grown in
Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco, Grand Island, NE, USA). To
produce a complete growth medium, 10% fetal bovine serum (Atlas, Fort Collins, CO, USA)
and 1% penicillin streptomycin (Gibco, Grand Island, NE, USA) of the final concentration
were added to the medium. The cells were incubated in a humidified incubator at 37 ◦C
with 5% CO2.

2.4. MTT Assay and Drug IC50 Measurement

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich,
St. Louis, MO, USA) was used for the MTT assay. The used drugs (Selleckchem, Houston,
TX, USA) were: Osimertinib (EGFR inhibitor), LY294002 (PI3K inhibitor), Selumetinib
(MEK inhibitor), Ruxolitinib (JAK inhibitor). In this study, a general protocol for an MTT
assay was used to evaluate the half-maximal inhibitory concentration (IC50) of each drug
(O, L, R, S) and the drug combination for the H1975 lung cancer cell line (Supplementary
Materials Figure S2). A particular drug combination was added to a 96-cell culture plate
(100 µL well–1). The cancer cell suspension (H1975) was added at a density of 4000 cells
per well (4 × 104 mL–1). The cell culture plate was then incubated for 72 h at 37 ◦C with 5%
CO2. After 72 h, 10 µL of MTT solution (5 mg mL–1) was added to each well and the plate
was incubated at 37 ◦C with 5% CO2 for 2 h. After incubation, the culture medium was
completely removed and 200 µL of dimethyl sulfoxide (DMSO) was added to each well
to dissolve the formazan. The plate was placed on an orbital shaker for 10 min and the
absorbance was measured at 570 nm. After testing, values of relative cell proliferation (%)
with respect to the control group, for various drug concentrations, were calculated using
Equation (1) [37].

Relative proliferation (%) = 100 −
(

100 ×
ODcontrol − ODsample

ODcontrol

)
(1)
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Drug combinations generated from osimertinib, LY294002, ruxolitinib, and selume-
tinib were tested using the MTT assay to determine the IC50 concentration of each inhibitor.
For the dual-drug combinations, the IC50 concentration of each drug was set at 100% and
diluted with culture medium (RPMI-1640) to produce 0%, 25%, 50%, and 75% relative prolif-
eration values (Supplementary Materials Figure S3). For the triple-drug combinations, the
mixtures comprised dual-combination drugs combined with another single drug. First, the
low viability of the dual combination was ranked. Based on the results, three combinations
of osimertinib + ruxolitinib + LY294002 (ORL), osimertinib + ruxolitinib + selumetinib
(ORS), and osimertinib + LY294002 + selumetinib (OLS) were prepared. Relative cell
proliferation was calculated for the given drug combination compared to the control group.

2.5. Single-Cell Assay

The protocol for the single-cell assay was as follows. First, lung cancer cells
(5 × 105 cells mL–1) were introduced into the single-cell assay chip using a syringe pump
(Cetoni GmbH, Korbussen, Germany) at a flow rate of 50 µL h–1. Eight different drug
combinations, with the culture medium as a control, were introduced (50 µL h–1) into each
branch, with each providing treatment for 172 single-cell assay chambers. After the cells
and drugs were introduced, each single-cell assay chamber was independently isolated
using a pneumatic valve. The assay chip was incubated for 12 h for the drug treatment.
After incubation, a cell lysis buffer was introduced and mixed using an automated proce-
dure controlled by a Laboratory Virtual Instrument Engineering Workbench (LabVIEW
2017, National Instruments, Austin, TX, USA) program. Once the cell membrane ruptured,
chamber washing was performed to avoid contamination from other single-cell chambers.
A cocktail of detection antibodies (3 µg mL–1), a mixture of streptavidin-Cy5 (1 µg mL–1),
and a single strand of cDNA-Cy3 (50 nM) were sequentially introduced. Signal amplifica-
tion using biotinylated anti-streptavidin antibodies was used to increase the fluorescence
signal (Supplementary Materials Figure S4). The finalized assay chip was scanned using a
GenePix scanner (Molecular Devices, San Jose, CA, USA) at 100% (635 nm for Cy5) and
33% (532 nm for Cy3) laser power levels, with optical gains of 700 and 500, respectively, to
extract the fluorescent intensity.

2.6. Single-Cell Data Analysis

All figures were created using Prism8 (GraphPad Software Inc., San Diego, CA, USA),
Python version 3.7 (Python Software Foundation, Wilmington, DE, USA), and Anaconda
(Anaconda, Inc., Austin, TX, USA). Principal component analysis (PCA), a technique for
reducing the dimension of data, expanding the interpretability by minimizing information
loss [38], was performed using Python version 3.7 and Anaconda, and cluster analysis was
performed using R version 3.6.0 (R foundation for Statistical Computing, Vienna, Austria).
To create the heatmap, all cancer cell data were collated and transformed using RobustScaler
in Equation (2), which returns a median value that is less sensitive to outliers [39].

RobustScaler =
X − median

interquartile range
(2)

The median value for each protein among the cancer cell groups that had undergone
anti-cancer drug treatment was standardized to the RobustScaler, using the median value
and interquartile range (IQR) of the control group. For each drug, a heat map was created
that corresponded to three experiments, as well as a heat map corresponding to the average
of each drug group. The two best drug groups, with the greatest overall protein loss
(OL100 S100, OR50 L50), and the two worst drug groups, having the lowest overall protein
loss (O50 R100, O50 R50), were selected. Heat maps of single cancer cells were created
for the selected groups. An independent Student’s t-test was used to compare protein
secretion between the drug and control groups. The mean protein changes for each protein
in the best and worst drug groups were calculated using the RobustScaler. Histograms for
each protein, for one of the best (OL100 S100) and worst (O50 R100) drug groups, were



Micromachines 2021, 12, 1147 6 of 14

also calculated using RobustScaler. The Pearson correlation coefficient was calculated for
protein correlation analysis.

2.7. Heterogeneity Evaluation and Analysis

Standardized RobustScaler data were used for heterogeneity evaluation and PCA
was used to visually depict the heterogeneity of cancer cells [40]. Hierarchical clustering
analysis was used to quantitatively evaluate the heterogeneity [41]. The similarity between
single cells was measured using Euclidian distance dissimilarity coefficients with Ward’s
minimum variance method. The calculated dissimilarity coefficients were used to measure
the heterogeneity of cell populations.

2.8. ELISA Assay

For the bulk ELISA test, cells were cultured on the cell culture plate and a sandwich
ELISA test was conducted using a commercial ELISA kit (R&D Systems, DuoSet®, Min-
neapolis, MN, USA). The absorbance of each target was measured using ELISA reader.
Nine different molecules (p-AKT, p-70S6K, p-ERK, p-STAT3, p-P53, cleaved caspase 3,
MMP2, VEGF, and M-CSF1) were measured. For the test target, the supernatant was
collected before the cell lysate and the lysis was then collected.

3. Results
3.1. Validation of Single-Cell Proteomics Assay Chip Using H1650 Lung-Cancer Cell Line

The single-cell assay chip was experimentally validated and optimized using the
H1650 lung cancer cell line. First, each cancer cell was localized using a pre-focusing
microstructure based on deterministic lateral displacement and a subsequent cell-trapping
microstructure. Of the 1376 chambers, 98.9% (±0.15%) acquired cancer cells, either in
the form of single cells or multiple cells (up to four cells), and 89.5% (±3.7%) of the
trapped cells were verified as single cells (Figure 2A). Second, using the peristaltic pump,
which allows for uniform washing and mixing of the proteins from the lysed cell, rapid
single-cell lysis was demonstrated. As a result, a high (>95%, within 5 min) mixing
efficiency was achieved, as shown in Figure 2B. Rapid single-cell lysis and individual
chamber washing were achieved not only in a single chamber but also in the entire as-
say chambers, without any fluidic interference or contamination among the chambers
(Supplementary Materials Figure S5). Finally, the selectivity of the multiplex assay was
validated using ten different types of antibodies: one as a reference probe and nine probes
for different proteins. As a result, the barcode immune sensor exhibited high selectivity for
each protein (>89.5%) (Figure 2C). After trapping each lung cancer cell into an individual
chamber, seven drug cocktails and one control were applied per device and the fluorescent
signal intensities were measured using a GenePix scanner; the corresponding changes in
the level of each protein concentration (either secretory or intracellular) were measured
(Figure 2D).

3.2. Single-Cell Analysis Using H1975 Lung-Cancer Cell Line

In this study, the changes in the levels of the nine aforementioned protein con-
centrations were identified, before and after treatment, in lung cancer cell lines. A to-
tal of three experiments were performed for each drug and a total of 172 cancer cells
were used per experiment; the drug concentrations used in this study are detailed in
Supplementary Materials Figures S2 and S3. The average protein concentration after drug
treatment for each drug is illustrated using a heat map in Figure 3; in the map, blue in-
dicates that the concentration decreases and red indicates its increases, with the value
before drug treatment serving as the reference. The bottom row of the heat map shows the
average of all the protein secretions, indicating that the concentration of proteins in OL100
S100 was the most downregulated (−0.67), and that in O50 R100 was the most upregulated
(+0.34). A heat map showing the average protein secretion of the three experiments for all
drugs is shown in Supplementary Materials Figure S6.
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array. The reference probes are green while the capture antibody arrays are red.
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Figure 4A shows the best drug groups as those with many blue areas (downregu-
lation of target protein concentration) while the worst drug groups had more red areas
(upregulation of target protein concentration) than the best groups at the single-cell level.
Box plots are plotted in Figure 4B to compare the protein secretion of the drug and con-
trol groups. The best group (OL100 S100) showed significant decreases in all proteins
compared to the control group while the worst group (O50 R100) showed inconsistent
and fewer significant changes compared to the control group. To quantitatively identify
changes in protein secretion, the mean protein changes in the two best and worst drug
groups were evaluated (Supplementary Materials Figure S7). For the best drug groups, all
proteins tended to decrease. However, the increases and decreases among proteins were
inconsistent for the worst drug groups. In addition, histograms confirming the protein
secretion distribution, in each single cell, for the best (OL100 S100) and worst (O50 R100)
drug groups are shown in Supplementary Materials Figure S8; in these plots, the overall
protein secretion distributions shift to the left (to lower levels) with treatment, for the best
drug group, while those of the worst drug group remained largely unchanged.

Micromachines 2021, 12, 1147 8 of 14 
 

 

 
Figure 3. Heat map showing average protein concentration. The average protein concentration after 
anti-cancer drug treatment, for each drug, is illustrated using a heat map. O, Oximertinib; L, 
LY294002; R, Ruxolitinib; S, Selumetinib. 

Figure 4A shows the best drug groups as those with many blue areas 
(downregulation of target protein concentration) while the worst drug groups had more 
red areas (upregulation of target protein concentration) than the best groups at the single-
cell level. Box plots are plotted in Figure 4B to compare the protein secretion of the drug 
and control groups. The best group (OL100 S100) showed significant decreases in all 
proteins compared to the control group while the worst group (O50 R100) showed 
inconsistent and fewer significant changes compared to the control group. To 
quantitatively identify changes in protein secretion, the mean protein changes in the two 
best and worst drug groups were evaluated (Supplementary Materials Figure S7). For the 
best drug groups, all proteins tended to decrease. However, the increases and decreases 
among proteins were inconsistent for the worst drug groups. In addition, histograms 
confirming the protein secretion distribution, in each single cell, for the best (OL100 S100) 
and worst (O50 R100) drug groups are shown in Supplementary Materials Figure S8; in 
these plots, the overall protein secretion distributions shift to the left (to lower levels) with 
treatment, for the best drug group, while those of the worst drug group remained largely 
unchanged. 

 
Figure 4. Single-cancer-cell proteomics analysis. (A) Heat maps showing protein concentration in 
best (OL100 S100, OR50 L50) and worst (O50 R100, O50 R50) drug treatment groups at the single-

Figure 4. Single-cancer-cell proteomics analysis. (A) Heat maps showing protein concentration in best (OL100 S100, OR50
L50) and worst (O50 R100, O50 R50) drug treatment groups at the single-cell level are shown. (B) Box plots for protein
concentration in best (OL100 S100) and worst (O50 R100) drug groups compared with control groups are shown. The
number of asterisks corresponds to the following p-values. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001. O,
Oximertinib; L, LY294002; R, Ruxolitinib; S, Selumetinib.

Furthermore, correlation analysis was performed to determine the correlation between
the proteins in the best and worst drug groups (Figure 5). The best drug group had
correlations of 0.3 or higher in 15 cases, while the worst drug group had the same result in
11 cases. Among the correlations, MMP2 and p-P70S6K, and MMP2 and M-CSF1 showed
opposing results in the best and the worst drug groups (positive correlation in the best
drug group and negative correlation in the worst drug group).
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3.3. Evaluation of Heterogeneity

To confirm the heterogeneity of cancer cells, before each anti-cancer drug treatment,
the protein secretion data among the cancer cells were compared. Figure 6A shows the
protein secretion of cancer cells in all four control groups (172 cancer cells per experiment,
three experiments per control group). Figure 6B shows the PCA of protein secretion in
the four control groups, which revealed slight differences between single cells in the four
control groups.
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To identify changes in heterogeneity after anti-cancer drug treatment, PCA was per-
formed on the best (OL100 S100, OR50 L50) and worst (O50 R100, O50 R50) drug groups,
using the control groups as a reference (Figure 7A). After drug treatment, the distribution
of single cells in the best drug groups was more condensed. In contrast, the distribution
became more dispersed in the worst drug groups. Cluster analysis was performed to
quantitatively evaluate the heterogeneity of cancer cells before and after anti-cancer drug
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treatment. Figure 7B shows that, compared to the control groups, the best drug groups
(OL100 S100 and OR50 L50) reduced the heterogeneity by 48.99% and 30.76%, respectively,
whereas the worst drug groups (O50 R100 and O50 R50) exhibited a 10.55% decrease and
66.79% increase in heterogeneity, respectively. Dendrograms from the cluster analysis of the
control group and each drug group are shown in the Supplementary Materials Figure S9.
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worst (O50 R100, O50 R50) drug group treatments, compared to the control group (before drug treatment). (B) Cancer cell
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control group (before drug treatment) via cluster analysis. O, Oximertinib; L, LY294002; R, Ruxolitinib; S, Selumetinib.

3.4. Comparison between Bulk and Single-Cell Assay

Experiments were conducted to compare bulk and single-cell assays. The protein
concentrations are shown in Figure 8A,B. In both cases, VEGF concentration was the
highest. Linear fitting was performed for regression analysis of the concentrations from
the two assays (Figure 8C); the obtained R2 value was 0.63.
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between bulk and single-cell assays is shown; the R2 value is calculated using this analysis.

4. Discussion

For cancer patients, it is important to overcome resistance to chemotherapy and to
select appropriate dosages of anti-cancer drugs to reduce the side effects of chemother-
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apy [42]. This study was able to identify changes in protein secretion before and after drug
treatment using the heat maps generated by single-cell proteomic analysis. For the worst
drug groups, we observed an increase in p-ERK and MMP2 compared to the control groups
(Figure 4B). Both proteins are known to be related to the progression and recurrence of
lung cancer, with unfavorable outcomes [43,44]. Figure 3 demonstrates that our chip can
evaluate the effects of anti-cancer drug combinations, as well as their dosages, providing a
variety of information.

The heterogeneity of cancer cells can be divided into two categories. The presence
of different cancer cell characteristics within the same tumor tissue is called intra-tumor
heterogeneity while the same tumor tissue presenting with different characteristics in
individual patients is called inter-tumor heterogeneity [6,45,46]. The device in this study
was able to identify intra-tumor heterogeneity in lung cancer cells by evaluating the
concentrations of nine secreted proteins. In addition, changes in heterogeneity before and
after anti-cancer drug treatment were qualitatively and quantitatively verified through
PCA and cluster analysis, respectively.

Obulkasim et al. compared the heterogeneity of cancer between a group of locally
advanced esophageal adenocarcinoma patients who only underwent surgery and a group
that underwent the same surgery as well as neoadjuvant chemotherapy. The group that
underwent surgery and neoadjuvant chemotherapy exhibited decreased heterogeneity. The
study outcomes suggested that a decrease in heterogeneity may contribute to a survival
benefit [47]. In the present study, we found that the heterogeneity decreased when cells
were treated with the most effective drugs, and the heterogeneity either decreased slightly
or increased when the least effective drugs were used (Figure 7B). Inter-tumor heterogeneity
could likely have been evaluated using this method if samples were obtained from patients.

Another notable aspect of cancer cell heterogeneity in this study is the difference
in bulk and single-cell protein concentrations shown in Figure 8. The bulk and single-
cell assay results showed some degree of similarity (R2 = 0.63) but were not entirely
identical. This result demonstrates that, as mentioned in previous studies, bulk assays
cannot fully represent population characteristics, resulting in some important information
being overlooked [48–50]. Our device was able to provide heterogeneity information on
single-cell proteomics, which could be obscured in bulk assays.

However, this study had some limitations. First, unlike the conventional method of
identifying heterogeneity from a genomics perspective, this study confirmed heterogene-
ity from a proteomics perspective; however, it should be noted that protein expression
cannot only be predicted by DNA and RNA expression [16,51]. In addition, since protein
modification (methylation, phosphorylation, etc.) within the gene sequence is unknown,
it is important to observe the correlation between proteins and cancer cell heterogeneity
at the proteomic level [16,17,52]. Second, because this study requires a reasonably large
number of cancer cells, it is difficult to obtain sufficiently large samples from liquid biop-
sies. Further, liquid biopsy sampling is an emerging method; however, it is not currently
considered a standard protocol. Hence, invasive biopsies are necessary for an accurate
diagnosis of heterogeneity [53,54]. Third, given that this study was performed using cell
lines, its clinical usefulness has not been established. Further studies investigating the
validity of the method, using animal experiments and samples from real clinical patients,
may be required to demonstrate its feasibility in clinical applications.

5. Conclusions

Cancer changes constantly and becomes heterogeneous. Due to this heterogeneity,
cancer varies from patient to patient and should be analyzed at the single-cell level for
effective anti-cancer treatment. Based on microfluidic technology, our single-cell assay
chip can manipulate multiple single cancer cells (1376 chambers), rapidly dissolve and
wash cells using valves and pumps, and evaluate cellular responses to a combination of
anti-cancer drugs by detecting secreted proteins and intracellular molecules using barcode
immunoassays. This study was concerned with the qualitative and quantitative evaluation
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of the heterogeneity of cancer cells, by analyzing single-cell proteomics in lung cancer
cell lines using our microfluidic single-cell assay chip. We proposed a new approach for
the selection of anti-cancer drug combinations and doses, comparing changes in proteins
and heterogeneity, before and after anti-cancer drug treatment. Subsequent preclinical
and clinical trials should enable the development of this platform for patient-customized
therapeutic applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/mi12101147/s1, Video S1: Driving method of the single-cell assay chip, Table S1: List of
capture antibody identifications and product details used in this study, Figure S1: Schematic of immo-
bilized antibody on a glass substrate, Figure S2: Relative cell proliferation rate with respect to drug
concentration in lung cancer cell line, Figure S3: Result of MTT assay for different drug combinations,
Figure S4: Schematic showing the architecture of the signal amplification, Figure S5: Mixing and
washing efficiency, Figure S6: Heat map showing average protein concentration, Figure S7: Mean
protein concentration change compared with control groups, Figure S8: Histograms showing protein
secretion distribution, Figure S9. Cluster analysis dendrograms.
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