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Abstract: Crowd video monitoring and analysis is a hot topic in computer vision and public
management. The pre-evaluation of crowd safety is beneficial to the prediction of crowd status to
avoid the occurrence of catastrophic events. This paper proposes a method to evaluate crowd safety
based on fuzzy inference. Pedestrian’s number and distribution uniformity are considered in a fuzzy
inference system as two kinds of attributes of a crowd. Firstly, the pedestrian’s number is estimated
by the number of foreground pixels. Then, the distribution uniformity of a crowd is calculated using
distribution entropy by dividing the monitoring scene into several small areas. Furthermore, through
the fuzzy operation, the fuzzy system is constructed by using two input variables (pedestrian’s
number and distribution entropy) and one output variable (crowd safety status). Finally, inference
rules between the crowd safety state and the pedestrian’s number and distribution uniformity are
constructed to obtain the pre-evaluation of the safety state of the crowd. Three video sequences
extracted from different scenes are used in the experiment. Experimental results show that the
proposed method can be used to evaluate the safety status of the crowd in a monitoring scene.

Keywords: crowd video monitoring; crowd safety evaluation; distribution entropy; fuzzy inference

1. Introduction

Crowd behavior analysis is the application field of many disciplines such as artificial
intelligence [1,2], safety management [3,4], and computer vision [5,6]. There are three kinds of
research methods for crowd behavior analysis, i.e., controlled experiment [7,8], crowd simulation [9,10],
and crowd video monitoring [11,12]. As video monitoring can obtain the information of the scene,
and monitor, alarm, record, and query the crowd status, crowd video monitoring plays an important
role in the field of crowd behavior analysis. Many contributions have been proposed for crowd video
monitoring such as target detection and tracking [13,14], crowd counting and density estimation [15,16],
and crowd abnormal behavior detection [17,18]. However, traditional crowd video monitoring methods
are often limited in the field of crowd counting and other feature detection, or to detect the abnormal
and disaster events that have occurred. These methods neglect to evaluate the movement state of the
crowd before catastrophic events. In fact, it is more valuable for crowd safety management to reduce
the probability of catastrophic events by evaluating the safety status of the crowd.

The risk of crowd movement can usually be reflected by attributes such as number of pedestrians
and distribution uniformity, and is unsuitable for evaluation by one attribute alone. For example,
a sparse crowd is safer (Figure 1a), and a crowd with a super large scale is more likely to have
dangerous behaviors (Figure 1d), while the status with a middle or large-scale crowd cannot be
evaluated only by the number of pedestrians. If the crowd is evenly distributed, it is safer (Figure 1b),
but if the pedestrians gather in a certain area, there may be abnormalities (Figure 1c). Therefore, before
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the occurrence of destructive events, it is very important to calculate and integrate the number of
pedestrians and the uniformity of distribution to evaluate the safety status of the crowd.
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In this paper, the number of pedestrians and the distribution uniformity of a crowd are extracted
to distribute the safety status of the crowd. To calculate the number of pedestrians in a crowd, there are
two kinds of methods. One is based on feature extraction and regression, the other is based on deep
learning [19,20]. Deep learning has shown good performance in crowd counting. In this work, we only
take the number of pedestrians as the input of the fuzzy reasoning system, rather than to report the
exact number value. In order to enhance the efficiency of the method and improve the practicability of
the method, we choose the way of feature description to express the number of pedestrians. We choose
the number of foreground pixels as the feature to describe the number of pedestrians. At the same time,
we propose a method based on the theory of Shannon entropy to express the distribution uniformity
of a crowd. We divide the monitoring scene into several areas, and calculate the crowd distribution
entropy according to the distribution probability of the number of pedestrians or foreground pixels
in each area, to measure the uneven degree of crowd distribution. Shannon entropy is a classical
and effective method to measure the uncertainty of information [21–23]. Shannon entropy has been
used in many fields such as interpreting the information in atomic states expressed for a Ni-like
isoelectronic sequence [24], measuring the characteristics of two-dimensional fractional Brownian
fields [25], and encrypting an image based on entropy analysis and a chaotic system [26]. After obtaining
the two crowd attributes, i.e., the number of pedestrians and the distribution uniformity of a crowd,
the mapping rules between crowd attributes and safety status can be established to evaluate the safety
status of the crowd. However, the description of crowd attributes is usually imprecise, such as the
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number of pedestrians being large or small, or the crowd distribution being uniform or convergence.
Fuzzy theory brings solutions to the uncertainty of description. In 1965, Zadeh published the first
paper on fuzzy sets [27], and then many extended theories came into being. For example, Mamdani
further discussed the method of fuzzy reasoning [28]. Fuzzy inference mainly includes the fuzziness
of variables, the output of rule-based inference, and the defuzziness. Many contributions have been
proposed using the fuzzy system, such as controlling nonlinear systems using fuzzy logic based on the
Observer [29], and merging the Takagi-Sugeno fuzzy model into a broad learning system [30]. In this
paper, according to the fuzzy framework, we fuzzy the two attributes of the number of pedestrians
and the distribution uniformity of a crowd, and establish inference rules according to the relationship
between crowd attribute and safety status, to comprehensively evaluate the current crowd safety status.

The rest of the paper is organized as follows: Section 2 is the related work. Section 3 introduces
the calculation of the crowd attribute of pedestrian’s number. Section 4 introduces the measurement
method of crowd uniformity based on distribution entropy. The fuzzy inference system of crowd safety
will be given in Section 5. Section 6 presents the experimental results on different video sequences.
Section 7 summarizes the paper.

2. Related Work

2.1. Crowd Behavior Models

A crowd is a complex self-organizing system. Constructing a crowd behavior model is helpful to
understand crowd behavior. Many contributions have been proposed to describe crowd behavior using
different models. The first kind of method mainly studies crowd behavior based on a psychological
and social basis, such as the influence of reward structure on crowd behavior [31], and the influence
of social relations among individuals on panic behavior [32]. Then, a molecular-based method has
been proposed for describing crowd motion. One of the most famous is the social force model [33,34].
Psychological and physical forces are fused to describe crowd behavior in the social force model.
The social force model has been used to simulate crowd panic status [35]. In recent years, models
based on agent and probabilistic models have been proposed, which can help to express the interaction
between people, such as simulating crowd motion on a realistic physical space [36], simulating crowd
turbulence using inter-personal stress and acceleration [37], structuring an agent model for long-range
collision avoidance [38], simulating heterogeneous crowd motion based on personality trait theory [39],
and using the probability of attraction or repulsion agents to simulate the behavior of emergency
crowd [40].

2.2. Crowd Status Detection

Although the pre-assessment of crowd safety status has important value, current research on
the video monitoring of crowd status is more concentrated in the field of crowd anomaly detection.
There are two kinds of crowd abnormal behavior, i.e., global abnormal and local abnormal. Global
anomalies usually detect the panic and chaos of the crowd as a whole, such as using energy and entropy
to detect crowd abnormal behavior [41], and using a sparse expression method for detecting abnormal
crowd behavior [12]. Local anomalies usually focus on pedestrians or vehicles that are different from
most pedestrians in the scene. For example, the local abnormal behavior is detected by extracting the
track of pedestrians in [42], and the anomaly in the scene is located by analyzing the texture features in
the image in [43].

3. Calculation of the Pedestrian’s Number Attribute

To gain the crowd attribute of the pedestrian’s number, we calculate the foreground pixels in each
frame. Therefore, the pedestrian’s number can be gained using the least squares estimation according
to the relationship between the number of foreground pixels and pedestrians.
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3.1. Foreground Pixel Extraction

In each scene, the background image should be calculated using the average value of a series of
images in the scene over a period. The foreground image can be gained using a threshold by comparing
the current frame and the background image, as formula (1) shows:

output(x, y) =

1,
∣∣∣It(x, y) − I(x, y)

∣∣∣ > threshold

0, otherwise
(1)

where output(x,y) is the foreground image, It(x,y) is the current image, and I(x, y) is the
background image.

In order to reduce the holes and noise in the foreground image extracted by the method of
background difference, morphological operation is used to deal with them in this work.

3.2. Pixel Interpolation

Due to the different distances from the camera, the size of pedestrians in the image will change,
which will affect the accuracy of the estimation of the number of pedestrians. We use the method in
reference [44] to assign different weights to different positions of the image to weaken the influence of
the distance between the pedestrians and the camera.

The interpolation principle of weight is shown in Figure 2. For a specific scene, we select the
furthest and nearest pedestrian from the camera as the reference target and calculate the foreground
pixel areas occupied by the pedestrians, which is calculated according to the following formula:

S =
w∑

i=1

h∑
j=1

Fi j (2)

where w and h represent the width and height of the image, respectively. Fi,j is set as 1 if the pixel is
foreground, and Fi,j is set as 0 if the pixel is background.
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Draw a horizontal line as the reference line at the center of mass of two reference pedestrians.
Record the reference line near the camera as L1 and the reference line far from the camera as Ln.
The change rate of the reference pedestrian’s area at Ln and L1 is as follows:

R =
S2

S1
(3)

where S1 and S2 represent the pixel area of the pedestrians nearest and farthest from the camera,
respectively. The weight of the pixel on the reference line L1 is set as w1 = 1. The weight of the pixel
on the reference line Ln is set as wn = 1/R. If the distance between the point on any line Li (0 ≤ I ≤ H)
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and the reference line L1 and Ln is x1 and x2, respectively, the weight of the pixel on the line Li can be
obtained by the linear interpolation method:

wi = w1 +
(wn −w1) × x1

x1 + x2
=

w1 +
x1
x2

wn

1 + x1
x2

=
x2 ×R + x1

R× (x1 + x2)
(4)

Therefore, the foreground pixel area of pedestrians at the Li position in the weighted image can be
expressed as:

S =
M∑

i=1

N∑
j=1

Fi j ×wi (5)

3.3. Pedestrian’s Number Regression

It is a traditional and effective method to use a regression strategy to count the pedestrians.
The main idea of this method is to establish a mapping relationship from feature to pedestrian
number [45]. The number of pedestrians is estimated by characteristics. In this paper, the least squares
method is used to regress the crowd number. That is to say, a linear relationship is used to express the
number of pedestrians and foreground pixels. This linear relationship can be described as:

Pednum = k1S + b1 (6)

where k1 and b1 are the parameters to be determined, Pednum represents the number of pedestrians,
and S represents the number of foreground pixels in the image. The effect of crowd counting is verified
by using the time_13-57_view_001 sequence in the pets2009 dataset, and the results are shown in
Figure 3. Figure 3b shows an approximate linear relationship between the number of pedestrians and
foreground pixels. Figure 3c shows the crowd count results before and after the weighted operation.
It can be seen that the count results after the weighted operation are more accurate.
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4. Describing Crowd Uniformity Using Distribution Entropy

In some scene, the number of pedestrians is almost constant. The crowd safety status cannot be
judged only using the number of pedestrians. The uniformity of the distribution of a crowd will play a
role in these scenes. In this paper, we propose a distribution entropy to measure the uniformity of the
distribution of a crowd.

4.1. Regional Division of Crowd Movement

To measure the uniformity of crowd distribution, the monitor image should be divided into
several boxes. In the monitoring scene, we divide the area into several uniform blocks. It is worth
mentioning that there will be some areas without pedestrians in the image. We will remove this area
and then divide the scene image. As shown in Figure 4, some areas above the image are considered
invalid. For each divided image area, the number of pedestrians will be calculated using the method
in Section 3. As there is a linear relationship between the number of pedestrians and the number of
foreground pixels, in some scenes, we can also use the number of foreground pixels to approximately
replace the number of pedestrians.
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Suppose that the foreground image extracted at frame i is divided into m blocks, and Si represents
the area of the foreground pixels of the whole foreground image.

Si =
m∑

j=1

Si j (7)

where Sij represents the area occupied by the jth small block foreground in the ith image. The ratio of
the number of foreground pixels in this region to the area of the foreground in the whole image is:

Ri j =
Si j

Si
(8)

4.2. Calculation of Crowd Distribution Entropy

For a monitor scene, because the monitoring scene is divided into several areas, the probability of
pedestrians appearing in a certain area is uncertain. The uniformity of pedestrian distribution in the
scene can be measured according to this uncertainty. For example, if pedestrians are evenly distributed
in the scene, the probability of pedestrians appearing in each sub area is equal. If pedestrians gather in
a certain area, the probability of pedestrians appearing in that area increases, and the probability of
other areas decreases. Shannon entropy is a classical and effective method to measure the uncertainty
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of information. In this paper, we use Shannon entropy to measure the uniformity of crowd distribution.
The entropy of crowd distribution can be calculated as:

Ei = −(
m∑

j=1

Ri jlogRi j) (9)

where Rij is the probability of pedestrians appearing in area j of frame i. In the case of the same number
of pedestrians, the larger the entropy, the more uniform the distribution of pedestrians in the scene;
and the smaller the entropy, the more concentrated the pedestrians are in the scene. Figure 5 shows an
example where the distribution entropy changes significantly when the crowd gathers and disperses.
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5. Fuzzy Inference and Evaluation of Crowd Safety Status

The crowd safety status can be estimated using the crowd attribute. In this paper, we use two
characteristics of pedestrians’ number and distribution uniformity to describe crowd safety. However,
the description of these two characteristics is uncertain. To make better use of crowd characteristics,
we designed a fuzzy inference system to boost the performance of crowd safety status estimation.
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5.1. Fuzzification

In this paper, there are two input variables (pedestrians’ number and distribution entropy) and one
output variable (safety state) in the fuzzy system. In the fuzzy inference system, the first step is
fuzzification. In this paper, each variable is quantized into five levels.

5.1.1. Fuzziness of Pedestrians’ Number

In this work, the number of pedestrians in the scene is normalized to between 0 and 1 by dividing
the maximum number of pedestrians with which the scene can be accommodated. The maximum
number of pedestrians that can be accommodated in different scenes is different, and in some places,
such as in the area of buildings, it is impossible for pedestrians to walk. Therefore, we calculate the
number of pedestrians that can be accommodated in the scene according to the movement energy
accumulation of pedestrians. Moving energy acquisition accumulates the foreground extracted image
in the whole sequence and then retains the area of pedestrian presence through threshold filtering.
According to the strategy adopted in the contribution [46], the pedestrian number is divided into five
grades (A1: Very few, A2: Few, A3: Medium, A4: Many, A5: A great many) according to the proportion
of the pedestrians to the maximum capacity. According to the five grades and the simple triangle
model, we design the membership function of pedestrians’ number, which can be seen in Figure 6.
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5.1.2. Fuzziness of Entropy of Crowd Distribution

The uniformity of crowd distribution is expressed by crowd distribution entropy. The entropy
of crowd distribution is normalized from 0 to 1. The theoretical maximum entropy in the scene
is determined by the number of blocks divided. In this paper, the variable of crowd distribution
uniformity in the scene can be divided into five levels (B1: Very uneven, B2: Uneven, B3: Medium,
B4: Even, B5: Very even). According to the triangle function, we establish the membership function
of the crowd distribution uniformity, as shown in Figure 7. The membership degree of distribution
entropy is not uniform. This is related to the change trend of the distribution entropy. The membership
division of the distribution entropy is close to the trend of the entropy.
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5.1.3. Fuzziness of Crowd Safety Status

The output variable of the fuzzy system in this paper is crowd safety status. Here, we assume that
the greater the crowd safety value, the less dangerous the scene. On the contrary, the smaller the crowd
safety, the greater the risk of the scene. We normalized the range of crowd safety values to between 0
and 1. Therefore, the safety value of the crowd in the scene can be divided into five levels (C1: Very
dangerous, C2: Dangerous, C3: Medium, C4: Safe, C5: Very safe). In order to simplify the calculation,
we also use the triangle function to build the membership function of the crowd safety state, as shown
in Figure 8.Entropy 2020, 22, x FOR PEER REVIEW 10 of 17 

 

 
Figure 8. Membership function of crowd safety status. 

5.2. Fuzzy Inference 

In order for the fuzzy system to make an effective decision, it is very important to make 
reasonable inference rules. Our system takes the relationship between crowd safety and crowd 
attributions into account with the following principles conformed. 

(1) The lower the number of pedestrians in the crowd, the safer the state of the crowd. On the 
contrary, the higher the number of pedestrians, the stronger the potential risk of the crowd. 

(2) The more evenly distributed the crowd, the higher the safety of the crowd. On the contrary, 
the more uneven the crowd distribution, the stronger the potential risk of the crowd. 

According to the principles above, we designed 25 rules to infer the safety state of the crowd. 
These rules are listed in the “fuzzy inference table” (see Table 1). For example, the first rule in Table 
1 can be described as: IF “the uniformity of crowd distribution is very uneven” AND “pedestrian 
number is very few,” THEN “the crowd safety status is very safe.” 

Table 1. Fuzzy inference for crowd safety status. 

Variables 
Number of Pedestrians 

A1 A2 A3 A4 A5 

Crowd Distribution Uniformity 

B1 C5 C2 C2 C1 C1 
B2 C5 C3 C2 C1 C1 
B3 C5 C4 C3 C2 C1 
B4 C5 C4 C4 C2 C1 
B5 C5 C4 C4 C2 C1 

5.3. Defuzzification 

Through the fuzzy inference system, we obtain the fuzzy solution of the crowd safety status. 
Hence, defuzzification should be used to precisely quantify the crowd safety status. We used the 
method of “center of gravity” to defuzzify the output crowd safety status for each fuzzy decision. It 
mainly takes the center of gravity of the area enclosed by the curve of the membership function and 
the abscissa. The calculation process of the center of gravity method is shown in formula (10): 

*

*

1

1

( ( ))

( ( ))

N

i iC
i
N

iC
i

z z
z

z

μ

μ
=

=

=



 

(9) 

where z is the crisp output, N is the number of rules, and ߤ஼∗(ݖ௜) is the membership function. 

6. Experiment and Discussion 

In this section, we analyze and discuss the experimental results of crowd safety status 
evaluation. Three sequences from different scenes are used in this work. One is the crowd movement 
simulated sequence composed by unity 3D software. One is the view-001 sequence in time 14-33 in 

Figure 8. Membership function of crowd safety status.

5.2. Fuzzy Inference

In order for the fuzzy system to make an effective decision, it is very important to make reasonable
inference rules. Our system takes the relationship between crowd safety and crowd attributions into
account with the following principles conformed.

(1) The lower the number of pedestrians in the crowd, the safer the state of the crowd. On the
contrary, the higher the number of pedestrians, the stronger the potential risk of the crowd.

(2) The more evenly distributed the crowd, the higher the safety of the crowd. On the contrary,
the more uneven the crowd distribution, the stronger the potential risk of the crowd.

According to the principles above, we designed 25 rules to infer the safety state of the crowd.
These rules are listed in the “fuzzy inference table” (see Table 1). For example, the first rule in Table 1
can be described as: IF “the uniformity of crowd distribution is very uneven” AND “pedestrian
number is very few,” THEN “the crowd safety status is very safe.”

Table 1. Fuzzy inference for crowd safety status.

Variables
Number of Pedestrians

A1 A2 A3 A4 A5

Crowd Distribution Uniformity

B1 C5 C2 C2 C1 C1
B2 C5 C3 C2 C1 C1
B3 C5 C4 C3 C2 C1
B4 C5 C4 C4 C2 C1
B5 C5 C4 C4 C2 C1

5.3. Defuzzification

Through the fuzzy inference system, we obtain the fuzzy solution of the crowd safety status.
Hence, defuzzification should be used to precisely quantify the crowd safety status. We used the
method of “center of gravity” to defuzzify the output crowd safety status for each fuzzy decision.
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It mainly takes the center of gravity of the area enclosed by the curve of the membership function and
the abscissa. The calculation process of the center of gravity method is shown in formula (10):

z =

N∑
i=1

(ziµC∗(zi))

N∑
i=1

(µC∗(zi))

(10)

where z is the crisp output, N is the number of rules, and µC∗(zi) is the membership function.

6. Experiment and Discussion

In this section, we analyze and discuss the experimental results of crowd safety status
evaluation. Three sequences from different scenes are used in this work. One is the crowd movement
simulated sequence composed by unity 3D software. One is the view-001 sequence in time 14-33 in
the Pets2009 database. The other one is the WorldExpo’10 database train-video-100736-squap1-04-
s20100626083000000e201006263059000-new.split.319-2 scene (hereinafter referred to as 100736). There
are 42 videos of this scene in this dataset. One frame is extracted every 10 frames to form a sequence
for the experiment. The manual measurement values of the safety status of the crowd was manually
marked by 10 volunteers and calculated by average. The frame numbers and image sizes of the video
sequences are shown in Table 2. The experimental platform is a PC with a 2.80 GHz processor and
16 GB memory.

Table 2. Video data statistics of different scenes.

Video Sequences Parameters Values

View_001
Frame number 344

Image size 768 × 576

100736
Frame number 1106

Image size 720 × 352

Unity 3D Frame number 86
Image size 850 × 648

In order to evaluate the effect of image block size on the calculation of distribution entropy,
we compare the distribution entropy of images divided into different blocks. In Figures 9e, 10e and 11e,
we give the results of calculating the distribution entropy with 16 blocks, 64 blocks, and 256 blocks.
It can be seen that the fluctuation is larger when the image is divided into 16 blocks, and it is more
stable when the image is divided into 256 blocks. Too few blocks will be too sensitive for the crowd
distribution, and too many blocks will make it difficult to reflect the change in crowd uniformity.
In this study, 64 blocks were selected as the number of blocks. When the distribution entropy is used
to measure the crowd distribution uniformity, it will be affected by the camera angle. That is to say,
the real scene area occupied by same-size blocks will be different, and the number of pedestrians will
also be different. Of course, this effect can be solved by dividing the image blocks into different sizes
according to the distance from the camera. Of course, this problem can be divided into specific scenes
in practical application.
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(f) is the results of crowd safety evaluation.

6.1. Experimental Results of Safety Status Evaluation

We use three video sequences to verify the validity of fuzzy inference, and compare the results
of inference with two features and one single feature. The first sequence is video simulated by unity
3D. The results can be seen in Figure 9. Figure 9a–c show the sample frames of different crowd states.
Figure 9d shows the estimated number of pedestrians. It can be seen that the number of pedestrians in
this scene is 45 and remains unchanged. Figure 9e shows the curve of crowd distribution entropy. It can
be seen the change in entropy value coincides with the process of crowd aggregation and dispersion.
Figure 9f shows the comparison of the results of safety evaluation based on the different characteristics
of the crowd. It can be seen that the safety state evaluation based on the number of pedestrians does
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not change, and the whole sequence is in a safe state, which cannot reflect the change in the state of
the crowd. Using only the uniformity of crowd distribution to infer the safety state of the crowd can
reflect the change in crowd state, but the result is too extreme because there is no restriction in the
pedestrians’ number characteristic. However, the evaluation of crowd safety state combined with
the two characteristics of pedestrians’ number and distribution uniformity is closer to the manual
measurement value.

The second video is the Time_14-33/View_001 sequence from the Pets2009 dataset. Figure 10a–c
show the sample frames of different crowd states. We estimate the number of pedestrians in the crowd
by the number of foreground pixels, as shown in Figure 10d. The estimated result can reflect the
change in the number of pedestrians and is close to the ground truth. We can see that the number of
pedestrians in the scene increases continuously at first, and then does not change much. The overall
growth in the number of pedestrians is not very large. If the safety fuzzy evaluation is based on the
number of pedestrians, the safety value of the crowd does not change dramatically, as shown by the red
curve in Figure 10f. Figure 10e shows the change curve of the entropy of crowd distribution. We can
see that the crowd distribution entropy can reflect the change in crowd aggregation and dispersion,
but when the number of pedestrians is small, it will be mistaken for aggregation. Therefore, it is not
ideal to use entropy of crowd distribution alone to infer the safety state. If the number of pedestrians
and the distribution of the crowd are combined, the change curve of the crowd safety value will be
closer to the trend of the manual measurement value, making up for the shortage of using a single
number of pedestrians and distribution entropy, as shown by the blue curve in Figure 10f.

The third video sequence comes from the WorldExpo’10 database, which we call the 100736
sequence for short. In the database, the monitoring time of the scene is long, which can reflect the
change in crowd state. We extract one frame from every 10 frames to form the experimental video
sequence. Figure 11a–c show several sample frames. It can be seen that the number of pedestrians
in the scene varies greatly. In Figure 11d, we show the change curve of the number of foreground
pixels to reflect the change trend of the number of pedestrians in the scene. The number of foreground
pixels here is weighted by the factor of view angle change. As there are too many pedestrians in the
scene, it is difficult to accurately calculate the ground truth of the number of pedestrians, so in this
sequence, we use foreground pixels to replace the number of pedestrians to infer the crowd safety.
Figure 11e shows the change in crowd distribution entropy. As the size of the crowd is very large in
the later stages of the scene, the crowd distribution entropy is relatively large, that is to say, the crowd
distribution is relatively uniform, so it is difficult to reflect the change in crowd safety state by using
distribution entropy alone. Therefore, in this scene, the characteristics of the number of pedestrians
(foreground pixels) are more effective in inferring the safety status of the crowd in this sequence.
The combination of the two features can also be used to predict the safety of the crowd. In this sequence,
it is not as accurate as using the characteristics of the number of foreground pixels alone. On the whole,
combining the two features to carry out crowd safety reasoning can take into account the advantages
and disadvantages of these two features, making the adaptability of the evaluation of the safety status
of the crowd in different scenes stronger.

6.2. Global Performance Analysis using MAE and MRE

In Section 6.1, we provide the prediction curve of crowd safety status. In this section, we calculate
two parameters to evaluate the global performance of each method for the whole sequence.
We calculated the MAE (mean absolute error) and MRE (mean relative error) parameters. Mean absolute
error is the mean value of absolute error between the predicted value and manual measurement value,
which is expressed by MAE. The mean relative error is used to represent the mean value of the relative
error between the predicted value and the manual measurement value, which is represented by MRE.
The MAE and MRE are calculated as follows:

MAE =
1
M

M∑
i=1

∣∣∣E(i) − T(i)
∣∣∣ (11)
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MRE =
1
M

M∑
i=1

∣∣∣E(i) − T(i)
∣∣∣

T(i)
(12)

where M represents the frames number of the test sequence, and E(i) and T(i) represent the estimated
value and the manual measurement value of the ith frame image, respectively. Table 3 compares
the results of the proposed method (combining the characteristics of the number of pedestrians and
distribution uniformity) to infer crowd safety with the results of using a single feature. From the MAE
and MRE in the table, it can be seen that the method of combining the two features can achieve a lower
error value in most experimental sequences, and has a wider range of adaptability in all the three
sequences, while the single feature may have a better effect on some scenes, but the adaptability is
poor, and it may cause great errors to other scenes.

Table 3. Comparison of results using different crowd characteristics.

Video Sequences Parameters Number of
Pedestrians

Distribution
Uniformity

Combination of
Two Features

Unity MAE 0.1157 0.2890 0.1066
MRE 0.2112 0.4655 0.1480

View_001
MAE 0.2166 0.3124 0.1005
MRE 0.4750 0.5429 0.1568

100736
MAE 0.0815 0.3751 0.1688
MRE 0.2143 1.1314 0.4141

In order to evaluate the practicability of the method, we calculated the running time of the
method. The algorithm mainly consists of four parts: Foreground extraction, pedestrian’s number
estimation, distribution entropy calculation, and fuzzy inference. Taking view001 sequence as an
example, the average computing time of the whole algorithm is about 1.788 s per frame.

7. Conclusions

We propose an effective method to evaluate the crowd safety status using the pedestrians’ number
and distribution entropy attributes. There are two contributions in this paper. One is that we propose a
method to measure the uniformity of crowd distribution by Shannon entropy, the other is to construct
a fuzzy system, which uses two attributes of pedestrians’ number and distribution entropy to infer
the safety state of a crowd. The experimental results show that the proposed method can be used to
evaluate the safety status of the crowd, and the fuzzy inference system combined with two attributes
has a wider range of adaptability than a single attribute. Due to the complexity of crowd behavior,
the method proposed in this paper is still inadequate. For example, the different speed of pedestrian
movement will affect the safety of the crowd. The effect of using distribution entropy to describe
crowd distribution can still be improved. In future work, we will try to combine the characteristics
related to pedestrian speed or energy to depict more complex crowd behaviors. When describing the
uniformity of crowd distribution, we will pay more attention to the distribution of the local image
region to improve the calculation method of entropy to improve the performance of crowd distribution
measurement. In addition, we will extract more crowd attributes and establish more appropriate rules
to adapt to different scenes.

Author Contributions: Conceptualization, X.Z.; Data curation, Q.Y.; Formal analysis, X.Z., Q.Y. and Y.W.;
Investigation, X.Z.; Methodology, X.Z.; Project administration, X.Z.; Resources, Q.Y.; Software, Q.Y.; Validation,
Y.W.; Writing – original draft, X.Z. and Q.Y.; Writing – review & editing, X.Z. and Y.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (no. 61771418).

Conflicts of Interest: The authors declare no conflict of interest.



Entropy 2020, 22, 832 16 of 17

References

1. Dong, Z.; Zhang, R.; Shao, X.; Li, Y. Scale-Recursive Network with point supervision for crowd scene analysis.
Neurocomputing 2020, 384, 314–324. [CrossRef]

2. Zhong, J.; Cai, W.; Lees, M.; Luo, L. Automatic model construction for the behavior of human crowds.
Appl. Soft Comput. 2017, 56, 368–378. [CrossRef]

3. Li, J.; Wang, L.; Tang, S.; Zhang, B.; Zhang, Y. Risk-based crowd massing early warning approach for public
places: A case study in China. Saf. Sci. 2016, 89, 114–128. [CrossRef]

4. Wang, J.; Jin, B.; Li, J.; Chen, F.; Wang, Z.; Sun, J. Method for guiding crowd evacuation at exit: The buffer
zone. Saf. Sci. 2019, 118, 88–95. [CrossRef]

5. Chen, X.-H.; Lai, J.-H. Detecting abnormal crowd behaviors based on the div-curl characteristics of flow
fields. Pattern Recognit. 2019, 88, 342–355. [CrossRef]

6. Behera, S.; Dogra, D.P.; Bandyopadhyay, M.K.; Roy, P.P. Estimation of linear motion in dense crowd videos
using Langevin model. Expert Syst. Appl. 2020, 150, 113333. [CrossRef]

7. Ma, Y.; Li, L.; Zhang, H.; Chen, T. Experimental study on small group behavior and crowd dynamics in a tall
office building evacuation. Phys. A Stat. Mech. Appl. 2017, 473, 488–500. [CrossRef]

8. Shiwakoti, N.; Gong, Y.; Shi, X.; Ye, Z. Examining influence of merging architectural features on pedestrian
crowd movement. Saf. Sci. 2015, 75, 15–22. [CrossRef]

9. Karamouzas, I.; Overmars, M. Simulating and Evaluating the Local Behavior of Small Pedestrian Groups.
IEEE Trans. Vis. Comput. Graph. 2011, 18, 394–406. [CrossRef]

10. Xu, M.; Wu, Y.; Lv, P.; Jiang, H.; Luo, M.; Ye, Y. miSFM: On combination of Mutual Information and Social
Force Model towards simulating crowd evacuation. Neurocomputing 2015, 168, 529–537. [CrossRef]

11. Zhang, X.; Yu, Q.; Yu, H. Physics Inspired Methods for Crowd Video Surveillance and Analysis: A Survey.
IEEE Access 2018, 6, 66816–66830. [CrossRef]

12. Cong, Y.; Yuan, J.; Liu, J. Abnormal event detection in crowded scenes using sparse representation.
Pattern Recognit. 2013, 46, 1851–1864. [CrossRef]

13. Jin, Z.; Bhanu, B. Analysis-by-synthesis: Pedestrian tracking with crowd simulation models in a multi-camera
video network. Comput. Vis. Image Underst. 2015, 134, 48–63. [CrossRef]

14. Fradi, H.; Eiselein, V.; Dugelay, J.-L.; Keller, I.; Sikora, T. Spatio-temporal crowd density model in a human
detection and tracking framework. Signal. Process. Image Commun. 2015, 31, 100–111. [CrossRef]

15. Zhang, Y.; Chang, F.; Wang, M.; Zhang, F.; Han, C. Auxiliary learning for crowd counting via count-net.
Neurocomputing 2018, 273, 190–198. [CrossRef]

16. Fradi, H.; Dugelay, J.-L. Towards crowd density-aware video surveillance applications. Inf. Fusion 2015, 24,
3–15. [CrossRef]

17. Yuan, Y.; Feng, Y.; Lu, X. Statistical Hypothesis Detector for Abnormal Event Detection in Crowded Scenes.
IEEE Trans. Cybern. 2017, 47, 3597–3608. [CrossRef]

18. Zhang, X.; Shu, X.; He, Z. Crowd panic state detection using entropy of the distribution of enthalpy. Phys. A
Stat. Mech. Appl. 2019, 525, 935–945. [CrossRef]

19. Saleh, S.A.M.; Suandi, S.A.; Ibrahim, H. Recent survey on crowd density estimation and counting for visual
surveillance. Eng. Appl. Artif. Intell. 2015, 41, 103–114. [CrossRef]

20. Fu, M.; Xu, P.; Li, X.; Liu, Q.; Ye, M.; Zhu, C. Fast crowd density estimation with convolutional neural
networks. Eng. Appl. Artif. Intell. 2015, 43, 81–88. [CrossRef]

21. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. 1948, 27, 379–423. [CrossRef]
22. Shannon, C.E.; Wyner, S.A. (Eds.) Collected Papers; IEEE Press: New York, NY, USA, 1993.
23. Tribus, M.; McIrvine, E.C. Energy and information. Sci. Am. 1971, 225, 179–188. [CrossRef]
24. Wan, J.; Guo, N. Shannon Entropy in Configuration Space for Ni-Like Isoelectronic Sequence. Entropy 2019,

22, 33. [CrossRef]
25. Nicolis, O.; Mateu, J.; Contreras-Reyes, J.E. Wavelet-Based Entropy Measures to Characterize

Two-Dimensional Fractional Brownian Fields. Entropy 2020, 22, 196. [CrossRef]
26. Farhan, A.K.; Al-Saidi, N.M.G.; Maolood, A.T.; Nazarimehr, F.; Hussain, I. Entropy Analysis and Image

Encryption Application Based on a New Chaotic System Crossing a Cylinder. Entropy 2019, 21, 958.
[CrossRef]

27. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2019.12.070
http://dx.doi.org/10.1016/j.asoc.2017.03.020
http://dx.doi.org/10.1016/j.ssci.2016.06.007
http://dx.doi.org/10.1016/j.ssci.2019.05.014
http://dx.doi.org/10.1016/j.patcog.2018.11.023
http://dx.doi.org/10.1016/j.eswa.2020.113333
http://dx.doi.org/10.1016/j.physa.2017.01.032
http://dx.doi.org/10.1016/j.ssci.2015.01.009
http://dx.doi.org/10.1109/TVCG.2011.133
http://dx.doi.org/10.1016/j.neucom.2015.05.074
http://dx.doi.org/10.1109/ACCESS.2018.2878733
http://dx.doi.org/10.1016/j.patcog.2012.11.021
http://dx.doi.org/10.1016/j.cviu.2014.10.001
http://dx.doi.org/10.1016/j.image.2014.11.006
http://dx.doi.org/10.1016/j.neucom.2017.08.018
http://dx.doi.org/10.1016/j.inffus.2014.09.005
http://dx.doi.org/10.1109/TCYB.2016.2572609
http://dx.doi.org/10.1016/j.physa.2019.04.033
http://dx.doi.org/10.1016/j.engappai.2015.01.007
http://dx.doi.org/10.1016/j.engappai.2015.04.006
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1038/scientificamerican0971-179
http://dx.doi.org/10.3390/e22010033
http://dx.doi.org/10.3390/e22020196
http://dx.doi.org/10.3390/e21100958
http://dx.doi.org/10.1016/S0019-9958(65)90241-X


Entropy 2020, 22, 832 17 of 17

28. Mamdani Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis.
IEEE Trans. Comput. 1977, 26, 1182–1191. [CrossRef]

29. Wang, W.; Tong, S. Observer-Based Adaptive Fuzzy Containment Control for Multiple Uncertain Nonlinear
Systems. IEEE Trans. Fuzzy Syst. 2019, 27, 2079–2089. [CrossRef]

30. Feng, S.; Chen, C.L.P. Fuzzy Broad Learning System: A Novel Neuro-Fuzzy Model for Regression and
Classification. IEEE Trans. Cybern. 2020, 50, 414–424. [CrossRef]

31. Mintz, A. Non-adaptive group behavior. J. Abnorm. Soc. Psychol. 1951, 46, 150–159. [CrossRef]
32. Kelley, H.H.; Condry, J.C.; Dahlke, A.E.; Hill, A.H. Collective behavior in a simulated panic situation. J. Exp.

Soc. Psychol. 1965, 1, 20–54. [CrossRef]
33. Helbing, D.; Molnár, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282–4286.

[CrossRef] [PubMed]
34. Helbing, D.; Farkas, I.; Molnar, P.; Vicsek, T. Simulation of Pedestrian Crowds in Normal and Evacuation

Situations. Pedestr. Evacuation Dyn. 2002, 21, 21–58.
35. Helbing, D.; Farkas, I.J.; Vicsek, T. Simulating dynamical features of escape panic. Nature 2000, 407, 487–490.

[CrossRef] [PubMed]
36. Farrahi, K.; Zia, K.; Sharpanskykh, A.; Ferscha, A.; Muchnik, L. Agent Perception Modeling for Movement in

Crowds. In Proceedings of the 11th International Conference on Practical Applications of Agents and Multi-Agent
Systems (PAAMS), Germany, 22–24 May 2013; Springer: Berlin/Heidelberg, Germany, 2013.

37. Golas, A.; Narain, R.; Lin, M.C. Continuum modeling of crowd turbulence. Phys. Rev. E 2014, 90. [CrossRef]
38. Golas, A.; Narain, R.; Curtis, S.; Lin, M.C. Hybrid Long-Range Collision Avoidance for Crowd Simulation.

IEEE Trans. Vis. Comput. Graph. 2013, 20, 1022–1034. [CrossRef]
39. Stephen, J.G.; Kim, S.; Lin, M.; Manocha, D. Simulating heterogeneous crowd behaviors using personality

trait theory. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
Vancouver, BC, Canada, 5–7 August 2011.

40. Akopov, A.S.; Beklaryan, L.A. An agent model of crowd behavior in emergencies. Autom. Remote. Control
2015, 76, 1817–1827. [CrossRef]

41. Gu, X.; Cui, J.; Zhu, Q. Abnormal crowd behavior detection by using the particle entropy. Optik 2014, 125,
3428–3433. [CrossRef]

42. Zhao, K.; Liu, B.; Li, W.; Yu, N.; Liu, Z. Anomaly Detection and Localization: A Novel Two-Phase Framework
Based on Trajectory-Level Characteristics. In Proceedings of the 2018 IEEE International Conference on
Multimedia & Expo. Workshops (ICMEW), San Diego, CA, USA, 23–27 July 2018.

43. Hao, Y.; Xu, Z.; Liu, Y.; Wang, J.; Fan, J.-L. Effective Crowd Anomaly Detection Through Spatio-temporal
Texture Analysis. Int. J. Autom. Comput. 2018, 16, 27–39. [CrossRef]

44. Zhang, X.; Zhang, Q.; Hu, S.; Guo, C.; Yu, H. Energy Level-Based Abnormal Crowd Behavior Detection.
Sensors 2018, 18, 423. [CrossRef]

45. Davies, A.; Velastin, S.; Yin, J.H. Crowd monitoring using image processing. Electron. Commun. Eng. J. 1995,
7, 37–47. [CrossRef]

46. Ma, W.; Huang, L.; Liu, C. Advanced Local Binary Pattern Descriptors for Crowd Estimation. In Proceedings
of the 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan,
China, 19–20 December 2008.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TC.1977.1674779
http://dx.doi.org/10.1109/TFUZZ.2019.2893339
http://dx.doi.org/10.1109/TCYB.2018.2857815
http://dx.doi.org/10.1037/h0063293
http://dx.doi.org/10.1016/0022-1031(65)90035-1
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://www.ncbi.nlm.nih.gov/pubmed/9963139
http://dx.doi.org/10.1038/35035023
http://www.ncbi.nlm.nih.gov/pubmed/11028994
http://dx.doi.org/10.1103/PhysRevE.90.042816
http://dx.doi.org/10.1109/TVCG.2013.235
http://dx.doi.org/10.1134/S0005117915100094
http://dx.doi.org/10.1016/j.ijleo.2014.01.041
http://dx.doi.org/10.1007/s11633-018-1141-z
http://dx.doi.org/10.3390/s18020423
http://dx.doi.org/10.1049/ecej:19950106
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Crowd Behavior Models 
	Crowd Status Detection 

	Calculation of the Pedestrian’s Number Attribute 
	Foreground Pixel Extraction 
	Pixel Interpolation 
	Pedestrian’s Number Regression 

	Describing Crowd Uniformity Using Distribution Entropy 
	Regional Division of Crowd Movement 
	Calculation of Crowd Distribution Entropy 

	Fuzzy Inference and Evaluation of Crowd Safety Status 
	Fuzzification 
	Fuzziness of Pedestrians’ Number 
	Fuzziness of Entropy of Crowd Distribution 
	Fuzziness of Crowd Safety Status 

	Fuzzy Inference 
	Defuzzification 

	Experiment and Discussion 
	Experimental Results of Safety Status Evaluation 
	Global Performance Analysis using MAE and MRE 

	Conclusions 
	References

