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Abstract

Purpose This short review aims to cover the more recent

and promising developments of carbon-11 (11C) labeling

radiochemistry and its utility in the production of novel

radiopharmaceuticals, with special emphasis on methods

that have the greatest potential to be translated for clinical

positron emission tomography (PET) imaging.

Methods A survey of the literature was undertaken to

identify articles focusing on methodological development

in 11C chemistry and their use within novel radiopharma-

ceutical preparation. However, since 11C-labeling chem-

istry is such a narrow field of research, no systematic

literature search was therefore feasible. The survey was

further restricted to a specific timeframe (2000–2016) and

articles in English.

Results From the literature, it is clear that the majority of
11C-labeled radiopharmaceuticals prepared for clinical PET

studies have been radiolabeled using the standard het-

eroatom methylation reaction. However, a number of

methodologies have been developed in recent years, both

from a technical and chemical point of view. Amongst

these, two protocols may have the greatest potential to be

widely adapted for the preparation of 11C-radiopharma-

ceuticals in a clinical setting. First, a novel method for the

direct formation of 11C-labeled carbonyl groups, where

organic bases are utilized as [11C]carbon dioxide-fixation

agents. The second method of clinical importance is a low-

pressure 11C-carbonylation technique that utilizes solvable

xenon gas to effectively transfer and react [11C]carbon

monoxide in a sealed reaction vessel. Both methods appear

to be general and provide simple paths to 11C-labeled

products.

Conclusion Radiochemistry is the foundation of PET

imaging which relies on the administration of a radio-

pharmaceutical. The demand for new radiopharmaceuticals

for clinical PET imaging is increasing, and 11C-radio-

pharmaceuticals are especially important within clinical

research and drug development. This review gives a

comprehensive overview of the most noteworthy 11C-la-

beling methods with clinical relevance to the field of PET

radiochemistry.

Keywords PET � Radiochemistry � Isotopic labeling �
Carbon-11 � Radiopharmaceuticals

Introduction

Positron emission tomography (PET) is a highly sensitive

imaging modality that can provide in vivo quantitative

information of biological processes at a biochemical level

[1]. PET relies upon the administration of a chemical

probe, often called a radiopharmaceutical, that is labeled

with a short-lived positron-emitting radionuclide [e.g. 11C

(t1/2 = 20.4 min) and 18F (t1/2 = 109.7 min)]. Several PET

radiopharmaceuticals have been developed for imaging

applications, predominantly within oncology [2] and neu-

roscience [3, 4]. The development of novel radiopharma-

ceuticals requires multiple considerations, where aspects

like radionuclide selection, labeling position, metabolic
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stability, precursor synthesis, radiolabeling procedure,

automation, quality control and regulatory affairs all have

to be considered [5, 6].

Carbon-11 is one of the most useful radionuclides for

PET chemistry, since its introduction into a biologically

active molecule has minimal effects on the (bio)chemical

properties of the compound [7, 8]. In addition, there is a

vast literature on carbon-based chemistry that can be con-

sulted in the development of radiosynthetic procedures

with carbon-11. Moreover, the short half-life of 11C allows

for longitudinal in vivo studies with repeated injections in

the same subject (patient or animal) and on the same

experimental day. Although the advances in 11C chemistry

have enabled the preparation of a great number of radio-

labeled molecules, there are still relatively few that have

been applied for the direct preparation of novel radio-

pharmaceuticals for PET. The present review will provide

an overview of the most recent and promising develop-

ments within carbon-11 chemistry since year 2000.

General considerations in radiopharmaceutical
chemistry

A few general comments are required to provide a context

for a discussion of PET radiopharmaceutical production

[2, 5]. First of all, the radionuclides used in PET emit high-

energy radiation and, therefore, the traditional hands-on

manipulations used in synthetic chemistry are not feasible.

Thus, in order to avoid unnecessary radiation exposure,

radiolabeling is performed in fully automated and pre-

programmed synthesis modules housed inside lead-shiel-

ded fume hoods (hot-cells). One could say that radio-

chemistry, in particular that with 11C, is a hybrid science

between organic chemistry and engineering. Time is

another factor of major importance in PET chemistry. A

radiopharmaceutical used in PET is typically synthesized,

purified, formulated and analyzed within a timeframe of

roughly 2–3 physical half-lives of the employed radionu-

clide. For example, to obtain 11C-labeled radiopharma-

ceutical in optimal radiochemical yield (RCY), a

compromise has to be made between the chemical yield

and the radioactive decay. The chemical yield of a reaction

is thus not as important as the obtained radioactivity of the

target compound at end of synthesis. Furthermore, since

only trace amount of the radiolabeling synthon is used in

PET, the amount of the non-radioactive reagents is in large

excess, which implies that the reaction follows pseudo first-

order kinetics. By consequence, small impurities in

reagents or solvents may have a significant influence on the

reaction outcome. The radiochemist has to further consider

the specific activity (SA), which is a measure of the

radioactivity per unit mass of the final radiolabeled

compound. Since high SA is often required in neurore-

ceptor imaging studies to avoid saturation of the receptor

system, the methods that are highlighted in this review are

all non-carrier-added nature.

Carbon-11 chemistry

Carbon-11 is commonly generated via the 14N(p, a)11C
nuclear reaction. The reaction is performed by high-energy

proton bombardment of a cyclotron target containing

nitrogen gas with small amounts a second gas. [11C]Carbon

dioxide (11CO2) and [11C]methane (11CH4), are formed,

when either small amounts oxygen or hydrogen are present

in the cyclotron target. Sometimes, these simple primary

precursors are used directly as labeling agents (e.g. 11CO2),

but more often they are converted via on-line synthetic

pathways into more reactive species before being used in
11C-labeling reactions. However, several reactive 11C-la-

beled precursors have been developed over the years [8],

but the 11C-precursors that will be discussed in this review

are displayed and highlighted in Fig. 1.

11C-methylation reaction

By far, the most common method in modern carbon-11

chemistry is heteroatom methylation using the methylating

agents [11C]methyl iodide (11CH3I) [9, 10] or [
11C]methyl

triflate (11CH3OTf) [11, 12]. This reaction can either be

performed using a traditional vial-based approach or

alternatively using solid support (‘‘on-cartridge’’ [13] or

‘‘in-loop’’ [14] methods), which is very convenient from an

automation prospective. A majority of the 11C-labeled

radiopharmaceuticals that are used on a regular basis, with

a few exceptions, are thus produced by these two methy-

lating agents. However, these methylating agents are

sluggishly reactive towards arylamines. Especially difficult

are substrates where the aryl group in a primary arylamine

electron density has been further reduced by an electron-

withdrawing group. In such situations, the more reactive

methylating agent, 11CH3OTf, may even fail to react.

However, Pike and co-workers presented a method that

utilized inorganic bases (e.g. Li2O) paired with DMF to

permit methylation of a wide range of arylamines using
11CH3I at room temperature [15]. Moreover, in a recent

study, the research group of Billard described the appli-

cation of 11CO2 as a C1 building block for the catalytic

methylation of amines [16]. Importantly, this one-pot

approach eliminates the time-consuming preparation of the

active methylating agent. The proposed mechanism is

outlined in Table 1. In brief, an appropriate amine pre-

cursor, initially traps 11CO2 to form complex 1, which is
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reduced in two-steps with ZnCl2/iPr and PhSiH3, to furnish

the expected methylamine. It was realized that the 11CO2

trapping was dependent on the basicity of the amine in use,

varying between 65 and 80%. A large number of sub-

strates, including the well-established radioligand,

[11C]PIB [17], was obtained in acceptable yields (Table 1).

In recent years, the application of 11CH3I in transition-

metal-mediated reactions has become more widespread for
11C-labeling of radiopharmaceuticals [18, 19]. Figure 2

shows a brief overview of compounds labeled via Pd-me-

diated 11C-methylation. Two radioligands for the serotonin

transporter, [p-methyl-11C]MADAM [20] and [11C]5-

methyl-5-nitroquipazine [21], as well as a novel radioli-

gand for the nicotinic acetylcholine receptor [22]

(nAChRs) was methylated using the transition-metal-me-

diated reaction. [11C]A-85,380 displayed favorable in vivo

properties for quantification of the nAChRs in living brain

[23]. The nAChRs represents major neurotransmitter

receptor responsible for various brain functions, and

changes in the density of nAChRs have been reported in

various neurodegenerative diseases, including Alzheimer’s

disease and Parkinson’s disease [24]. Another example is

the radiosynthesis of the 15R-[11C]TIC methyl ester, a

prostacyclin receptor radioligand, which was the first

radioligand approved for investigation in humans [25, 26].

The same radioligand was later used to image variations in

organic anion-transporting polypeptide function in the

human hepatobiliary transport system [27].

Two of the most applied cross-coupling reactions in

radiochemical synthesis today are the Stille and Suzuki

reactions, where organotin and organoborane compounds

function as starting materials, respectively, and 11CH3I as a

coupling partner. A wide variety of functional groups such

as amino, hydroxyl, or carboxylate are tolerated in these

reactions and protective groups are usually not required.

One unfortunate drawback with Stille coupling is, however,

the inherent toxicity of the organotin reagent. Because of

the regulatory aspects associated with radiopharmaceuti-

cals that are to be used in human subjects, the less toxic

organoborate substrates are usually preferred. As an alter-

native route to 11C-methylated arenes, Kealey and co-

workers describe a convenient two-step Pd-mediated cross-

coupling of 11CH3I with organozinc reagents (Scheme 1)

[28]. The Nagishi-type reaction was used to synthesize a

series of simple arenes in excellent yields. The same pro-

tocol was finally applied in the radiosynthesis of an

mGluR5 radioligand, [11C]MPEP [29]. Even though

organozinc reagents are known to be moisture sensitive, it

is much likely, that in the near future, Nagishi cross-cou-

pling reaction will be considered a good alternative to the

established protocols.

Enolates are a class of carbon centered nucleophiles that

shortly may have a major importance in the radiopharma-

ceutical community. To generate an active enolate, a strong

base, such as alkyl lithium or lithium diisopropylamide is

typically needed. Using lithium bases to remove a a-proton
is not always adequate because of their moisture sensitiv-

ity. However, in 2010, two methods for the synthesis of
11C-labeled arylpropionic acid derivatives have been pre-

sented [30, 31]. The rapid sp3–sp3 11C-methylation reaction

relied on the formation of benzylic enolates, using either

sodium hydride or tetrabutylammonium fluoride as base

Fig. 1 Some transformations in

carbon-11 radiochemistry.

Those discussed in this review

are highlighted in ovals
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(Scheme 2). The reaction proceeds smoothly under mild

conditions. However, until recently, the 11C-methylated

product formed under these conditions was obtained in low

enantiomeric purity. The use of chiral phase-transfer cat-

alyst has enabled enantioselective synthesis of the amino

acid, [11C]L-alanine, in high enantioselective purity

[enantiomeric excess (ee) of 90%] [32].

Moreover, this year, our group presented a novel (car-

bonyl)cobalt-mediated, and microwave-assisted, car-

bonylative protocol for the direct preparation of 11C-

labeled aryl methyl ketones using 11CH3I as the labeling

agent [33]. The method uses CO2(CO)8 as a combined aryl

halide activator and carbon monoxide source for the

carbonylation reaction. The method was used to label a set

of functionalized (hetero)arenes with yields ranging from

22 to 63% (Scheme 3).

11CO2-fixation reaction

[11C]Carbon dioxide is in itself a highly attractive starting

material for radiolabeling, since it is produced directly in

the cyclotron. However, due to low chemical reactivity, the

direct incorporation of CO2 into organic molecules poses a

significant challenge. High pressures, high temperatures or

catalysts are commonly required to activate the molecule.

Table 1 Direct 11C-methylation of amines using 11CO2
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The traditional method for 11CO2 ‘‘fixation’’ is the Grig-

nard reaction, which involves the conversion of alkyl or

aryl magnesium halides to [11C]carboxylic acids. However,

Grignard reagents require great care and the rigorous

exclusion of atmospheric moisture and CO2 during storage

and manipulation. To overcome these limitations, two

Fig. 2 Radiopharmaceuticals

labeled via metal-mediated 11C-

methylation

Scheme 1 Pd-mediated cross-

coupling of 11CH3I with

organozinc reagent

Scheme 2 Synthesis of 11C-labeled 2-arylpropionic acids and their methyl esters

Scheme 3 The formation of aryl methyl ketones via direct 11C-acetylation with 11CH3I
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independent research groups presented what arguably can

be viewed as the most ground-breaking advance in the field

of carbon-11 chemistry since 11CH3I was introduced in the

early 1970s. The innovative method, that was inspired by

the recent advances in ‘‘green chemistry’’ and reported in

2009, uses sub-milligram amounts of precursor compound,

reacts at low temperature (typically room temperature), for

1–3 min reaction time and does not require advanced

technical equipment [34, 35]. To overcome the low reac-

tivity of CO2, organic amines such as DBU or BEMP act as

organomediators by activating CO2 prior to the covalent

bond formation [36, 37]. The first report on 11CO2 fixation

was on the synthesis of 11C-labeled carbamates. However,

the scope of the method was later broadened to include

[11C]ureas and [11C]oxazolidinones (Scheme 4) [38], via

the formation of an 11C-labeled isocyanate or carbamoyl

anhydride intermediate. A number of drug-like molecules

have been prepared using this methodology in recent years

(2009–2016, see Fig. 3). These includes, the carbonyl

analogue radioligand of [11C-methyl]AR-A014418, a

compound developed for imaging of synthase kinase 3b
(GSK-3b) [39]. However, unfortunately, the in vivo eval-

uations of AR-A014418 revealed an undesirably low brain

uptake [40]. Moreover, two potent and irreversible fatty

acid amide hydrolase (FAAH) inhibitors, [11C]PF-

04457845 [41] and [11C]CURB [42], have also been pre-

pared. The latter, [11C]CURB, have recently been trans-

lated to a clinical setting for reginal quantification of

FAAH activity in human brain [43]. Furthermore, the

reversible monoamine oxidase B (MAO-B) radioligand,

[11C]SL25.1188, previously prepared using the technical

demanding [11C]phosgene approach, was radiolabeled in

high yield via 11CO2-fixation [44, 45]. This radioligand

was recently translated for human PET imaging [46].

Later, on a related subject, Dheere and co-workers

presented a further refinement to the methodology to

obtain [11C]ureas from less reactive amines, such as

anilines [47, 48]. Once again, DBU was used to trap
11CO2 in solution, but in this case, it was shown that

treatment of the carbamate anion intermediate (5) with

Mitsunobu reagents, DBAD and PBu3, provided the

corresponding asymmetric ureas in high radiochemical

conversion (Scheme 5).

In the interest of expanding the scope of 11CO2 as a

feedstock in radiochemical synthesis, copper-mediated

approaches to carboxylic acids and their derivatives have

been described [49, 50]. In the most recent example, the

combination of Cu(I) with boronic esters enabled CO2

activation in the presence of a soluble fluoride additive and

an organic base. In this reaction, the use of TMEDA was

found to be crucial for obtaining high radiochemical yields,

an observation likely explained by its dual action as both a

trapping agent for 11CO2 and a ligand for the copper cat-

alyst. A variety of functional groups were tolerated under

optimized conditions, and the generated 11C-carboxylic

acids could be further converted into either amines or

esters, as exemplified in the one-pot two-step preparation

of a candidate radioligand for the oxytocin receptor.

Scheme 4 Proposed pathways of 11C-labeled urea and carbamates via 11CO2-fixation chemistry [37]
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Carbonylation reactions using 11CO

[11C]Carbonmonoxide (11CO) hasmany attractive features as

a synthon for PET radiochemistry, including its facile pro-

duction [51, 52] and high versatility in transition-metal-me-

diatedcarbonylation reactions [53–56].Thewidespreaduse of
11CO in radiosynthetic chemistrywas until recently hampered

by its poor reactivity. Several solutions have been introduced

to overcome the above shortcomings, both from a technical

and chemical point of view [57–60]. A breakthrough was

reported in 1999,whereKihlberg and co-workers introduced a

method wherein 11CO was allowed to react in a small auto-

clave under high solvent pressure ([350 Bar) [61]. The high-

pressure reactor methodology exhibited nearly quantitative
11CO trapping efficiency and high radiochemical yield. Even

though thismethodhas exemplified the importance of 11COas

a labeling precursor it has not gained broad adoption in the

PET radiochemistry community. This can partly be attributed

to the overall complexity of the autoclave system and the

relatively high level of service needed to maintain the system

operational. Moreover, the repeated use of an integrated

stainless steel reactor may infer issues related to transition

metal build up over time, which is problematic in reaction

development and system validation.

In recent years, the development of low-pressure tech-

niques has been in focus. In 2012, an efficient protocol was

Fig. 3 Radiopharmaceuticals labeled via 11CO2-fixation chemistry

Scheme 5 Proposed pathway for 11C-labeled urea formation using Mitsunobu reagents
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reported by Eriksson and co-workers, in which 11C-car-

bonylation reactions were achieved without the need for

high-pressure equipment [62]. The high solubility of xenon

gas in organic solvents was exploited as an effective way of

transferring 11CO into a sealed standard disposable reaction

vial (1 ml) without significant pressure increase. The utility

of the method was exemplified by 11C-labeling of amides,

ureas, and esters. The use of disposable glass reaction

vessels eliminates carry over issues associated with the

high-pressure autoclave system, thus simplifying the tran-

sition to clinical applications. Recently, three reports were

published using the same 11CO transfer protocol (Fig. 4).

Windhorst et al. produced three 11C-labeled acryl amide

radioligands for in vivo PET imaging of the tissue trans-

glutaminase (TG2) enzyme [63]. Moreover, with the

‘‘xenon-method’’ as the synthesis platform, the Uppsala-

group presented two novel approaches to 11C-carbonyl

labeled compounds. Firstly, a new multicomponent reac-

tion for 11C-labeling of sulfonyl carbamates was described

[64]. The method was further applied as a synthetic tool for

the in vivo evaluation of an angiotensin II receptor subtype

2 (AT2R) agonist. Secondly, a method to access 11C-la-

beled alkyl amides via a thermally-initiated radical reduc-

tive dehalogenative approach [65]. One of the restrictions

of transition-metal-mediated reactions is the competing b-
hydride elimination of the resulting metal-substrate inter-

mediate, which precludes the use of alkyl electrophiles

containing b-hydrogen. This unfortunate competing reac-

tion is non-excitant for radical pathways. A series of un-

activated alkyl iodides was successfully converted into the

corresponding alkyl amide in good RCY, including the

radiosynthesis of an 11b-HSD1 inhibitor.

Specific Pd-complexes have also been shown to trap
11CO at ambient pressure and without the need for any

high-pressure equipment [66, 67]. XantPhos, a hindered

bidentate phosphine ligand, in combination with palladium

(l-cinnamyl) chloride dimer were found to be excellent for

promoting 11C-carbonylation reactions. Notably, in this

study it was discovered that, depending on the palladium-

ligand complex in use, different 11CO trapping efficiency

Fig. 4 Radiopharmaceuticals

labeled via 11CO low-pressure

techniques
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was observed (Table 2). The reaction proceeds smoothly at

close to atmospheric pressure with aryl halides or triflates

as substrates using simple disposable glass vials. This

method was recently also applied in the preparation of

well-known D2 radioligand, [11C]raclopride, but with the

carbon-11 labeled in the more metabolically stable car-

bonyl group (Fig. 4) [68]. Interestingly, in a direct com-

parison between ([11C]methyl)raclopride (produced using

the standard 11C-methylation approach) and

([11C]carbonyl)raclopride, both radioligands showed simi-

lar in vivo properties with regards to quantitative outcome

measurements, radiometabolite formation and protein

binding.

The protocol was further improved by Andersen and co-

workers, where pre-generated (Aryl)Pd(I)Ln oxidative

addition complexes were utilized as precursors for the

following 11C-carbonylation reaction [69]. This is exem-

plified in the preparation of [11C- carbonyl]raclopride in

Table 2 Ligand effect in 11C-aminocarbonylation reaction at ambient pressure

Entry Ligand Bite angle 

(o) 

Trapped  
11CO (%) 

Yield 

(%) 

1 dppe 78 31 21 

2 (S)-BINAP 92 18 3 

3 dppp 95 63 31 

4 dppb 99 40 10 

5 dppf 106 85 30 

6 DPEphos 108 55 19 

7 XantPhos 110 >99 54 

8 dcpp - 11 0 

9 PPh3 - 21 7 

10 SPhos - 9 4 

11 tBu-XantPhos 140 12 2 
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Scheme 6. The isolated complexes, (Aryl)Pd(I)Ln, have

already undergone the potentially challenging oxidative

addition step before their employment in carbonylative
11C-labeling. In this case, Pd-XantPhos complexes

appeared to be among the most reactive precursors,

although, electron-deficient aryl precursors demanded Pd-

P(t-Bu)3 to prevent aryl scrambling with phosphine ligand.

The simplicity of these low-pressure techniques, and

especially the ‘‘xenon-method’’ delivery protocol, may

offer a potential for being widely adopted in radiophar-

maceutical research and development.

As mentioned previously, one restriction with transition-

metal-mediated reactions is the competing b-hydride
elimination. However, in contrast to Pd or Rh catalyst,

nickel has been known to suppress the b-hydride elimina-

tion reaction. In the light of this, Rahman and co-workers

recently reported the first successful use of nickel-mediated

carbonylative cross-coupling of non-activated alkyl iodides

using 11CO at ambient pressure [70]. The best conditions

identified in this study made use of a nickel(0) precatalyst,

Ni(COD)2, in the presence of bathophenantroline as ligand

(Table 3). Six model compounds were successfully radio-

labeled in acceptable to good yields. However, more data is

required to establish if the method is suitable of preparing

more complex molecules.

Other recent advances in carbon-11 chemistry

Hydrogen cyanide is well established as a versatile pre-

cursor in PET radiopharmaceutical chemistry [71–73], and

its involvement in metal-mediated cyanation of aryl

Scheme 6 Labeling based on pre-isolated (Aryl)Pd(I)Ln complexes with 11CO

Table 3 Nickel-mediated 11C-aminocarbonylation of iodoalkyl compounds
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(pseudo)halides is well documented [74, 75]. A limitation

of such reactions is that they require rather harsh condi-

tions, such as high temperature, long reaction times, and

inorganic bases (e.g. KOH), which reduces the substrate

scope. Recently, a novel method was reported describing

near instantaneous, room temperature Pd-mediated cou-

pling of [11C]HCN to aryl halides or triflates [76]. The

method is based on sterically hindered biaryl phosphine

ligands (Table 4) that facilitate rapid transmetalation with

[11C]HCN and reductive elimination of aryl nitriles at

ambient temperature. A wide variety of (hetero)arenes and

drug-like molecules were radiolabeled in high yields,

including the j-opioid receptor radioligand

[11C]LY2795050 (Fig. 5). Moreover, two known antide-

pressants were also 11C-labeled in this study. This further

illustrates the usefulness of the current method in the

preparation of radiopharmaceuticals.

Carbon disulfide, the sulfur analogue of carbon dioxide,

has recently been synthesized on-line from 11CH3I using

either P2S5 and elemental sulfur (S8) at elevated tempera-

tures in excellent yields [77, 78]. Due to the weaker C=S

bond CS2 is considered more reactive than CO2. Moreover,

CS2 reacts very rapidly with many primary amines at room

temperature to form the dithiocarbamate salts, which in

turn, upon treatment with a suitable alkylating reagent will

give the corresponding thiocarbamates. Heating, on the

other hand, induces rearrangement to form the symmetrical

thiourea (Scheme 7). Some model compounds were radi-

olabeled using this protocol in near quantitative yields.

Finally, a progesterone receptor agonist, Tanaproget, was

also produced in high RCY (Fig. 5).

Lastly, an improved, mild synthesis of [11C]formaldehyde

have opened up new to carbon-11 labeled radiopharma-

ceuticals [79]. The treatment of trimethylamine N-oxide

Table 4 Pd-mediated radiosynthesis of [11C]aryl nitriles
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with 11CH3I at room temperature gave 11CH2O in a one-pot

reaction. This novel preparation has been utilized by a

number of groups to generate new exciting compounds

(Fig. 5) [80, 81]. In addition, since [11C]formaldehyde was

reported already in 1972 [82], there are other molecules

previously reported in the literature that may now be syn-

thesized in a simplified fashion using this protocol.

Final remarks

The increasing importance of PET in drug development

and clinical research has motivated researchers to initiate

programs directly dedicated to development of new radi-

olabeling methods. This review summarizes some of the

most recent and promising strategies to obtain carbon-11

Fig. 5 Radiopharmaceuticals

labeled using either 11CN, 11CS2
and 11CH2O

Scheme 7 11CS2-fixation to

form thioureas, thiocarbamates

and thioisocyanate
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labeled products. In the past two decades, and well before

this, efforts have brought to bear an impressive range of

methods for 11C-radiochemistry. However, there are still

issues to be addressed. Take for example, the heteroatom
11C-methylation reaction, which is now considered as an

established method by the broader radiochemical commu-

nity. Why is this? The main reason is the access to dedi-

cated commercially available radiochemical equipment for

this radiochemistry. Consequently, to streamline new

methodologies, and make them widely available, new

radiochemical equipment is needed. A possible approach to

attack the problem could be to develop radiosynthesis

equipment with a higher flexibility. A fundamental ques-

tion is if microscale technology (microfluidic or microre-

actor) can provide a breakthrough in radiochemistry? Its

compact design, flexible attributes, and its suitability for

automation make microscale technology an ideal platform

for performing the rapid radiolabeling reactions required

for PET. So far, efforts made to adapt microscale tech-

nology for PET radiolabeling purposes have focused on

proof-of-principle studies and to illustrate the advantages

associated with the technology and significant further

development is needed for the technology to reach its full

potential. Although the authors recognize the importance of

microreactor technologies, other technical approaches

towards the development of more flexible radiochemical

synthesis equipment are equally attractive at this point.

Regardless of which direction is taken in the future, we

firmly believe that a stronger collaboration between

radiochemists and technical engineers is vital for suc-

ceeding in the development of the next generation of PET

radiochemistry equipment.

Finally, radiochemistry is the foundation for PET

imaging. By broadening the spectrum of radiochemical

reactions within clinical PET radiochemistry, radio-

chemists will not only be able to increase the number of

compounds that can be labeled with carbon-11 but also

provide an increased opportunity to label a given com-

pound in different positions.
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